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We study the effects of laser pulse focusing on the spectral properties of Thomson scattered radiation.
Modeling the laser as a paraxial beam we find that, in all but the most extreme cases of focusing, the
temporal envelope has a much bigger effect on the spectrum than the focusing itself. For the case of
ultrashort pulses, where the paraxial model is no longer valid, we adopt a subcycle vector beam description
of the field. It is found that the emission harmonics are blue shifted and broaden out in frequency space as
the pulse becomes shorter. Additionally the carrier envelope phase becomes important, resulting in an
angular asymmetry in the spectrum. We then use the same model to study the effects of focusing beyond the
limit where the paraxial expansion is valid. It is found that fields focussed to subwavelength spot sizes
produce spectra that are qualitatively similar to those from subcycle pulses due to the shortening of the
pulse with focusing. Finally, we study high-intensity fields and find that, in general, the focusing makes
negligible difference to the spectra in the regime of radiation reaction.
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I. INTRODUCTION

There is currently a great deal of interest in the develop-
ment of compact, tunable and well-collimated radiation
sources. Such sources have applications in a wide range of
areas including X-ray radiography [1], medical and bio-
logical imaging [2], and in the study of ultrafast molecular
processes. A method of radiation source generation which
is beginning to establish itself is that of nonlinear Thomson/
Compton scattering of electrons in intense laser pulses.
Laser-electron setups are much more compact than tradi-
tional alternatives such as undulator magnets and magnetic
synchrotron rings, thus widening the range of potential
applications. They also show a great deal of promise due to
the consistent, exponential increase in peak focal intensities
over the past 30 years [3]. With the development of a
number of new facilities such as the Vulcan 20 PWupgrade
[4] and the Extreme Light Infrastructure (ELI) Facility [5]
this trend is expected to continue into the foreseeable
future.
The frequency and brilliance of the radiation emitted via

Thomson scattering can be adjusted by changing the laser
intensity and/or the incoming energy of the electron beam.
At lower intensities one has sufficient control over the laser

pulse parameters to generate extremely mono-energetic
radiation of a specified frequency. It is also possible to
generate frequency combs by manipulating the harmonic
structure of the emitted radiation (see, for example, [6–8]).
At higher intensities one can generate extremely high-
energy, high-brilliance radiation, as has recently been
demonstrated in a number of experiments [9–12]. Such
sources further the range of applications to include both
fundamental research [13] and more practical applications,
such as cancer radiotherapy [14] and the radiography of
dense objects [15].
Many of the theoretical discussions of Thomson/

Compton scattering approximate the laser pulse using a
plane wave model. In reality the laser pulse will be a
focussed electromagnetic field with a more complicated
spatio-temporal structure. This is particularly true in the
case of high intensity lasers where strong focusing is an
important aspect in raising the pulse intensity. While there
have been a number of works on individual aspects of
focusing effects in classical Thomson scattering (see, for
example, Refs. [16,17]), and in quasiclassical Compton
scattering (e.g., Refs. [18–20]), the time is ripe for a
thorough study of how the structure of a focussed pulse
alters the properties of the emitted radiation. (We also note
some promising techniques for tackling the fully quantum
case, see Ref. [21].) In this work we aim to provide this by
systematically analyzing the effects of the laser pulse
focusing on the Thomson emission spectra.
We begin in Sec. II by discussing the modeling and

setup. In Sec. III we consider the effects of focusing on the
Thomson spectra, looking at both the importance of the
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electron impact parameter and the pulse duration. Then in
Sec. III E we consider high intensity laser pulses, examin-
ing the interplay between the pulse focusing and radiation
reaction effects. Finally we conclude in Sec. IV.

II. MODELING

Throughout this work we will consider the case of a
relativistic electron in a head on collision with an intense
laser pulse. We begin by adopting units such that c ¼ 1. In
all cases the laser will propagate along the z axis, such that
its wave vector is k ¼ ω0, where ω0 is the central frequency
of the laser. We define the peak intensity in the usual
manner via the dimensionless parameter a0 ¼ eE0=ω0m.
Unless we are using the vector beam model which we
introduce in Sec. III C, we will model our laser field as a
focussed paraxial beam, the derivation and full expression
of which are given in the Appendix A 1. Such beams are
focussed down to a waist w0 in the center. The paraxial
description itself is a perturbative expansion, satisfying
Maxwell’s equations to the order of an expansion parameter
θ0 ¼ w0=zr ¼ λ=πw0, where λ is the laser wavelength and
zr ¼ kw2

0=2 the Rayleigh length. (In this work we retain
terms to fifth order in the expansion parameter.) We denote
this quantity by θ0 since it closely approximates the beam
diffraction angle. We consider it a suitable parameter
with which to quantify the degree of focusing in our
pulses. In all cases our field components are multiplied
by a temporal envelope shaping function aðηÞ, where the
phase η ¼ ω0t − kz. Except where otherwise stated, we
take the field profile to be a Gaussian function

aðηÞ ¼ exp

�
−

η2

2T2

�
; ð1Þ

which has a FWHM of 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð2Þp

T. We note that while this
function does not strictly satisfy the constraint (A6) for all
η, any discrepancy will be in the tails of the pulse where the
amplitude will be heavily damped. For the purposes of this
study we shall fix the peak intensity as we vary the
focusing. This will allow us to better understand the effects
of focusing on the locations of structural features in the
emission spectrum, but it also means that the total energy
content of the pulse will not be conserved with focusing.
To conduct our simulations we propagate the electrons

through the laser pulses by solving the Lorentz force
equation

dp
dt

¼ eðEþ v × BÞ; ð2Þ

where p ¼ γv is the relativistic momentum and v the
velocity. Covariance is maintained by enforcing the
mass-shell condition p2 ¼ m2 when calculating γ (for an
alternative method see Ref. [22]). Once we have calculated
the electron trajectory, the resulting radiation emissions are

determined via the well-known classical formula. The
intensity of radiated energy per unit solid angle per unit
frequency is given by [23],

d2I
dωdΩ

¼
����
Z

∞

−∞

n × ½ð n − βÞ × _β�
ð1 − β · nÞ2 ei

ω
ω0
½tþDðtÞ�dt

����2; ð3Þ

where n is a unit vector pointing from the particle’s
position to a detector (D) located far away from the
interaction, and β and _β are, respectively, the particle’s
relativistic velocity and acceleration. We have normalized
the intensity by a factor e2=ð4π2Þ. All the quantities in the
expression are evaluated at a retarded time so one can
directly do the integration in some finite limit. We illustrate
the coordinate system in Fig. 1. The simulations in this
manuscript were carried out using both the code described
in Refs. [24,25] and the code SIMLA [26].

III. RESULTS

A. Effect of focusing

We will begin our investigations by restricting ourselves
to the case of a counterpropagating electron colliding along
the propagation axis of the laser, so that it goes through the
center of the pulse focus. In subsequent sections we will
consider the off-axis case.
In the case of a plane wave field, provided the temporal

envelope is of sufficient length (and the pulse is symmet-
ric), the net energy change will be zero once the particle
leaves the pulse. This is because the acceleration of the
particle in the rising part of the cycle is cancelled out by the
deceleration in the corresponding down-cycle, an effect
resulting from the so-called Lawson-Woodward theo-
rem [27,28].
As we move from a plane wave to a focussed pulse the

field structure will change in a number of ways. The most
prominent effects are the development of a longitudinal
electric field and a shortening of the pulse duration. The
first can be seen from Eq. (A24), where we find that the
longitudinal field scales linearly with θ0, although it is
always zero along the laser axis (i.e., when x ¼ 0).
Nevertheless, the electron will orbit around the axis with
the rise and fall of the laser pulse, meaning that it will be
subjected to this field even though it is injected along
x ¼ 0. The longitudinal field at different transverse

FIG. 1. Diagram illustrating the coordinate system.
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positions is shown in Fig. 2. The second effect can be seen
in Eq. (A28) where we see that, in addition to the effect of
the temporal envelope function aðηÞ, the paraxial beam also
decays in longitudinal space like w0=w. Both of these
effects become manifest in the electron’s velocity which we
plot in Fig. 3, although it is difficult to fully disentangle the
two. We see, for instance, that the tighter the focusing the
shorter the interaction time of the electron with the pulse.
This is due to the faster fall-off of the field profile, but
partially counteracting this effect will be the longitudinal
electric field pushing back on the particle. It can be seen

from the lower panel of Fig. 3 that the longitudinal velocity
decreases in magnitude (note the scale is negative) in the
center of the tightly focussed pulse, which results in a
reduction in the γ factor (top panel), but has slightly lesser
impact on the transverse velocity (centre panel).
We now turn our attention to the Thomson emission

spectra. In the nonlinear case where a0 > 1 the total
emission spectrum will be composed of a sum of harmonic
contributions, each corresponding to integer multiples of
the laser frequency [29,30]. In the idealized case of an
infinite monochromatic plane wave field the harmonics will
be very narrow, tending to δ function spikes as a0 →

ffiffiffi
2

p
γ

[8]. The positions of these spikes in frequency space are
determined by considering the conservation of the cycle
averaged momentum [7], and for the case of a relativistic
particle, γ ≫ 1, if observed in the backscattering direction,
θobs ¼ π, they are [8]

ω0
n ¼

4γ2nω0

1þ a2
0

2
þ 4γn ω0

m

; ð4Þ

wheren is an integer corresponding to the harmonic number.
(From the cycle-averaged momentum q one can define a
cycle averaged effective mass m2� ¼ q2 ¼ m2ð1þ a20=2Þ. It
is found that the frequency spectrum behaves as if the
electron mass had become “dressed” by the background
field, e.g., the positions of the harmonics are shifted by a
factor 1þ a20=2 [7,8,31,32].) In the case of linear polariza-
tion only the odd numbered harmonics will contribute to the
spectrum in the on-axis direction (θobs ¼ π) [30]. Although
in reality it is not possible to generate an infinite plane wave
field, we can approximate one quite closely be defining our
temporal envelope to have a super Gaussian profile [7,33]

aðηÞ ¼ exp

�
−

η12

2T12

�
: ð5Þ

It is well known that the introduction of a more smoothly
decaying temporal profile, such as a Gaussian, results in a
broadening out of the harmonics over a finite frequency
interval [6,34]. This is because there are now significant
contributions to the emissions from the electron radiating in
the rise and fall of the pulse. Thus it makes sense for us to
consider four cases: the emissions from an electron in a
plane wave and a paraxial field, and with Gaussian and
super Gaussian envelopes. Comparing these will allow us
to disentangle the changes to the emission spectrum that
result from the focusing of the fields from those that result
from the shape of the temporal profile. In Fig. 4 we show
the four cases calculated for a laser of peak intensity
a0 ¼ 2, duration 27 fs (10 optical cycles), λ ¼ 0.8 μm and
for an incoming electron with initial γ0 ¼ 10. Inserting
these values into Eq. (4) tells us that the separation between
harmonics is about 207 eV. We have marked the position of
the (monochromatic field) harmonics as dashed red lines on
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FIG. 3. Plots showing the γ factors and velocity components of
the electron in a laser pulse with different focusing. The laser
pulse has a Gaussian time envelope and was 27 fs in duration with
a peak a0 ¼ 2. Gray (thick) lines: θ0 ¼ 0. Blue (dashed) lines:
θ0 ¼ 0.35. Red (solid) lines: θ0 ¼ 0.7.

FIG. 2. Plot showing the (normalized) amplitude of the longi-
tudinal electric field, Ezðx; 0; zÞ=a0, as a function of the focusing
parameter θ0 and the longitudinal coordinate z for different values
of x. The field component is calculated at x ¼ w0=4 (a), x ¼
w0=2 (b), x ¼ 3w0=4 (c) and x ¼ w0 (d). (It should be noted that
as we change the focusing parameter the value of w0 also
changes.) It can be seen that for weak focusing (θ0 → 0) the
longitudinal field tends to zero. As we increase the focusing
the amplitude rises, becoming a significant fraction of the
transverse field.
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the plot. It can be seen in the top panel that, as expected, the
plane wave field with a super Gaussian envelope is a good
approximation to the infinite plane wave field, with all the
harmonics lining up in the correct positions and being very
narrow, almost δ function, spikes. If we retain the super
Gaussian envelope but switch to a focussed paraxial beam
(w0 ¼ λ, θ0 ¼ 1=π ≈ 0.32), the harmonics begin to spread
out across a range of frequencies and as a result there is a
reduction in the peak amplitudes (second panel). We now
switch back to a plane wave, but this time with a Gaussian
time profile. The result (third panel) is a much more
dramatic broadening of the harmonics than occurred from
focusing the field, even though the focusing we used was
quite strong. (Unfortunately, the highly nonlinear relation-
ship between the pulse profile and the properties of the
subharmonics means that we are unable to quantify these
substructures in more detail. However, there are good
discussions of their properties in Refs. [6,34].) Finally,
in the bottom panel we consider a focussed pulse with a
Gaussian time envelope. Overall we conclude that,
although focusing the field results in a broadening of the
harmonics, the effect is significantly smaller than the effect
of the temporal profile of the field, be it plane wave or
focussed.

B. Effect of impact parameter

In a real experiment the electron beam will have a finite
transverse width and so we must consider how the emission

spectrum changes for particles with a nonzero impact
parameter. It can be anticipated that, to a certain extent,
the full emission spectrum from all the electrons can be
approximated by the spectrum produced from the on-axis
electron. This is because the electrons close to the axis will
see a stronger field and so their emissions will dominate
over the others. In the case of plane waves the result is
trivial: regardless of the impact parameter we will always
obtain the same spectrum. We will now investigate for a
focussed pulse.
In Fig. 5 we illustrate the evolution of the electron γ

factor as electrons with different impact parameters pass
through a (weakly) focussed pulse. It can be seen that as we
increase the impact parameter two main changes occur. The
first is that the amplitude of the γ factor decreases, as should
be expected since the field decays like expð−r2=w2Þ (see
Eq. (A28). The second is that the electrons can momen-
tarily have a lower γ factor than they started with as they
oscillate in the field. The result of this is that the peak γ
factor is lower than would otherwise be expected, and is not
so well approximated by just considering an exponential
fall-off of the form expð−r2=w2Þ, which is plotted in red.
Finally, a careful observation finds that the γ factors are not
symmetric along z, resulting in a small net energy change
as the electrons exit the pulse.
We now turn our attention to the Thomson spectra,

considering once again a laser of peak intensity a0 ¼ 2,
λ ¼ 0.8 μm, and with a Gaussian profile of 27 fs duration.
The incoming electrons have an initial γ0 ¼ 10 and are
counterpropagating with the laser pulse, although they now
have impact parameters in the x (polarization) direction of
xi ¼ 0, w0=4 and w0=2. The resulting spectra are shown as
black lines in Fig. 6. It can be seen that both the emission
amplitudes and the number of harmonics become
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FIG. 4. Thomson emission spectra calculated at θobs ¼ π for an
electron of initial γ0 ¼ 10 counterpropagating along the laser
axis. In all cases the laser pulse has a peak a0 ¼ 2 and is 10 cycles
in duration (27 fs). It is either a plane wave or paraxial field
[focussed to θ0 ¼ 1=π (w0 ¼ λ)], with a Gaussian or super
Gaussian envelope, as indicated in the panels. The red (dashed)
lines show the positions of the odd-numbered harmonics calcu-
lated for the case of a monochromatic plane wave.

FIG. 5. Illustration showing the electron γ factor as it prop-
agates through a focussed pulse with varying impact parameter.
In this example the electron had an initial γ0 ¼ 5 and was inserted
into the laser with impact parameters of xi ¼ 0, xi ¼ w0=2 and
xi ¼ w0, which correspond to the three blue lines in the plot
(back to front, respectively). The laser pulse had a peak a0 ¼ 2,
λ ¼ 0.8 μm and was focussed to a waist of w0 ¼ 5 μm
(θ0 ¼ 0.05). The duration was reduced to 20 fs to aid clarity
of illustration. The yellow-black shading illustrates the intensity
profile at t ¼ 0. The curved black lines in the x − z plane show the
beam waist w. The red curve in the x − γ plane shows the
transverse profile function, expð−r2=w2Þ, evaluated at y¼z¼0.
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increasingly damped as we increase the impact parameter.
This is to be expected since the electrons are now probing
regions of field with lower peak intensity. Also in Fig. 6 we
plot as gray lines the emission spectra for a plane wave with
peak amplitude reduced by a factor

a0 → a0 exp

�
−
x2i
w2

�����
y¼z¼0

¼ a0 exp

�
−
x2i
w2
0

�
; ð6Þ

to compensate for the transverse fall-off in intensity for the
focussed field. (Additionally we plot the locations of the
monochromatic harmonics for this case using red dashed
lines.) It can be seen that this modified plane wave
approximation is only of limited value in approximating
the emission spectra for large impact parameter. It predicts
the fall-off with frequency with reasonable accuracy,
but the structural features of the harmonics are very
different as compared to the focussed field.
Since the effect of the impact parameter has most

relevance in the context of a bunch of electrons colliding
with the laser pulse, we now consider a spatially distributed
group of electrons. In order to keep the analysis manage-
able we will limit ourselves to a two-dimensional disk of

electrons in the transverse plane. (If we were to extend the
disk to a cylinder we would find that the electrons at the
ends of the cylinder will arrive early/late, before the pulse
has reached its peak focus or after the focus has decayed. In
such instances the emissions from these electrons would
smear out the tails of the combined spectrum, making our
analysis more difficult.) In Fig. 7 we compare the total
(normalized) emission spectrum from a bunch of electrons
with that from a single particle traveling along the axis. It
can be seen that, in the case of the first harmonic, the
(averaged) emissions from the electron disk (blue lines) are
quite well described by the single on-axis electron, forming
a spectrum that is approximately an average over the
structures of the single particle spectrum. However, the
higher harmonics in the spectra are missing in the case of
the electron disk. This is because most of the electrons pass
through weaker regions of field than exist at the center and
for these electrons the higher harmonics are heavily
damped. Thus we conclude that the lower frequency part
of the spectrum is reasonably well described by the single
electron, but the higher part is not. Finally, we also plot the
emission spectrum for the disk of electrons in collision with
a plane wave multiplied by a transverse envelope function
expð−r2=w2

0Þ (red lines). Doing so allows us to distinguish
the changes to the spectrum due to the transverse fall off of
the focused field from other focusing effects. It can be seen
that the modified plane wave spectrum represents the true
spectrum (i.e., the blue line) reasonably well. Although it
significantly underestimates the lower part of the main
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FIG. 6. Thomson emission spectra for electrons with varying
impact parameters xi. The laser is of peak intensity a0 ¼ 2,
λ ¼ 0.8 μm, and with a Gaussian profile of 27 fs duration. The
incoming electrons have an initial γ0 ¼ 10 and are counter-
propagating with the laser pulse. Their impact parameters are
listed in the figure panels. Black lines: emission spectra calcu-
lated for a paraxial laser pulse focussed to θ0 ¼ 1=π, (w0 ¼ λ).
Gray (thick) lines: emission spectra calculated using a plane
wave laser, with peak amplitude reduced to compensate for
the fall-off in the focussed field (see main text for details). Red
(dashed) lines: the positions of the harmonics in the case of a
monochromatic field, calculated using the same a0 as the plane
wave spectra.

FIG. 7. Thomson emission spectra for an electron bunch in a
paraxial beam (500 particles randomly distributed over a disk of
radius w0 in the transverse plane, shown as blue lines and denoted
Npara ¼ 500) are compared with those of a single particle (yellow
lines, denoted Npara ¼ 1). The electron(s) have initial γ0 ¼ 10

and collide head-on with 0.8 μm, 10 cycle laser beam of peak
intensity a0 ¼ 2. Panel (a) shows the results for a focusing of
θ0 ¼ 0.85 (w0 ¼ 0.3 μm), and panel (b) for θ0 ¼ 0.51
(w0 ¼ 0.5 μm). The spectra is also calculated for the bunch
using a plane wave field multiplied by a transverse envelope
function expð−r2=w2

0Þ (red lines, denoted Nplane ¼ 500).
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harmonic, it reproduces the correct fall-off of the higher
harmonics. (It should be noted that this is not identical to
what we have done to produce the gray lines in Fig. 6; there
we reduced the peak intensity by a constant factor, in the
current example we are reducing it by a factor that is a
function of the transverse coordinates.)

C. Ultrashort pulses

In the case where the pulse duration is very short the
paraxial approximation will no longer be valid. This is
because in such a situation the expansion parameter θ0
(which closely approximates the beam diffraction angle)
will be of a similar order to the time scale of the pulse
duration ω0T, and so the fields no longer vary gradually
along the propagation axis. Instead we adopt the vector
beam model described in Sec. A 3, which is derived from
an oscillating dipole field [35]. This provides an exact
analytical solution to Maxwell’s equations describing a
focussed field with an arbitrarily short duration.
However, the vector beammodel is not without problems

of its own. The most notable is the presence of a ring
singularity caused by the fields blowing up when the
complex distance R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðzþ izrÞ2

p
→ 0 (see

Sec. A 3 for details). A quick calculation shows that this
occurs when x2 þ y2 þ z2 − z2r ¼ 0 and 2izzr ¼ 0. Thus
the fields are not properly defined along a ring, centered at
the origin and of radius zr. In order to assess the impact of
this we must consider the motion of the electron in the field.
If we take the electron to be on axis with zero impact
parameter, then the radius of the orbit can be estimated by
considering that of a particle in a plane wave. This can
easily be determined analytically (see, e.g., Appendix B of
Ref. [36]) and is given by

x⊥;max ¼
λ

2π
a0γð1� βÞ; ð7Þ

where the sign � is positive (negative) for co- (counter-)
propagating particles. Thus to be confident that the electron
will not come into the vicinity of the singularity we require

a0γð1� βÞ < 2π2w2
0

λ2
: ð8Þ

Assuming w0 ∼ λ we can see that there will only ever be a
problem in the counterpropagating case (with zero impact
parameter) that we are considering if a0 ≫ γ. We illustrate
this argument in Fig. 8.
To consider the effects of the pulse duration on the

Thomson spectra we once again work with a laser pulse of
peak intensity a0 ¼ 2 brought into collision with an
electron counterpropagating along the laser axis with
γ0 ¼ 10. A series of spectra are plotted in Fig. 9. The
top panel shows spectra for pulses containing two optical
cycles FWHM and in each subsequent panel the pulse

durations are reduced by half. Although the two-cycle
spectra are different from the longer pulses shown in Fig. 4,
the qualitative features are broadly the same. For instance
the positions of the spectral peaks are close to the locations
predicted by the infinite plane wave model (vertical red
lines). As we decrease the pulse duration the harmonics
reduce in amplitude and become blue shifted to higher
frequencies. Neither of these facts is surprising. The
reduction in amplitude roughly scales with the reduction
in duration and can thus be interpreted as a result of the
electron radiating for a shorter time. (We also note that, in
order to simplify our analysis, we have fixed the peak
intensity, rather than the total pulse energy, meaning that as

FIG. 8. Diagram showing the location of the singularity in the
vector beam model in relation to the particle orbit.
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FIG. 9. Emission spectra for laser pulses of decreasing duration
(FWHM). The laser is of peak intensity a0 ¼ 2 and wavelength
λ ¼ 0.8 μm. The electron has an initial γ0 ¼ 10. Gray (thick)
lines: spectra calculated for a plane wave. Black (solid) lines:
spectra calculated using a 5th order paraxial beam focussed to a
spot size of w0 ¼ 0.8 μm (θ0 ¼ 1=π). Blue (dash-dot) lines: the
same but modeled using the vector beam model. Red (dashed)
lines: the locations of the harmonic peaks for the case of an
infinite plane wave (see Sec. III A).
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we increase the focusing we reduce the total energy content
of the pulse.) The frequency blue shift results from the fact
that the intensity dependent mass, m�, only governs the
harmonics when the laser field has sufficient periodicity
[7,37]. In the case of a subcycle pulse the mass is no longer
dressed by the laser field and so the harmonics are blue
shifted back to what would be expected from the Klein-
Nishina formula for a single photon scattering off an
electron (see, e.g., Ref. [8]). This behavior is consistent
with what is found in the QED case for Compton scattering
in subcycle pulses [37] (see also Ref. [38]).
In order to disentangle the effects of focusing from the

effects of the short pulse duration we have calculated the
spectra for the plane wave, paraxial and vector beam pulse
models. For the two cycle pulse there is reasonable
agreement between all three descriptions. As we shorten
the pulse duration the vector beam results begin to separate
from the paraxial and plane wave results. Although the
amplitude is damped compared to that of longer cycle
pulses, the emission spectra predicted by the vector beam
model has a significantly higher amplitude than that
predicted by the paraxial/plane wave models. The radiation
from the vector beam also has a higher frequency than that
predicted by the other models. This is due to the fact that
the vector beam description contains a so-called “self-
induced blue shift” [35]. This is analogous to the Gouy
phase, which is a frequency shift that occurs as a result of
focusing,whereas the self-induced blue shift is causedby the
finite pulse duration, becoming important in the subcycle
regime. The higher-frequency components of the vector
beam pulse will increase the frequency of the scattered
radiation and raise its amplitude, since higher frequency
fields contain more energy. These examples demonstrate
how crucial it is to adopt a suitable beam model when
considering subcycle pulses.
Finally, in Fig. 10 we show the angular emission spectra

for two (vector beam) pulses of different durations. It can
be seen that as the pulse duration decreases the angular
distribution of the radiation loses its symmetry. This effect
is visible even for the two-cycle pulse, but becomes quite
noticeable in the case of the half-cycle pulse [the spectrum
for a longer pulse can be seen in panel (b) of Fig 13]. The
reason for the breakdown of symmetry can be found by
studying the electron motion. From the left-hand panels in
Fig. 10 it can be seen that, close to the center of the pulse
(around t ¼ 0), the longitudinal velocity, ux, mostly has a
positive value only. Since the majority of the emissions will
occur while the electron is in this region, and the radiation
will be emitted approximately in the direction of motion
[23], the spectrum will be skewed toward the positive x
direction (θobs < π). This is of course an effect of the carrier
envelope phase, with the short duration amplifying the field
asymmetry caused by the phase difference between the
laser carrier wave and the pulse envelope. We could correct
for this by phase shifting the vector field by half a cycle to

make it a cosine pulse. However, the asymmetry in the
radiation direction offers a useful diagnostic tool for
determining the carrier envelope phase of a given laser
pulse [39,40].

D. Extreme focusing

Having introduced the vector beam model, which pro-
vides an exact analytical solution to Maxwell’s equations,
we are now in a position to consider more extreme
focusing, beyond the limit of validity of the paraxial
approximation. Before considering emission spectra it
makes sense to study more quantitatively when the paraxial
model starts to break down. In order to do this we need to
choose a measurable quantity to enable comparisons
between the models. An obvious choice is the total radiated
power, given by the Larmor equation

P ¼ 2

3

mre
γ0ð1þ β0Þ

Z
dηẍ2; ð9Þ

where re ¼ e2=m is the classical electron radius and ẍ is the
proper acceleration, distinct from the quantity _β in Eq. (3).
In Fig. 11 we plot Eq. (9) as a function of θ0 for various a0
and γ0. Assuming that the vector beam model provides the
“correct” solution (since it exactly satisfies Maxwell’s
equations) we find, as expected, that the paraxial model
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FIG. 10. Electron motion and corresponding emission spectra
in short laser pulses. The laser is described using the vector beam
model and has a peak a0 ¼ 2, λ ¼ 0.8 μm and is focussed to a
spot size of w0 ¼ 0.8 μm (θ0 ¼ 1=π). The electron collides along
the propagation axis and has an initial γ0 ¼ 10. Top row: results
for a 2 cycle (FWHM) pulse. Bottom row: results for a 0.5 cycle
(FWHM) pulse. Left column: transverse velocity, ux, and trans-
verse trajectory 10 × k · x (units dimensionless). Center column:
emission spectra as a function of frequency and angle. Right
column: angular emission spectra integrated over all frequency
(arb. units). The dashed line indicates the propagation direction
(θ ¼ π). (All units dimensionless.)
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becomes less accurate as we increase θ0. Both models
exhibit the same downward trend in total radiated power as
θ0 increases, which is hardly surprising because the pulse
length becomes shorter. In all cases the paraxial model
underestimates the radiated power, although the degree of
underestimation depends on the parameters. We find the
larger γ is compared to a0 the larger the error: for example,
the case a0 ¼ 2, γ0 ¼ 10 [panel(c)] produces a relative
error of approximately 25% for θ0 ¼ 0.85. The reason for
this can be understood by considering the particle trajec-
tory. We explained in the previous section that the trans-
verse diameter of the electron orbit is proportional to
γð1 − βÞ. Therefore the higher the γ factor the narrower
the orbit, meaning that the electron remains closer to the
laser axis where the focusing effects (e.g., longitudinal
electric field) are most significant.
In Fig. 12 we show the emission spectra and correspond-

ing trajectories for electrons in lasers of increasingly tight
focusing. (We model the tightly focussed pulses using the
vector beam model.) It can be seen that, as with our earlier
examples, the pulse duration becomes shorter as the
focusing increases. This results in a lower amplitude for
the emissions as well as structural changes to the harmon-
ics. In order to distinguish between the effects of the pulse
shortening and the other effects of the focusing, we
measure the FWHM of the focussed pulse and calculate
the spectra again using a plane wave of the same duration.
The results for the corresponding plane wave fields are
shown in gray. Comparing the focussed field results with
the shortened plane wave results tells us that, while the

shortening of the field goes a long way towards accounting
for the reduction in amplitude and frequency range of the
focussed pulse spectra, there are also structural changes in
the harmonics caused by other focusing effects such as the
longitudinal electric field and the curvature of the fields.
In Fig. 13 we show the two-dimensional emission

spectra as a function of both frequency and angle for
different focusing parameters. It can be seen from the top
panels that even reasonably strong focusing (θ0 ¼ 1=π)
results in only limited impact on the shape of the 2D
spectral features. In the bottom panels we consider
extremely tight focusing, θ0 ¼ 1.2, implying that the beam
is focussed to a spot of only half a wavelength in diameter.
This is beyond the range of validity for which the paraxial
expansion is valid, but for reference purposes we plot the
spectrum for both the paraxial and vector beam models. It
can be seen immediately that the (invalid) paraxial model
produces much broader harmonic structures than the vector
beam model. Nevertheless, both models predict an angular
asymmetry about the laser axis (although this is exagger-
ated by the paraxial beam model). The reason for this
asymmetry is that the duration of the pulse is so shortened
by the focusing that the electron velocities becomes
unsymmetrical in the peak of the pulse, just as we saw
in the case of short pulses in Fig. 10. Finally, in Fig. 14 we
show the integrated angular spectra for the four cases. It
can be seen that the asymmetry starts to develop around
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FIG. 12. Spectra and trajectories for an electron of initial
γ0 ¼ 10 colliding with a laser of peak a0 ¼ 2, duration 10 cycles
(27 fs) and wavelength λ ¼ 0.8 μm, for different levels of
focusing. Left panels show emission spectra, right panels show
the trajectories. Top row (blue lines): plane wave. Middle row
(blue lines): vector beam focussed to θ0 ¼ 0.8 (w0 ¼ 0.318 μm).
Bottom row (blue lines): vector beam focussed to θ0 ¼ 1.2
(w0 ¼ 0.212 μm). The red lines show the same but are calculated
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FWHM duration of the focussed field (which becomes shortened
by the focusing). For the middle panels this duration is 3.5 cycles,
and for the bottom panels 2.5 cycles.

FIG. 11. Plots showing the total radiated power (Larmor power)
in dimensionless units for fixed a0 (a,b,c) and for fixed γ0 (d,e,f)
using the vector beam model (VBM) and the 1st and 5th order
paraxial beam model (PBM). The relative % error in radiated
power for the paraxial beam with respect to the vector beam
model is presented in (g) and (h). The lines denoted by (a1) and
(f1) are for the case of the 1st order paraxial beam, in all other
cases there are no visible differences between the 1st and 5th
order models.
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θ0 ¼ 0.8 and is overestimated by the paraxial model. (For
further discussion of the break down of the paraxial
approximation we refer the reader to Ref. [41].)

E. Effects at high intensities

In the cases we have considered up until now the total
radiation emitted has been small enough for us to be able to
neglect the resulting energy loss on the electron motion.
However, if we consider more intense laser fields then the

emissions will be of sufficiently high energy that the
resulting energy losses to the particle will become signifi-
cant. This so-called “radiation reaction” effect can be
included by adding correctional terms to the Lorentz force
equation. However, determining the correct form of these
terms is surprisingly nontrivial. Despite having been studied
for over 100 years, it remains one of the most fundamental
problems in electrodynamics. A common starting point is to
solve the coupled Lorentz and Maxwell’s equations for the
system. Doing so results in the Lorentz-Abraham-Dirac
equation [42–44], which is infamous due to its unphysical
defects such as preacceleration and (unphysical) runaway
solutions. One of the most common resolutions is to adopt a
perturbative approximation, first proposed by Landau and
Lifshitz [45]. Then the equation of motion is given by

dp
dt

¼ eðfL þ fRÞ; ð10Þ

where fL ¼ Eþ v × B, and the radiative correction term is
given by

fR ¼−
�
4

3
π
re
λ

��
γ

�� ∂
∂tþv ·∇

�
Eþv×

� ∂
∂tþv ·∇

�
B

�
þ½ðfLÞ×Bþðv ·EÞE− γ2½ðfLÞ2− ðv ·EÞ2�v�g;

ð11Þ

where re ¼ e2=m is the classical electron radius.
Equation (11) is valid when the radiative reaction force is
much less than the Lorentz force in the instantaneous rest
frame of the particle. We note that there are a growing
number of alternative equations in the literature (for an
overview see [20,46]) and it is still an open problem as to
which is the correct formulation. However, all of the models
predict almost indistinguishable particle dynamics [47].
Additionally, it has recently been shown that the Landau-
Lifshitz equation, along with some of the others, is con-
sistent with quantum electrodynamics to the order of the
fine-structure constant α [48,49]. Finally, we note that the
first term (derivative term) ofEq. (11) is significantly smaller
than the other two, since it is only linear in the field strength
whereas the other terms are quadratic. We find that in all
cases the contribution from this term is negligible and so we
do not include it in our simulations. (In fact, it can be shown
that, in the cases where classical radiation reaction (RR) is
important, the derivative term is even smaller than the
electron spin force and so one can argue that it should be
neglected out of consistency [50].)
In Fig. 15 we plot various aspects of the electron

dynamics for different levels of pulse focusing. In all the
cases we take a much stronger laser pulse than before,
with a peak intensity of a0 ¼ 200 (corresponding to
1.2 × 1023 W=cm2). The electron has an initial γ0 ¼ 500
and is injected along the laser axis, providing parameters

FIG. 13. Emission spectra for an electron of initial γ0 ¼ 10 in
collision with a 10 cycle FWHM laser of peak a0 ¼ 2 and
λ ¼ 0.8 μm. (a) Laser is a plane wave. (b) Laser is modeled as a
5th order paraxial beam focussed to a spot size of w0 ¼ 0.8 μm
(θ0 ¼ 1=π). (c) a 5th order paraxial beam focussed to a spot size
of w0 ¼ 0.2 μm (θ0 ¼ 1.2). (d) The same as (c) but calculated
using the vector beam model.
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such that RR effects are significant. This is evident from
Fig. 15(c) where it can be seen that the electrons lose almost
all of their initial energy as they travel through the laser
pulse. In Fig. 15(b) we see that for weaker focusing the
electrons lose so much energy that they become reflected
by the laser pulse [51]. In the case of very tight focusing
this is no longer the case, the reason being once again that
the pulse length is significantly shortened by the focusing
and so the electrons are decelerated for a shorter period of
time. Although it is true that the more tightly focussed
pulse has a stronger longitudinal electric field, this is not
enough to compensate for the shortened pulse duration. In
Fig. 15(d) we demonstrate this by plotting the (normalized)
longitudinal field as seen by the electron. It can be seen
that, as expected, the tighter the focusing the stronger the
peak Ez field. However, the weaker the focusing the longer
the time the electron is exposed to this field which means
that, somewhat counterintuitively, the impulse imparted to
the electron from the longitudinal field is greater (this is
particularly true in the case where the electron is reflected
and starts copropagating with the laser pulse). We also note
that for the most tightly focussed pulse the electron is given
a strong transverse kick by the ponderomotive effect
resulting from the strong field gradients.
Before turning our attention to the emission spectra we

also briefly consider the effects of impact parameter on the
motion of an electron in a pulse where RR is important.
Taking the same parameters as Fig. 15, in Fig. 16 we plot
dynamical quantities for electrons injected along the laser
axis and offset by a quarter and a half of the waist radius.
We find (left column) that in the case of strong focusing
there is little variation in the particle motion as we change

the impact parameter. This is because the shortening of the
pulse due to the focusing means that the electrons do not
have time to lose enough energy to be strongly affected by
the structure of the laser pulse. Conversely in the more
weakly focussed pulse (right column) the electron that
passes right through the centre is in the field long enough to
be reflected, whereas the particles with nonzero impact
parameters see a weaker pulse (see Sec. III B) and continue
more or less in their original direction of motion.
Having considered the electron motion we are now

ready to study the resulting Thomson emission spectra.
In Fig. 17(a) we show the emission spectra calculated in the

FIG. 16. Electron dynamics for three different impact param-
eters, with RR included. In all cases the laser is modeled as a
paraxial beam of peak intensity a0 ¼ 200, wavelength 0.8 μm
and duration 27 fs. The electron has an initial γ0 ¼ 500 and is
injected along the laser axis. The two lower panels show the
longitudinal electric field (normalized to eEz=ω0m) as experi-
enced by the particles.

FIG. 15. Electron dynamics for three different focusing param-
eters, with RR included. These are w0 ¼ 0.3 μm (θ0 ¼ 0.85),
w0 ¼ 0.5 μm (θ0 ¼ 0.51), and w0 ¼ 1.0 μm (θ0 ¼ 0.25). In all
cases the laser is modeled as a paraxial beam of peak intensity
a0 ¼ 200, wavelength 0.8 μm and duration 27 fs. The electron
has an initial γ0 ¼ 500 and is injected along the laser axis. The
right hand panel shows the longitudinal electric field (normalized
to eEz=ω0m) as experienced by the particle.

FIG. 17. Thomson emission spectra calculated in the back-
scattering direction, θobs ¼ π, for the electrons in Fig. 15. Panel
(a) shows the spectra for the exact setup described in Fig. 15,
while panel (b) shows the spectra calculated using a circularly
polarized laser pulse with the same peak intensity and duration.
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backscattering direction, θobs ¼ π, for the electrons in
Fig. 15. While the motion of the electrons was found to
be strongly affected by the level of focusing, we see that
there is very little difference between the emission spectra.
In all cases they rise in amplitude at around 105ω0 and die
off around 108ω0. The reason for this discrepancy is that
most of the radiation emissions occur while the electrons
are slowing down; it is only after they have lost energy to
emissions that they become susceptible to being reflected
(or deflected by the pulse structure). Thus the rich dynam-
ics we see in the electron motion as a result of the pulse
focusing have little effect on the Thomson radiation
spectra. We note that there are specific cases where the
combination of focusing and RR becomes important, such
as for the attosecond γ ray source described in Ref. [52], but
in general the effect is minimal. We further illustrate this in
Fig. 17(b) where we show the same again, but this time for
the case of a circularly polarized laser. In the case of
circular polarization only the first harmonic contributes to
the spectrum in the direction θobs ¼ π [8], whereas in the
case of linear polarization all of the odd numbered
harmonics contribute [30]. The result is that the spectra
from the circularly polarized field is much cleaner, of
shorter frequency range, and easier to analyse. (This is also
the reason why the chirped Thomson spectra evaluated at
θobs ¼ π in Ref. [25] qualitatively differ from the integrated
spectra in Ref. [53].) We can see that in all three cases the
spectra die off at the same frequency and, apart from a
modest change in amplitude, there is little dependence on
the laser focusing.

IV. CONCLUSIONS

In this paper we have assessed the effects of laser pulse
focusing on the spectral properties of Thomson scattered
radiation. By comparing the spectra obtained using a
paraxial field with a plane wave model we found that, in
all but the most extreme focusing, the temporal envelope
has a much bigger effect on the spectrum than the focusing
itself. This is relevant to the modelling community since it
provides assurance that plane wave models can be used to
obtain a reasonable understanding of the properties of the
spectra. This is particularly important in studies involving
strong field quantum electrodynamics where including
focusing effects is still a largely unsolved problem.
Extending our analysis to the case of a spatially distributed
bunch of electrons colliding with a focussed laser pulse, we
found that a reasonable approximation can be found by
replacing the field with a transversally decaying plane
wave. The emission spectrum from a single electron on-
axis also provides a good indication of the location of the
first harmonic, but it contains higher harmonic structures
which are not representative of the emissions from the rest
of the electron bunch. This is because the off axis electrons
pass through a lower peak field, and it means that the higher

frequency part of the spectrum is not well approximated by
a single electron.
Next we considered cases where the pulse duration is

very short. In such situations the paraxial model is no
longer valid because it is derived assuming that the fields
vary slowly along the propagation direction. Instead we
adopt a subcycle vector beam model which describes a
subcycle focussed field and exactly solves Maxwell’s
equations. (When the pulse duration in this description
is increased to several cycles one reobtains the paraxial
solution.) Using this model we find that, as expected, the
paraxial model becomes unreliable for pulses of duration
less than one cycle. As the pulse duration decreases the
emission harmonics become blue shifted and broaden out
in frequency space. We interpret this as being a result of the
lack of periodicity, meaning that the intensity dependent
mass shift no longer plays a role, a finding consistent with
[37]. Additionally for very short pulses the carrier envelope
phase becomes important, resulting in an angular asym-
metry in the spectrum.
Armed with the vector beam model that exactly solves

Maxwell’s equations, we studied the effects of focusing
beyond the limit at which the paraxial approximation
breaks down. By comparing the total radiated power
(Larmor power) we find that the two models begin to
diverge when the focusing parameter θ0 ≳ 0.3. (However,
we note that this figure has been found to be even lower in
the copropagating case where the field structure is more
important [54].) As we increased the focusing to spot sizes
that are below a wavelength in diameter we found that
focusing causes the fields to die off so quickly that they
behave qualitatively similar to subcycle fields. In particular
we found once again that the carrier envelope phase
becomes important and can cause an angular asymmetry
in the emission spectra.
Finally, we turned our attention to high-intensity fields

where radiation reaction effects become important to the
particle motion. We found that, although the longitudinal
electric fields that are present in the focussed pulse cause
the electron to be reflected earlier than would otherwise be
the case from radiation reaction alone, the focusing itself
has limited impact on the emission spectrum. This is
because most of the radiation is emitted before the particle
loses energy, and it is only once this has happened that the
radiation reaction and focusing play a big role in the
particle dynamics.
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APPENDIX: MODELING THE LASER FIELD

1. Paraxial approximation

We begin with the most commonly used description of a
focussed laser pulse, the paraxial Gaussian beam. This
describes a focussed electromagnetic field evolving in time
and space, which satisfies Maxwell’s equations to the order
of an expansion parameter proportional to the ratio of the
field wavelength to the beam waist. We now briefly
summarize the field’s derivation to fifth order (for further
details see Refs. [54]). Throughout this article we work in
natural units where ℏ ¼ c ¼ 1. We work in the Lorentz
gauge so that the vector potential of the field A ¼ ðϕ;AÞ
satisfies

∂ϕ
∂t þ ∇ · A ¼ 0: ðA1Þ

Additionally the vector potential must satisfy the vacuum
wave equation

∇2A ¼ ∂2A
∂t2 : ðA2Þ

Taking the laser to be linearly polarized in x and propa-
gating in the þz direction, we write the potential as

A ¼ x̂A0aðηÞψðx; y; zÞe−ikz; ðA3Þ

where A0 is the amplitude of the pulse, η ¼ ωt − kz, and
aðηÞ is a generic pulse shape function. Inserting (A3) into
(A2) gives us

∇2ψ − 2ik
∂ψ
∂z

�
1 − i

a0

a

�
¼ 0; ðA4Þ

where a0 ¼ da=dη. In general it is hard to satisfy (A4) since
ψ is a function of all three spatial coordinates ðx; y; zÞ.
To proceed we renormalize the coordinates

ξ≡ x
w0

; ν≡ y
w0

; ζ ≡ z
zr
; ðA5Þ

making them dimensionless. In doing so we have intro-
duced the beam waist diameter w0 and the Rayleigh length
zr ¼ kw2

0=2. Imposing one further constraint, that the pulse
shape function satisfies

a0 ≪ a; ðA6Þ

Eq. (A4) can be approximated by

∇2⊥ψ − 4i
∂ψ
∂ζ þ θ20

∂2ψ

∂ζ2 ¼ 0; ðA7Þ

where

∇2⊥ ¼ ∂2

∂ξ2 þ
∂2

∂ν2 ; ψ ¼ ψðξ; ν; ζÞ; ðA8Þ

and we have introduced the aspect ratio θ0 ¼ w0=zr ¼
λ=πw0 which, when small, closely approximates the beam
diffraction angle. Assuming that θ0 is small, or in other
words that the focusing is not too strong, we can expand ψ
in the series

ψ ¼ ψ0 þ θ20ψ2 þ θ40ψ4 þ � � � : ðA9Þ

Equating coefficients of θ0 we have, from (A7),

∇2⊥ψ0 − 4i
∂ψ0

∂ζ ¼ 0; ðA10Þ

∇2⊥ψ2 − 4i
∂ψ2

∂ζ þ ∂2ψ0

∂ζ2 ¼ 0; ðA11Þ

∇2⊥ψ4 − 4i
∂ψ4

∂ζ þ ∂2ψ2

∂ζ2 ¼ 0; etc: ðA12Þ

Equation (A10) is the well-known paraxial wave equation
with solution

ψ0 ¼ be−bρ
2

; ðA13Þ

where

b ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζ2

p ei arctan ζ; ρ2 ¼ ξ2 þ ν2: ðA14Þ

The solution to (A11) was originally found by Davis [55]

ψ2 ¼
�
b
2
þ b3ρ4

4

�
ψ0; ðA15Þ

and Barton and Alexander [56] proceeded to find the
solution to (A12)

ψ4 ¼
1

32
ð12b2 − 6b4ρ4 − 4b5ρ6 þ b6ρ8Þψ0: ðA16Þ

Before we can calculate the field components we also need
to know the scalar potential. Just as with the vector
potential (A3) we start by assuming that this can be written
in the form

ϕðt; x; y; zÞ ¼ aðηÞΦðx; y; zÞeiη: ðA17Þ

The Lorentz gauge condition (A1) then gives us

∂ϕ
∂t ¼ iωϕ

�
1 − i

a0

a

�
≈ iωϕ; ðA18Þ

which means that
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ϕ ¼ i
k
∇ · A: ðA19Þ

Now the electric and magnetic field components can be
calculated from (A3) via

E ¼ −ikA −
i
k
∇ð∇ · AÞ; ðA20Þ

B ¼ ∇ × A; ðA21Þ

(for details of the calculation see [54,56]). Taking the
real part of the resulting expressions gives us (to fifth order
in θ0)

Ex ¼ P

�
S0 þ

θ20
4
½4ξ2S2 − ρ4S3� þ

θ40
32

½4S2 − 8ρ2S3

− 2ρ2ðρ2 − 16ξ2ÞS4 − 4ρ4ðρ2 þ 2ξ2ÞS5 þ ρ8S6�
�
;

ðA22Þ

Ey ¼ Pξν

�
θ20S2 þ

θ40
4
½4ρ2S4 − ρ4S5�

�
; ðA23Þ

Ez¼Pξ
�
θ0C1þ

θ30
4
½−2C2þ4ρ2C3−ρ4C4�

þ θ50
32

½−12C3−12ρ2C4þ34ρ4C5−12ρ6C6þρ8C7�
�
;

ðA24Þ

Bx ¼ 0; ðA25Þ

By ¼ P

�
S0 þ

θ20
4
½2ρ2S2 − ρ4S3� þ

θ40
32

½−4S2 þ 8ρ2S3

þ 10ρ4S4 − 8ρ6S5 þ ρ8S6�
�
; ðA26Þ

Bz ¼ Pν

�
θ0C1 þ

θ30
4
½2C2 þ 2ρ2C3 − ρ4C4�

þ θ50
32

½12C3 þ 12ρ2C4 þ 6ρ4C5 − 8ρ6C6 þ ρ8C7�
�
;

ðA27Þ

where the prefactor is given by

P ¼ A0

w0

w
aðηÞ exp

�
−
r2

w2

�
; r2 ¼ x2 þ y2: ðA28Þ

Here w ¼ wðzÞ is a measure of the beam diameter at a given
longitudinal coordinate

wðzÞ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
z
zr

�
2

s
: ðA29Þ

Finally, the functions Sj and Cj are defined

Sj ¼
�
w0

w

�
j
sinΘ; ðA30Þ

Cj ¼
�
w0

w

�
j
cosΘ; ðA31Þ

where

Θ ¼ η −
kr2

2H
þ ðjþ 1Þ arctan ζ; ðA32Þ

where H ¼ zþ z2r=z is the radius of curvature of the field.
The electric and magnetic field components (A22)–

(A27) describe the laser to fifth order in θ0. For an optical
laser of wavelength λ ¼ 0.8 μm focussed to a waist size
w0 ¼ 5 μm the expansion parameter is

θ0 ¼
λ

πw0

¼ 0.8
5π

≈ 0.05: ðA33Þ

2. Plane wave limit

In the limit where the beam waist becomes large,
w0 → ∞, we obtain the plane wave expressions

Ex ¼ A0aðηÞ sin η; Ey ¼ 0; Ez ¼ 0; ðA34Þ

Bx ¼ 0; By ¼ A0aðηÞ sin η; Bz ¼ 0: ðA35Þ

Such fields are infinite in their transverse spatial extent.
They also can be considered to be perfectly polarized,
exhibiting no field components in either the longitudinal or
unpolarized transverse direction. This contrasts with the
focussed beam which has additional field components in
both these directions, with amplitudes proportional to the
focusing parameter θ0.

3. Focussed vector beams

The paraxial beam expansion is limited in its range of
validity. In Sec. A 1 we consider terms to fifth order in θ0.
Although higher-order terms have been derived [57], in
order to go to tighter focusing a different approach must be
taken. If the beam is focussed too strongly then the
expansion parameter θ0 will no longer be able to be
considered small, calling into question the convergence
of the series. Additionally, in the case where the pulse
duration is very short the paraxial approximation will no
longer be valid. This is because in such a situation the
expansion parameter θ0 (which closely approximates the
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beam diffraction angle) will be of a similar order to the time
scale of the pulse duration ω0T, and so the fields can no
longer be considered to vary gradually along the propaga-
tion axis. An alternative approach is that of the focussed
vector beam model derived in Ref. [35].
The vector beam model is derived via the use of the

complex source method [58–60] and provides an exact
analytical solution in closed form satisfying Maxwell’s
equations. In the case of linear polarization, one begins by
considering an oscillating dipole at the coordinate origin
with dipole moment

pðr; tÞ ¼ p0ðtÞx̂δðrÞ: ðA36Þ

The function p0ðtÞ can be defined arbitrarily, but for our
purposes it is taken to be a oscillating wave with a Gaussian
carrier envelope of FWHM duration 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð2Þp

T.

p0ðtÞ ¼ p0 exp

�
−

t2

2T2

�
expðiωtþ iϕ0Þ; ðA37Þ

wherep0¼4πzrM0E0=k2 is the peak power of the beam, and
M0¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=ðNþ1=k2z2rÞ

p
, where N¼1−1=kzrþ1=ω2T2.

This dipole emits a spherical electromagnetic pulse. In order
to obtain a propagating focussed pulse the authors of [35]
introduce a complex coordinate shift to z and t

z → zþ izr; ðA38Þ

t → t − t0 þ izr: ðA39Þ

The result is a moving field structure which can be used to
derive the expressions for a propagating pulse. Upon
performing the algebra, the resulting field components are
found to be

Ex ¼ Re

�
M

�
f þ x2g

R2

��
; ðA40Þ

Ey ¼ Re

�
M

�
xyg
R2

��
; ðA41Þ

Ez ¼ Re

�
Mf þ xzg

R2

�
; ðA42Þ

Bx ¼ 0; ðA43Þ

By ¼ Re

�
M

z
R
h

�
; ðA44Þ

Bz ¼ Re

�
−M

y
R
h

�
; ðA45Þ

where

f ¼
�
1þ iη0

ωT2

�
2

−
1

k2R2

�
1 −

t0R
T2

þ ikR

�
; ðA46Þ

g ¼ −f þ 2

k2R2

�
1 −

η0R
T2

þ ikR

�
; ðA47Þ

h ¼ f þ 1

k2R2
; ðA48Þ

the quantity R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðzþ izrÞ2

p
expresses a

complex distance and the complex retarded phase is given
by η0¼t−R. Finally, the prefactorM ¼ E0zrM0p0ðη0Þ=p0R.
It can be easily shown [35] that in the limit where the beam
waist w0 → ∞ then one recovers the plane wave fields
(A34)–(A35). Additionally, if one expands the fields in θ0
one finds that the terms agree with those of the paraxial
model (A22)–(A27).
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