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In a so-called waveguide free electron laser (FEL) for THz radiations, an extremely small aperture
(~mm) waveguide is used to confine angularly wide spread radiation fields from a low energy electron
beam into a small area. This confinement increases the interaction between the electron beam and the
radiation fields to achieve a much higher FEL gain. The radiation fields propagate inside the waveguide as
waveguide modes, not like a light flux in a free space FEL. This characteristic behavior of the radiation
fields makes intuitive understanding of the waveguide FEL difficult. We developed a three-dimensional
waveguide FEL theory to calculate a gain of THz waveguide FEL including the effects of the energy
spread, the beam size and the betatron oscillations of an electron beam, and effects of a rectangular
waveguide. The FEL gain can be calculated as a function of frequency by solving the dispersion relation.
Theoretical gains are compared with simulation results for a waveguide FEL with a planar undulator similar
to the KAERI one. Good agreements are obtained.
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I. INTRODUCTION

The radiation at THz frequency provides great tools to
analyze molecular structures and chemical compounds by
moderately exciting molecular oscillations and activating
the interaction between molecules. However, the lack of a
powerful radiation source has been a major bottleneck for
advances of THz sciences and technologies.

In 1986, Electron Laser Facility [1] generated 35 GHz
laser. In 1998, Isracli Tandem Electrostatic Accelerator
Free-Electron Laser realized the radiation at 100.5 GHz [2].
Recently, the so-called waveguide free electron laser (FEL)
technology has emerged as an effective power source for
THz radiation. At KAERI [3,4], they successfully operate a
compact THz waveguide FEL driven by a magnetron-based
microtron and a high-performance planar undulator.

The main differences of the waveguide FEL from a
free-space FEL are that it uses a very low energy electron
beam (of the order of several MeV) and a small cross
sectional waveguide (of the order of several mm). The
undulator radiation from such a low energy beam spreads
out angularly with a large spread on the order of 1/y, where
y is the Lorentz factor. By using a small cross sectional
waveguide, the THz radiation can be confined into a small
area to increase the interaction between the electron beam
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and the radiation fields and thus the FEL gain as well. In a
waveguide FEL, the radiation field propagates inside the
waveguide as waveguide modes, not like a light flux in a
free space FEL. This characteristic behavior of the radiation
field in a waveguide FEL makes intuitive understanding of
the waveguide FEL difficult.

Many analytical studies have been done for calculations
of FEL gain in free-space [5] as well as in waveguides [6].
One theoretical work for the waveguide FEL is done by Y.
Pinhasi and A. Gover [6]. In their theory, the FEL gain for a
waveguide with a few cm aperture size is obtained by the
direct calculation of the amplitude of the radiation fields
excited by the beam with no energy or angular spreads.

On the other hand, Chin et al. [7] developed a three-
dimensional theory of small-signal high gain FEL in free
space. In their work, the gain is obtained by solving the
dispersion relation based on the Maxwell-Vlasov equa-
tions. The crux of this theory is that they combine the
Maxwell-Vlasov equations into a single integral equation
for the electron beam distribution, not for the radiation
field. In this way, the beam parameters such as the
energy spread appear more explicitly in the final form.
The results are found to be consistent with the ones
obtained by Moore [8] and Yu et al. [9].

In the present paper, Chin et al.’s theory [7] is gener-
alized in order to cope with the waveguide modes. The
beam is assumed to be surrounded by a rectangular
chamber. The theory includes the effects of the energy
spread, the beam size and the betatron oscillations of an
electron beam.
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Theoretical results of the FEL gain are compared with
the simulation code developed by KAERI. This simulation
code can handle only a planar undulator in a very flat
rectangular chamber or a helical undulator in a circular
chamber. So, for numerical comparisons, we derive a
dispersion relation for an infinitely wide waveguide in
the horizontal direction.

In Sec. II, we explain the outline of the derivation of a
dispersion relation for a planar undulator in a rectangular
chamber, starting from the Vlasov equation. The FEL gain
can be calculated as a function of frequency by solving
the dispersion relation. The boundary condition the radiation
fields should satisfy on the surface of the perfectly con-
ductive chamber is considered in the derivation. The
dispersion relation for the waveguide FEL reproduces the
previous one for the free-space FEL by extending the gap
sizes of the waveguide to infinity. For comparison with
simulation results, the dispersion relation for the undulator in
two infinitely long flat plates is derived by extending the gap
with of the rectangular chamber into infinity. In Sec. III,
theoretical gains are compared with simulation results for
different parameters. The paper is concluded in Sec. IV.

Some details of the derivation of the dispersion relation
are described in the Appendices. In Appendix A, we
describe the scope of approximations in the present theory.
In Appendix B, we introduce a formal expression of the
radiation fields in a rectangular waveguide. In Appendix C,
the Hamiltonian formalism is introduced to construct
the Vlasov equation. In Appendix D, expressions of the
radiation fields as a function of the solution of the Vlasov
equation are derived. In Appendix E, we calculate the
energy change of the beam by the radiation fields, which
are needed in the Vlasov equation. By summarizing all
results, the Vlasov equation is finally converted to the
dispersion relation in Appendix F.

II. FORMULATION TO CALCULATE
A FEL GAIN

In this paper, we deal with a waveguide FEL with a
planar undulator where the peak wiggler parameter K is of
the order of 1, and the Lorentz y of a beam is of the order of
10. In such a case where K /y < 1, all terms of O(K?/y?)
or higher can be neglected. As a result, the radiation fields
far from an electron beam are dominated by transverse
electric (TE) modes, and contributions of transverse
magnetic (TM) modes are negligibly small [10] (see
Appendix A). Consequently, the longitudinal component
of the vector potential as well as the scalar potential can be
neglected as good approximations. Unless higher harmonic
generations of the radiation fields are issues, these approx-
imations significantly simplify the formulation and are
consistent with conventional FEL theories [10].

Based on the Hamiltonian formalism where the longi-
tudinal coordinate z is chosen as an independent variable,
the Vlasov equation is given by

O | g 0f  dpy 05 | dedf drds
0z  dz Oxy  dz Opy dz Ot  dzdy

where x; and p; are the betatron variables and their
canonical momenta, 7 is the arrival time difference of
the electron at the position z relative to that of the reference
electron, and f (X, pg.7,7;2) is the electron distribution
function, which is normalized as

/ dJ// dr/ dzﬁﬂ/ d*3sf (Xg, Pp.7.7:2) = N.
i —oo - .

(2)

Here, N is the total number of electrons in the beam.
Using the perturbation method, the distribution function
can be decomposed as

f=r+r5r (3)

where f, and f; are the unperturbed and the perturbed
parts, respectively.
Consequently, the Vlasov equation can be divided as

5'f1 of1 - 0f1 dfafl dy 0fo
3 TI0_0, (4
Bz T Pros, g, T a o Tazay 0 W
for the perturbed part and
8fo - Ofo - Ofo  dtdfy
k2 —— 4+ ——
o T Prag, g, i 0 O

for the unperturbed parts, where k; is the betatron wave
number, which is given by Eq. (C22) [11]. One solution for
Eq. (5) is given by
fo = For (X5 + B3/kp) for (v), (6)
where we assume that f is uniform in the longitudinal
direction. The total bunch length is 7, and we assume that it
is much larger than the wavelength of the FEL light.
Equations (4)—(6) are valid only within this bunch length.
The transverse current density 7 | is described in terms

of the density distribution of the betatron orbit p; (X4, 7; 2)
as [7]

—

jJ_ = ed_);pl(}ﬂ’ﬁz)’ (7)

where e is the electron charge and X is the total transverse
trajectory of the electron including the wiggler motion X,
and the contribution from a scalar potential is neglected.
The density pl(?c/;, 7;7) is expressed as
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pr(Gipos2) = / dy / Pof1Gope Byt 2), (8)

where 7 is given by

Z 1 K\?
- — in2k,,.z, 9
‘ 7, 8k,.c <y> S =Hwel ©)
7=Ar -1 (10)
1 1 k
R 1 wz , 11
T}r ¢ < * kl > ( )
2k 21
kl — wz(yr 5 )’ (12)
1+ 5

and y, is the resonant Lorentz-y of the reference electron.
Here, 7, shows the average velocity over one wiggler period,
c is speed of light and the wave number k,,,, is 2z divided by
the respective wiggler period length 4,. Notice that the
modulations of the longitudinal motion and thus, that of the
longitudinal current density are proportional to K2/7. In
the scope of the present theory, they can be neglected.

The Fourier transform of p; on the transverse plane is
defined as

- © S
pl(X/ﬂ,T/;Z/) — / da)/e T
—0o0

pw’(nm ny, Z/)’
(13)

and those of the function p,, (n,, n,,7’) in the longitudinal
direction are introduced as

o0 . o
AY = e,uo/ da)e"“”/

2w

q

equ Z e m/nJr
4ab

where the function ©,,,(n,, n,) is introduced as

Oy (ny,ny, 7') =

pw/q,(nx,ny) :/ dz’e‘iq/zlpw/(nx,ny,z’), (14)

1

©o L
27‘[/ dq/elqum’q’(nx»ny)’ (15)

pa)’(nx’ ny’ ZI) =

where i is the imaginary unit, and we assume that
the waveguide is placed in —a/2<x<a/2 and
-b/2 <y <b/2.

By retaining the fast oscillating parts in the transverse
motion, Eq. (7) is approximated as [7]

-

- dx,, .
leed—zpl(Xﬁ,T;Z). (16)

The transverse current density J | is successfully
expressed by the density distribution of the betatron
orbit py (X4, 73 2).

Here, the final term in Vlasov Eq. (4) is proportional to
the energy change by the radiation fields A r» Which is given
by Eq. (C12), and is approximated as

dr
dz

e dx, 8AR
2dz o’

(17)

by retaining the fast oscillating motion, where m, is the
mass of electron.

The vector potential Ay for the radiation field satisfies
the inhomogeneous wave equation

1 0%Ag
2 O

-

V2Ag - = —poJ L (1), (18)
Zy/c, ZO = 120z Q is the impedance of free

space. The solution Ay = A"

where g =
is expressed as

o 4> &
4ab ®wq(nx7ny)HrcV.wq(nx’ny;m’n’ Z)’ (19)
Oy (ny,ny) = /_ dz' e 170, (n,, ny,7), (20)
1
— dq €170, g (Mg ny), (21)

2
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ab s
AN x
Gm'(nx’ny?Z ) 26

+’_(1 =6,
A

0)(1=84.0)

where §,,, is Kronecker-6. The function HY,,(n,.n,;
m,n,z) is given by Eq. (D7).

It should be noticed that the function ©,,(n,.n,)
appears in dy/dz. As Egs. (8), (21) and (22) show, the
function ®©,,,(n,. n,) depends on the perturbed distribution
function f. This 1ndlcates that Vlasov equation (4) finally
converts to a dispersion relation.

Finally, we obtain the dispersion relation:

1 +ﬂ0,0M888 =0, (23)

0,0,0
M()OO 87

ny,Nny=—00 m n*—oo

7’ n, n,
Q-3 212 a2b? Z Z wq 0 nx,ny,m n) |”x| ‘n |e

~2 2 2 2
J1< "”R())Jl(\/"'
X

|n|22 )
9

—pur (1. 1y, 7). for (n, > 0) N (n, >0),
Por (N =0y, 7). for (n, >0) N (n, <0), (22)
Por (—nyny, 7). for (n, <0) N (n, >0),
—po (—ny,—ny.2'), for (n, <0) N (n, <0),
|
for a hollow beam:
1 r?
- a(-2). s
7 Ryk; R}
where §(x) is the §-function,
kk ©
pro=2 > ["dr ful)
kiyy Ji (ig +2i £k, V/r iLkk3R3)?
(25)
L (1= 3,,0)(1 = 6,,0) (e = )
(26)

m27r
2
J,(z) is the Bessel function [12], R, is a transverse

beam size, r=y/r:+r: Py, (m' . n,n,;m.n) and the

betatron wave number k; are given by Eqgs. (F24)
and (C22), respectively. Here, we introduce the polar
coordinates (ry,¢,) and (ry,.¢,) in the transverse
plane as

P,

Xg = ryCosq,, = r,sing,, (27)
i
Pp, .
Yp = Ty COS @y, kﬁ' = ry sing,. (28)

[nx|m

e i

")

Let us check if the present theory can reproduce the free
space FEL theory derived by Chin et al. [7] by taking the
limit of infinitely large waveguide.

It is convenient to introduce the variables:

A. Reproduction of the previous results

kx - a N ky :7, (29)
n,.mw }’l T

K, =——, kK, = . 30

= L (30)

In the limit of small amplitude of the wiggler motion,

r, = 0, P? ,(0, 1, ny; i, 1) becomes

. nglr

re[e_’T—e’T] K 2 © K 2 ) K 2 2
0, 1.1y (=) D S = T |g— (=
a0 131, 7) = 4c (y) £ { [8szc<y> i 8k e \7

1
X

o 2+ i(2m' + Dk, +iq—1i
x 16ﬂ45(—kx + k)S(—k, + k;),

1
W4 i(2m' + 1)k, +iq+i __@_abgl
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where r, is the classical radius of electron, the factor:

. (=m+n)n . (-n+ny)x
s s

2 2
= , 32
(=m+n,)n (=0 +ny)x (32)
2 2
is replaced by
4n?
E&(—kx + K )8(—=ky 4 k). (33)

After this manipulation, Eq. (26) becomes

o K\? & o [(K\? o (K\?])?
MO‘O’Oz—/ dic,di, ™ (= i e (= et | (=

=—00

1 1

o Bg B () by (2 Dk, + ig + iy % - EE - B

c? a b?

(34)
where the summations:
PR I (35)
are replaced by the integrations:
ab [ ab [
— dk,dk,, — dkdk,. 36
o awan. G [T akak 30
By sustaining only m’ = —1 term, Eq. (34) is simplified as
ro (K\2 o [K\? o [(K\*|\? [3 1 J3(kOR,)
Tl I Ty | e ——. T
cR \ v weC€ \7 weC€ \7 0 lig + ik,. "5 + i %] (kORo)
Following Ref. [7], if the distribution function is given by the Gaussian function as
_m)?
N e %
for) =5—F——, (38)
T V2no,y,

where 7 is the electron bunch length in time unit, o, is the rms energy spread, Eq. (25) is approximated as
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2

kkNl
27r

e
kat

:BO,O

t 2
kly, % (ig+2if i5kk5RG)?

(39)

for small o,, which extends the lower bound of the

integration to minus infinity.
In combination with Egs. (37) and (39), the dispersion
relation Eq. (23) is rewritten as

2 3
1:21'5(’)1%)/ dt S —
ki V2r Jowo  (ig+2if k0,1 — i3 kk;R5)
5 1 kOR
/ *(kR,)20d0 Jil °2>,
0 (iq + ik, (k— ‘9) (kOR,)
(40)
where the Pierce parameter p is defined as
N 2k K\?
(2,0sz)3 =Rre 5 —=3J0 - -
inRI\r,) 7. 8ky.c \7/
o [(K\21)2
= (—) l)- @
WZC yr

for the planar undulator, which is identical to Eq. (95) in
Ref. [7]. In the scope of the present theory, the second term
in the bracket in Eq. (41) should be neglected, because it is
higher order one for K/y,.

The dispersion relation [given by Eq. (40)] is identical to
Eq. (94) in Ref. [7], when the unperturbed part of the
electron beam is given by the hollow beam [defined
in Eq. (24)].

B. Dispersion relation for the case of infinitely
wide (@ — o0) waveguide

The simulation code developed at KAERI assumes a
uniform distribution for electron energy. For later numeri-
cal comparisons, we also derive an explicit form of the
dispersion relation for the uniform energy distribution: let
us consider the case that the distribution function is given
by the uniform one as

N
foi(y) = =1y’ (42)

where y; and y, are the upper and the lower limits of the
Lorentz-y of the beam. Equation (25) is calculated as

P N 1
Tk -n) (iq+2i& -k, {n=re) - 1) _ 1 kszz)
1
— } (43)
(iq + 2i £ o, 1) — i LKIZR3)

By sustaining the first order terms for K/y,, the
dispersion relation is finally simplified as

l—A inN |: 1 1 :| < > Z Z(em”—l)
tr2 =7 Wiq + 2i Lk, ot — kk2R2) (iq + 2i £k, 20— LKZRE) ] DS e
Sin (_;H'nv) ei;lﬂ Sin (n+;v)
o e Gitny)z
2 2
[2(1+4) + ke + g = BF + 5 4 5T (]2 (1 ) + ke + g + 1Y

x Z =

\/[;(1+ )+sz+q ——\/—— )+ +a? +%

R (V2202045 4 e+ g +22 -

}RZ)

X
22m+1m!(m+1)z[{—2[%f(1+@)+sz+q] 420 e MR
w kw7 (l) w
{=[2(1+75) =k + g -5 {-f21

+

} H»Zm

2m+l

2
kWZ + q] + (H

=) -

I‘lﬂ

Ve +i - kmq

——¢ ©(1+ ’;— ket @+ %

RngHQm(\/{—Z[%’(l —|—k‘_*l) -k, + q]z + 2%

X

b

)

=0.

22m+1m!(m + ])'[{—2[%)(1 +%) - sz + C]] + 2w

2

(44)

H 7[

}Rz} H»Zm
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FIG. 1.
7, = 10.0196.

The beam growth rate is given by the imaginary part
of g as a function of frequency f. Its double provides a
FEL gain.

III. COMPARISON OF THE FEL GAIN WITH
SIMULATION RESULTS

Let us numerically calculate the growth rate of a beam
whose energy (Lorentz y) distributes uniformly between y,
to y,. The growth rate of the beam is theoretically obtained
by solving Eq. (44) as a function of a frequency. The
parameters are given as follows: the number of particles per
abunch N = 6.25 x 109, the total bunch length 7 = 20 ps,
the vertical size of the chamber b = 2 mm with infinite a,
the wiggler period length A, =25 mm and the K-value
K = 1. The parameters are similar to those of the planar-
type Terahertz FEL in KAERL

Simulations are done including the space charge
effects. The beam growth rate is obtained by calculating
the radiation power as a function of the electron flight
time. We found that simulation results largely depend on
the initial distribution of electron energy (generated by
random generators). We take average values of the
growth rate over 20 simulations for each set of param-
eters. We also calculate the standard deviation of results
from the average values, shown by error bars in the
figures to follow.

Figure 1 shows the results with Ry = 0.5 mm, y; =
9.98043 and y, = 10.0196, which correspond to the total
energy spread AE/E of about 0.4%. The left and the right
|

The simulation (left) and the theoretical (right) results

0.5

0.4 1

growth rate[m™']

0 . . . .
1.27 1.275 1.28 1.285 1.29 1
f[THz]

.295

of the beam growth rate for Ry = 0.5 mm, y; = 9.98043 and

figures show the simulation and the theoretical results,
respectively. The maximum growth rate (a half of the FEL
gain) is obtained at about 1.285 THz in both results. They
show a good agreement within the error bars. The TE,
mode is excited in the simulation. By artificially extracting
the component with mode 7 and n, from Eq. (44), the
dominant excitation mode can be identified. The theory
also shows that the dominant waveguide mode is the
TE,; mode.

The previous studies [3,13] derive formulas for the
resonant frequency from the two conditions. One is the
resonance condition between the electron and the radiation
fields of the pth harmonic:

k.,
q = g (1 +—WZ) - psz,
C kl

where k,,, = 2z/4,, and 1,, is the wiggler period length.
The parameter k; is defined by Eq. (12) and introduced to
incorporate the modification of the longitudinal velocity of
the beam. The other is the dispersion relation of the
waveguide:

(45)

(40)

By combining these two conditions, we can derive a
formula for the resonant frequency:

C psz(l +%) + \/pzkvzvz(l +

f

ke
ky

z ky; (ky; 2,2 2.2
) = 2= (3 + 2) (PP + 1+ 15

)

ky

T2 K

[
&=+ 2)
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where the signs + and — correspond to the Doppler up and
Doppler down shifted frequencies of the radiation fields
emitted in the forward and the backward directions in the
rest frame of electron, respectively. If we use the for-
mula (47) for the parameters used in the simulation in
Fig. 1, and set p=n=1 and m =0, the estimated
resonant frequency becomes f, = 1.29 THz. This fre-
quency is in a good agreement with the theoretical and
the simulation results shown in Fig. 1. Though the
formula (47) is very simple, it provides a remarkably
accurate estimate of the resonant frequency.

One should notice that there is no resonance between the
electron beam and the radiation fields if the argument of the
square root in the formula (47) is negative. In other words,
the waveguide sizes a and b must satisfy the following
condition for a FEL to lase:

Ky,
LN P [kl(l ) }
3 7 = PR T
a b sz (2 + k_[)

2
pk,.k k,,
TZI <1 _2_kj> for ky > k,.. (48)

For the present parameters, the vertical waveguide size b
must exceed 1.5 mm for lasing.

Let us see the dependence of the growth rate and
the resonant frequency on the vertical waveguide size b in
more details. The red and the blue lines in Fig. 2 show
the theoretical results of the dependence of the growth
rate and the resonant frequency on the vertical waveguide
size b, respectively. The growth rate has a peak around
b = 1.6 mm. This waveguide size corresponds to the con-
dition that the argument of the square root in Eq. (47) is close
to zero.

0.45 . . . . 1.3
11.2
T N 1.1
£
] =
€ 04 17
= N,
S
2
o 10.9
o
10.8
0.35 . . . . 0.7
1.5 16 1.7 1.8 1.9 2
b[mm]

FIG. 2. The dependence of the growth rate (red) and the
resonant frequency (blue) on the waveguide size b with
Ry =1 pm, y, =10 and AE/E = 0.4%. The red and the blue
curves are read by using the scale markings on the left and the
right vertical axes, respectively.

Let us consider the physical meaning of this condition.
The group velocity of a waveguide mode is given by a
derivative of @ by g. From Eq. (46), we have

do ¢ |0* m2n® nPn?
= \/ e e A (49)

dg o

By substituting Eq. (47) into (49) and using the condition
that the argument of the square root in Eq. (47) is zero,

ko \?> k. (k,
202 (1 2wE) 2w Iwz 9
P WZ( +k1> ky (kl " )

2.2 2.2

m-nw n-mw
x (p2k,2”+7+7> =0, (50)

the group velocity is simplified as

dw c
= (51)
dg  (147%2)

which is identical to the average velocity of the beam v,,
given by Eq. (11).

At this grazing point, two resonant waveguide modes
emerge into one. Thus, we can conclude that the maximum
FEL gain is obtained when the group velocity of the
waveguide mode is equal (or close) to the average beam
velocity. In this condition, there is no slippage between the
FEL light and the electron beam and thus the maximum
saturation power will be also obtained at zero (or small)
cavity detuning (i.e. the roundtrip length of the cavity
between two mirrors is equal to the electron bunch spacing
in an oscillator).

Next, let us see the dependence of the beam growth rate
on the beam size. Figure 3 shows the theoretical results of
the dependence of the beam growth rate on the beam size

0.5 T T T T

0.4, 1

0.3+ ]

0.2+ ]

growth rate[m'1]

0.1+ 1

0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Ro[mm]

FIG. 3. The dependence of the growth rate on the beam size R,
with y, = 10 and AE/E = 0.4%.
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0.3

0.25 +

o
)

o
i
T

growth rate[m'1]
o
7

0.05 +

1 1 1 1 1 1

0
2.695 2.7 2.7052.712.7152.722.7252.73
f[THz]

FIG. 4. The simulation (left) and the theoretical (right) results

v, = 13.7392.

R,. The respective points correspond to the values for the
beam size from Ry =0.1 mm to Ry = 0.9 mm with
0.1 mm interval. The growth rate seems to saturate at zero
beam size. The growth rate (a half of the FEL gain) slowly
decreases as the beam size increases by losing the coher-
ence of the radiation. Even at Ry = 0.5 mm at which the
beam occupies a half of the vertical waveguide size of
2 mm, the growth rate still attains about 80% of the ideal
saturated gain at zero beam size.

Next, let us increase the beam energy to get THz radiation
at twice higher frequency. Figure 4 shows the results with
y1 = 137011 and y, = 13.7392, where AE/E = 0.3%.
The peak frequency shifts to 2.72 THz. The agreement
between the simulation and the theoretical results is good
overall. However, the agreement is less than the previous
result, due to choice of a smaller energy spread.

To see the dependency of the growth rate on the energy
spreads, we calculate the peak growth rate for different

0.5 T r T T T T T

0.4

0.3 |

0.2 -

growth rate[m 1]

0.1 |

0 . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
AE/E [%)]

FIG. 5. The energy spread AE/E dependence of the maximum
beam growth rate with y, = 10. The simulation results (red) start
to deviate from the theoretical ones (blue) in a small energy
spread region.

0.3

0.25 +

o
Z o
(9] ~nN

o
p

growth rate [m‘1]

0.05

0
2.695 2.7 2.7052.712.7152.722.7252.73
f[THz]

of the beam growth rate for Ry = 0.5 mm, y; = 13.7011 and

energy spread (all other parameters are fixed). The results
for y, =10 are shown in Fig. 5. The theoretical and
the simulation results are shown by the blue and the red
lines, respectively. The agreement between the theory and
the simulation is good overall, in particular at large
energy spread. But, the simulation results start to deviate
from the theoretical ones at small energy spread region (less
than 0.3%).

We believe the reason of this deviation as follows. When
the initial energy spread is too small in a simulation, it will
be quickly enlarged by the space charge effects and the
interaction between the beam and the radiation field. Thus,
the actual energy spreads during the simulations in the
small initial energy spread region are larger than the initial
ones. As a result, the growth rate becomes smaller.

IV. SUMMARY

We have developed the three-dimensional theory of a
waveguide FEL for THz radiation by expanding the method
shown in Ref. [7] to include effects of a rectangular chamber.
The radiation fields are calculated by solving the inhomo-
geneous wave equations with the boundary condition. Once
the distribution function of electron energy is given, the
Maxwell-Vlasov equation gives the dispersion relation. The
beam growth rate (a half of the FEL gain) can be calculated
by solving the dispersion relation as a function of the
frequency. The present theory can reproduce the result of
Ref. [7] for free space by taking the limit of infinitely large
waveguide. The theory predicts that the maximum FEL gain
is obtained when the waveguide size is optimized so that the
group velocity of the waveguide mode is close to the average
velocity of an electron beam. This zero slippage condition
also implies that the maximum saturation power will be
obtained at zero (or small) cavity detuning.

KAERI develops a simulation code for Terahertz FEL,
where two parallel plates are inserted in a planar undulator.
The reliability of the theory was investigated by comparing
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the results with the simulation results. The comparisons
were done by taking the horizontal size of the waveguide to
infinity in the theory.

The numerical comparisons show good agreements. The
simulation shows smaller gains with small initial energy
spreads than the theory, but this may be explained by quick
dilution of the initial energy spread (when it is too small)
due to the space-charge effect and the interaction between
the beam and the radiation field.

We hope that the present theory will provide a useful
tool for design and understanding of a waveguide FEL
and advances in the THz sciences and technologies. The
Mathematica [14] input file to compute the FEL gain is
available from the authors.
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APPENDIX A: THE RADIATION FIELD INSIDE
TWO PARALLEL PLATES WAVEGUIDE

In Ref. [10], Amir et al. analyzed the incoherent
emission from an undulating electron beam in the presence
of metallic boundaries with the gap height 5. The electric
and the magnetic fields, when a single electron at point
r'(¢') moves with a velocity f(¢), are given by

1 )
E(r,t) = —/Ew(r)e‘””’da), (A1)
2w
Brt) =5 [ Bryea (A2)
rt) =— r
’ 27 w\r)e @
where
|
A3
; (A3)
( (kyp) smnz ysm%y’ e’ (A4)

2
B, ’”e / v x |p [

m=1

<>
[ is identity matrix, k = ,/k)% + k; + k% =w/c, ky=/k k%,

( ) is the Hankel function of the first kind [12] and

p=+/(x=x)2+ (z—7)? (not the Pierce parameter) only in this appendix.
If we focus on the far field and consider only the leading terms of the order of K/y, they are simplified as,

zke ’”/4Z/dt \e/ﬁ[ ( -b.— smf) sm—y-l—zy

b

2k S kyp
B, = -2 ozt 3~ [ar <, [W

s VEkip

—E%ﬂx cos%y} sin%y’ei‘”’/ +0(p73,

r 2 K?),

mmﬂﬁkﬁ?ww+me%wx

(AS)

y + iy <ﬁx sm—y p.— smfsm%y)

b

(A6)

(typos in Eq. (3.8) in Ref. [10] are corrected), where X, ¥, Z are the unit vectors in the direction of the x, y, and z of Cartesian
coordinate, and £ is the angle from the axis in the (x,z) plane, given by

x = psin,

Z = pcosé,

and it is related to the cosine of an emission angle 6 as

(A7)

(A8)
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k”cos§
k

cosf = (A9)
Thus, the particle couples mainly to TE modes.
In Ref. [10], the cgs unit is used and the vector A and the

scalar ¢ potentials are introduced as

B =rotA, (A10)

10A
E=-—-"- . All
L0~ grad (A1)

We can explicitly demonstrate that only the transverse
components of the vector potential:
ky . )
s1n§

Ay =—€~ \/_e’”/“Z/
(A12)

! it

ye

etkie (
NG

. mn . mn
X sin—~ysin—-

b

efir mrn m
__e /2 em/4Z/d¢ NG bﬂZCOSTy

where ¢ is velocity of light, J 1 (7, 1) is the transverse
current density of the electron beam, py = Zy/c, Zy =
120z Q is the impedance of free space, 7 is the three-
dimensional vector 7 = (X,z), and ¢ is time when the
electron of concern arrives at the position z.

The solution of Eq. (B1) is formally given by

AR:ﬂo/oodS;,/oo

Here, the Green function G(r,t|r,¢') satisfies

PO Y).

(B2)

1 PG (r. 1|r. 1)
C

V2G(r, 1|7, 1) — =

= —18(r—r)s(t - 1),
(B3)

where 7 is the unit matrix and 5(x) is the S-function. The
Green function should satisfy the boundary condition
determined by the waveguide shape.

Since we assume that the waveguide is placed in
—a/2 <x<a/2and —b/2 <y < b/2, the Green function

é(r, t|r', ') satisfies the boundary condition as

. mx
X smTy’e""’/ (A13) 0G,  (r,t]r, 1) _0
d 5) and (A6) b o1/ % e
reproduce Eqgs. (A5) and (A6) assuming 6 ~ 1/y.
p ! y £ 4 G (rt|r )|y 2y = 0. (B4)
APPENDIX B: FORMAL SOLUTION FOR ,
THE RADIATION FIELDS Gy (r ' ) o jpapp = 0,
)
Let us consider an undulator, where a nonrelativistic 9G, ,(r.1r'. 1) —o0. (BS)
electron beam wiggles in a rectangular waveguide with the dy y==b/2.b/2
gap width a and the gap height b. The vector potential Ap .
for the radiation field satisfies the inhomogeneous wave G (r. 1t >|x:—a/2,a/2 =0,
equatlon GZ’Z<r, t r/, t/)|y:—b/2,b/2 - O, (B6)
V24, — i@zAR = —u 7 (7, 1) (B1) where the waveguide is assumed to be made of perfectly
B2 o 07 LA conductive material. The solution is given by [13]
|
1 _ ) nlamsl) | nnly—y') ma(x—) |y +b)
GX’X( ’ ’ I)ZM/—OO e mnz:;ooan Z|Z |: ‘ - )b —e h }h
l-mzr(x+x’+a) } imt(_x;}—,\'/) _ eim”('tt,x/Jra) ; l-mt(_v+hy’+b)i| ’ (B7)
1 B _lw mzr x—. 1) mr(x ) ma(x=x') | nz(y-+y +b)
N _ ¥y i Fi
Gy.y(r,t|r’,t)—%/_oo Z;OF (zI2) [ : T 4 e :
_ eb.mlr()ﬁ;x/%»a) } nn()+b» +b) _ e;mn(x:x’+a) } ;nn(v\}:\'/):| ’ (BS)
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1 _ / mﬂ(x—v/) _ma(y=y) ma(x=x') | ma(y+y'+b)
G..(r 1| 1) = M/ io(t=") Z Fia(zlz)[e™ e 5 — et
m,n=—oo
_ eb.mn(,w;x/ﬁ»a) ; l.m/(()[;—y/) + el.m/((rt‘xq»a) ;nm(yi}‘/ﬁ’h)]’ (B9)
|
where i is the imaginary unit, T
kW'Z = kWX + kﬂ)y’ (C3)
Y . .
PR 1) e B10 for the planar undulator, where K is the peak wiggler
nin(2]2) = 5 o _wr _wr ’ (B10) parameter, the wave number k,,, is 2z divided by the
e ’ wiggler period length 4, and i, and ;) are the unit vectors
— in the x and y directions, respectively.
ieilz—Z’\ o m— The corresponding equations of motion for the electron
Fun(zl7) = , (B11)  are given by
2, [w _min _ n’x’
c uZ 2
b @:_apz dpx:apz (C4)
3 / 1)2 mzlrz )121[2 dZ 8px ’ dZ ax ’
e ao dy 0 dp, 0
Fiia(2l?) (B12) d_ 9 dpy_Op: (©5)
9,/ _mlr _ n’r dz dpy dz dy
c b?
dt Op, dH op.
. . . L - = , —=— . C6
In order to obtain explicit solutions for the radiation dz _ OH dz a1 (Co)
fields, the transverse current density J | needs to be given. It N
can be calculated by Eq. (16) via the electron distribution ~ Under the condition:
function, which is a solution of the Vlasov equation. 5 5 .
(px - eAx) + (py - eAy) <K mgcTys, (C7)
APPENDIX C: HAMILTONIAN FORMALISM -
where 7 is introduced as
Let us introduce the Hamiltonian formalism to
derive equations of motion for electrons in a planar s |2 1 (C8)
undulator. When the longitudinal coordinate z is chosen 4 4 ’
as an independent variable, the Hamiltonian is identical . . )
o p.: linear parts are dominant, and, thus, we obtain
-
dx  (p.—eA,) dp e?A, DA, €A, DA,
— 20202 — 202 — AN = (p. —eA )25 o M x * Y X Yy
P [m;y mec” = (pr—eAd) = (py—e V‘]) P dz mecy dz mycy Ox m,cy Ox
2
= ?—mzcz— (pr—eA)? —(py—€A))?| . (C1) (C9)
d —eA dp, e?A, 0A, €*A, 0A,
where m, is the mass of electron, e¢ is the electron d—y = M % = — a 3 = — ia—},
charge, p, and p, are the transverse components of < MeCY < MeCy Oy MeCy OY
momenta for the electron, and A, and A, are the transverse (C10)
components of the total vector potential in the x and y 5
dr 1 1 (pr—e€A,)? (py—eA))
directions, respectively. The vector potential A consists o2 1+— = —
dz ¢ 272 2m2c?y? 2m2c?y?
of the wiggler fields A and the radiation fields A R
introduced in the previous section. For a small transverse (C11)
displacement of the beam, the wiggler fields A are
a;;)roximated as e ’ 247 dx0A, _  dyOA, (
MyC™—— = —e————¢———. C12)
‘" dz dz Ot dz Ot

- Km,ck,, |- kyy
__remwz k2 k2
w ckyy |:lx [ ( +5 3 X+ ) wyY )
x sink,,,z — k = ki Xy sin kw,z] (C2)
wzZ

The total transverse trajectory of the electron X including
the wiggler motion x,, is given by

-

X:;CW—F.;C)ﬁ, (C13)
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X, = ?xrw cosk,.z, (C14)
K
ry =, (C15)
Yky:

where fcﬁ is the betatron motion.

Let us define the transverse betatron variables x; and yj
and their canonical momenta pg, and pg, by averaging
out the transverse electron motion over the fast wiggling
motion:

1 7+, d 1 Z+4, Dy J Cl6
1 z+4, 1 e p
- dz. R Y_dz. (C17

Accordingly, Hamilton equations are finally simplified
by modifying Egs. (C9)—(C11) as

d)’/}

— = ) , C18
d - Pra dz - Pey (C18)
d d
7. Ppx = —kyxp. d_zpﬂ,y:_k/ziyﬁ’ (C19)
dv dt dt}
dz dz dz
[ (1 K (7—%)+P§,x+l’§.y+k2(xﬂ+yﬁ)
cl \rt 7)1 2 2
:l _2kWZ(y_Yr)+p§,x+pé,y+k§(x2+y/%)
cl kv, 2 2 ’

dar? 1 2+ K* K?
——=—(1+—=——-—=5c082k,.z
dz ¢ ;. 4yr
1 k,. K? 1 K?
== <1 -+ kvlz - 4—7/3005 2szz) = P cos 2k,,..z,

(C21)

where 7, shows the average velocity over one wiggler
period 4,,, the index r means the variables for the reference
electron, and the betatron wave number kj is given by

Kk Kk,
ky=—2X = c22
N AN (€22)

(in this paper, the betatron focusing assumed to be equal in
the x and y directions, for simplicity), y, is the resonant

Lorentz-y of the reference electron and 7, = \/y% — 1. The
resonant radiation wave number k; is introduced as

2sz}/r
(1+5)°

ky = (C23)

for the planar undulator.

APPENDIX D: DESCRIPTION OF THE
VECTOR POTENTIAL VIA BEAM
DISTRIBUTION FUNCTION

By inserting Egs. (B7)—(B9) and (16) into Eq. (B2) and
changing the volume element from d°7dt’ to d*xzdz'd7,

the vector potential ;lR = A" for the radiation fields is
expressed by Eqs. (19) by using Egs. (13)—(15) and
(20)~(22). The function HY,,,(n.,n,;m,n,z) in Eq. (19)
is given by

—iw=+iw sin 2k,,.z—iqz . 2 22 22 . 2 22 22
K TR ) R
HY o (ny,nyimn,z) = —i e Iogw+e Logw
4 Y u)z n‘lzﬂ'z n2n2 ’ ’
e—tE
sin ¢ m;”‘)” sin (_"Z""M e sin ¢ m;'“)” sin <"+;-">
X ab
(=mA4n )z (—n+ny)x (=mA4n)z (n+ny)x
2 2 2 2
eimﬂ' sin (m‘;”x)” sin (_"J;"y)” ei(m+n) gin Wt (m+n ) sin ("+2”y)” oI
(m+n,)m (=n+ny)x (m+n,)x (n+n,)n: ’ ( )
2 2 2 2
. 1 2 .
where the functions I((,,,)q,w and I,(‘,,L’w are introduced as
; Z, ; 1 1)72 "12112 nzzrz
1 z s —iog — =(5)? sin 2k, 2/ +igz' ~i7! i s
I,(u’)q‘w = /L d7e ' " “ " sink,,.7, (D2)
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1(2) /% dee zw— ””W( )2 sin 2k, 7 +igz +iz’ ——%—” z
Z

w.qw —

sink,.z/, (D3)

where L is a regularization parameter, which will be removed in the final form of the dispersion relation (44) because it is
taken to infinity in Eq. (E11). It is noticeable that the information of the beam distribution is confined in the function
0,,(n,,ny) in Eq. (19).

The expression of the function HY,,(n,,ny;m,n,z) is simplified by using the expansion formula for the Bessel
function [11]:

eierh sink,,z' _ Z (_l)njg(erh)e—iﬁsz" (D4)

O0=—00

The 7'-integration in Eqs. (D2) and (D3) is carried out with the result,

2 2.2 2.2 .o . @2 2.2 2.2
0 1)0 |: K\ 2 eza}—+z(2o+1)k}, catiqz—izy [Tt g _ e—m}ﬁ—z(ZaJrl)k“ Lightik S R
a)q w = §
2i 8k,,.c < ) ] j . 2 pip?
= P+iQ2o+ Dk, +ig—i ——M—”b’}
o ta>—+t(26 1)k, z+igz—iz —Z—ng—”zg ta)r i(26-1)k,.% 5 lq2+l —2—#—”25
(_1)0 P K\2] e a 7o, a 3
B Z 2i Io |:8k -C <]7> :| io 1 22 i ’ (DS)
o=—00 wz E—|—1(2 l)sz+lq—l ——7—7
i i sl Ly 02 w22 Rl (004 1k, o tigiy |G-t
© ( 1\o b oy 2 TN AT T r weZTIGZTIZA [ 777 27 3
w3 Sl ()] e
wqw — 9 - =
i 8k,,.c i . 202 p2g2
o=—00 we€ \Y P+iQ2o+ Dk, +ig +i ——ma—f—"b’}
i+ g [ RS oo kctigetiny [t 0E
—e
- (D6)
i k o _ m’z> _ n’n’
+l( - Dk, +ig+i e 5
Finally, we obtain the expression of the function HY,,(n,n,;m,n,z) as
K\2
) iKJ |:8szc(;7) :| © (_1)a+pei(2n+l—2p)szz ) K\ 2 w K\ 2
HY g(nynysm,n,z) =— E — § o Jo Sk = +J511 Sk =
p=——0co 2}7 % _ ma_gr _ nb72z ——co l wzC \7 wzC \V
| e(———z(25+1)k —ig+i ”’2—"’:—{2—”2—;’2)(%+Z) 1 e("”+l(2¢7+1)k‘1 Fig+i ‘”2 "‘55‘2—”2’2’2)(%—1)
X
2.2 2.2 2.2 2.2
l‘”+1(20'+ Dk,. +ig—i ——”’a—f—% lw+1(2a+ Dk, +ig+i ——’”u—ﬁ’—”h—’{
sin (=m+n)n sin (=ntny)m " gin (=m+n)n sin (ntny)x
2 2 2 2
X ab —
(=mAn,)z (=n+ny)x (=m-+n,)z (n4ny)x
2 2 2 2
eiMm7 gin (m'*‘znx)” sin (_"Z",v)” elilm+mz gip (m+2"x)” sin (’”2”,\*)” o7
(m+n)r (=n+ny)x - (min )z (ntny)m ( )
2 2 2 2

Now, the radiation field from the planar undulator can be explicitly calculated by using Egs. (19) and (D7).
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APPENDIX E: THE ENERGY CHANGE OF THE BEAM BY THE RADIATION FIELDS

Since we obtain the expression of the radiation fields, let us calculate the energy change of the beam by the radiation
fields to complete the Vlasov equation. The energy change by the radiation fields is given by Eq. (C12), and it is
approximated by Eq. (17).

By substituting Egs. (C14) and (19) into Eq. (17), the energy change by the radiation fields is described as

d]/ iez,uOK 1 © mmﬂﬂm‘ﬁ [e] .
dy _ _iempK 1 P piaz 37 § ny)oHY o (ng,ny;m,n,z),  (El
a2 m.c 7 dab > e /_m @ / ¢ 4ab s 1y )OH g (13,1, 2), - (EL)

m,n=-—00 Ny, My =—00

where

W m}rrM cos kyzz

L, =sink,.zel <" = sink,,ze" . (E2)

By using the expansion formula [11]:

0

e—ik}.r,, cosk,z Z (_l-)njn(kyrh)e—insz’ (E3)
n=—oo
the factor L,, is expressed as

I K .,, . mrur x mrxr.
b= 3 e[ () = et (M) | .

V=—00

By using the formula (D4), Eq. (El) is rewritten as

d}, ® dw ; dq 1 - JmaXp  nayg
L " ,-lwt tqz i—; —+i >
dz /_oo T / 2 4ab Z _4ab e

m,n—=—oo

X Z Z Z e"(””"_zp“)kwrngq(nx,ny;m,n,a,u,p)@wq(nx,ny), (ES)

0=—00 V=—00 p=—00

where

1->2 Az(m,n, o q)gi@kw;z

. _ pw .
qu(nx’ ny;m,n,o,v, p) = qu(”x’ ny;m,n,o,v, p)

1 . 2,2 22
%—i_l(zg_‘_l)sz"i_lq_l __m7_n7
— _ . iak,,z
—- 1 af—oo Ba(m n, o, Q)e — — 1, (E6)
1§20+ Dk, + iq + iy /% — F - 1%
P (ng,n,;m,n ) Te K 2( 1HPJ @ K\? oBv-1) g mrnr,,
) )s ,n,o,v, - ~ - - —
wg\"txs Ity p dec ﬁ_mzﬂz_ﬁ Y P Sszc ¥ v—1 a
o\ 2T &2 b2

2 2
LAt mary\ | o), @ (K o (K
¢ J”“( a ﬂ( 2 {J"L%szc 7) | T gk \5

sin (_'"er"")” sin <_"+2ny)” e sin (_m;"‘)” sin <"+2n W)
x 4r*ab -
(=m+n)x (=n+ny)x (=m+n)z (n+ny)x
2 2 2 2
M7 gin (erznx)” sin (_”J;”_v)” ellm+mz gin (m+n ) sin (n +2" L4 -
(mtne Cnim)a AT ’ (E7)
2 p) 2 2
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e[—iak; 2220k —i2g 2y G- o
— wz
A&(m,n,a; Q) = . 2.2 2 2]’ (Es)
L ik, =2 = i(20 + Dk, = iq + iy/% — 22F — ¢
ik L liak,,, Jr’z”+12(2r7+l)kW +i2g+i2 “ '"jg‘z "izz]%
e wil — @
Bi(m,n,0;q) = e, (E9)
L| =ik, =2 = 120+ Dk, = iq = iy )% = 22F 2|
2
e
I (E10)
4regm,c
we choose the branch iv/w?/c? —m?a?/a® — n’z?/b* = —\/m*n%/a* + n*n?/b* — w*/c? for w?/c? — m?n?/a*—

272/b* < 0, r, is the classical radius of electron and ¢, is dielectric constant of vacuum. Finally, the regularization
parameter L can be taken to infinity so that Eq. (E6) is simplified as

A 1
Py (nyngimn,o,v,p)= Py (n.,n;mn,o,v,p) : —
1 i(20 4 Dk, + iq — iy/% -2 - 2L
1
T PRI (EL1)
o4 i(20+ Dk, +ig + iy % =" =1

It should be noticed that the function @,,,(n,,n,) appears in dy/dz [Eq. (E5)]. As Egs. (8), (21), and (22) show, the
function ®,,,(n,, n,) depends on the perturbed distribution function f. In this way, Vlasov equation (4) finally converts to a
dispersion relation.

APPENDIX F: DISPERSION RELATION

The dispersion relation is obtained by transforming Eq. (4). After substituting Eq. (ES) into Eq. (4), the Vlasov
equation (4) is expressed as

dt > of t/(xﬁ Pp 7) af, (;C/}yﬁﬁJ/) Ofo4n* & 1 R g g
.. 4T > D O 2y Wlf b 5y
<zq ) dz>fw,q(-x/j Ppv) + Dp 0%, 555 o5, +—2= dy dab Z _dab Z e G

m,n=—co
X Z Z Z i(0420-2p+0kz Py (1 1 m,n, 6,0, p)O@yy (nyany) = 0, (F1)

0=—00 V=—00 P=—00

Ny =

where the functions f, , and f, are related as

—0o0 —0o0

N 0 e iwt oo 1qz
PG bprria) = [ oS [ dg S f G ) (F2)

Using Egs. (8), (14)—(22), and (F2), the function ©,, ,(n,, 1) is enable to be associated with the function f,, , (};3 Pp7)
as

n, ny ab T

O (Mo ny) = ——= L " oM T (1 =5, o)(1 =68, 0)Pw
wq(nx ny) |nx| |I’ly|47l' e' ( X,O)( y~0)p q(

) (F3)

where 0, ,, is Kronecker-o,
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4 $-2,(2) . w(z) +4 b
Parg(ng.ny) = 2nab/ dze 4 /_:x dxﬂ/ dyﬁsmn Gl +;C )+ sinnyﬂ(y£+2)

/ d?’/ dZP/}/ dq o qu(x/ivp/)’ 7) (F4)

In order to proceed the analysis, let us introduce the polar coordinate in the transverse plane as Eqgs. (27) and (28), and
expand f, , by using the azimuthal angle ¢, and ¢, as

fw,q(;cﬁaﬁﬁ, Z an FesTys¥ ) imd’xeindly‘ (FS)

nm,n=—0o

Since the value of /72 + r§ is typically smaller than min{a/2 — x,,, b/2}, the substitution of Egs. (27), (28), and (F5)
into Eq. (F4) approximates Eq. (F4) as

S Zﬂkz s n,(mw T "ﬂ“w
Parg(yny) = — dze""z E 5 dr ry dr ryler e _‘m‘( Dl — e~ e~ _‘m‘}
_ a

n71'r mn
>J|n|< b y)FEU,q)<rmry}/)’ (F6)

nym nyx qz 00
X [P (= 1) — =) / dg' / d7J|m|<
—00 1

where the formula [11]:

7dg i -
A Zehﬁ cosé = =17, (x). (F7)

is used.
Hence, the Vlasov equation (F1) is rewritten in the Fourier space, as

dT _ it
{Lq wd_z - lkﬂ( n)] F,(l,,q )(rx, ry,y)

af S m Fl
= —foL(r?) g;, 4ab Z 4ab Z i (m” )ll ||<m;ry>

m,n=-—0oo
[ee] [c] [ee] ) R 1
i(v+20-2p+1)k,.z pw .

X :Z: ; ; e Py, (ny. nyim,n,o,v, p) " - __M_M

6=—00 U=—00 p=—00 +l(20’—|—1)sz—|—lq i e 3

1 ny ab . nyr

_' 2 2 2‘| E—ya_ZelTJrlT(l - 5;1)(,0)(1 - 5nv,0)

%+i<26+1)sz—|—1q—|—[ __ma_g_ bfzr |ny||ny| 4z )

0 Rl Zﬂk (e
—igz / ;) =l = i\"x\” l-‘"x"”w(k) _ m' _ _l"”x‘” _i‘”x‘”«‘w(«’)
x/ dze™ E / rxr’x/ dryryi =1 | [@B55 0 (1) ] — =I5 e
—0 m' ' =—co

T S el C I AN R LA
X [e 2 (—1)‘ ‘—e 2 ]/_ dqlﬁ/; d}/.]lm/|< p J‘n/‘ T Fw‘q/ (r;,r;,,y), (F8)

(o]

where we use the relations
0 0 0 0
Pp—a — k2Xg o = —k <+) F9
Praw, 7 o5, ~ M\ og, * og, &)
fo=for(r)fo(r). (F10)
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r = r%—'—}’/%. (Fll)

Here, the betatron variables and their canonical momenta ?c/,, ﬁﬁ are converted by Egs. (27) and (28).
The z-dependence in Eq. (F8) is eliminated by retaining the slowing varying terms. Finally, Eq. (F8) is simplified as

.o deo | ) 3f0||
lq—lwd_z_lkﬁ(m+n) Fﬂ)qq (rxvrwy):_f / Z / dl"/l‘// dr

m' n:—oo

x/ dq' Ki)mq”qm ")(rx,r}|rx,r )F[(fq’,m(rx,ry,y) (F12)

where

KPS P, 1y) = B0 (2, 2 2T i dab PIPS

m,n=—00 6=—00 V=—00

(o]
. N 1
% Z e’<’“+2"‘2p“)k“”Zqu(nx,ny;m,n,a, v, p) : —
p== %—l—i(zﬁ—‘rl)sz—l-lq—l __ma_éz_nb_zzz
1 n n ab n\/l! ”\_
K | e a0
© 4§26 + 1)k, + iq + iy % =2 — e | Pl 1y

w gmile=d)z dnclr Jnelmn @) dncle ndmn(@) Syl nylz
x | dg————— [T e e (=) — = e T [T (= 1) — e
—o 2r  2mab

mnr, nmr, |n |z, |ny|zr,
X.Im< a >Jn< b >Jm’< P >J|n/|<b s (F13)

Z‘” Z‘” Z‘” [nal7r\
Ju+20’—2p+1 a wq(nx’ny’mvniavy’p)

m,n=—00 6=—00 V=—00 p=—00

= = 1) (k) Lb Z

L\
_
S
[]s

o e-ila—d)z

etrwr (1 —5 )(1 —5,1)”0)/ dZ

| |ny| 42° © 27 2mab

e o iy Sl Mnr, nxr |n|zr |ny |77,
— e 2 ( ) +2 2]J+1][ ( l)l ‘—6 2 ]J|rh< a )Jlﬁ( by>.]|m/< a >‘]n’ <% . <F14)

It is convenient to remove the y dependence from Eq. (F12). For this purpose, let us introduce the function Rz g (., ry) as

n, n, ab

|ny|m

el‘T(_i)—y—2ﬁ+2p—l (_] )\m’\

RIS (rory) = / I (e ). (F15)

Accordingly, Eq. (F12) becomes the dispersion relation as

- Afor(y)
R (rery) = =fou (2 / d -
q( y) f(u( ) ] }’[lq lwdz(r }/) ikﬁ(ﬁ1+ﬁ)]

Z / dr,r// dr/r// gR T (e RIS (7 ). (F16)

094201-18



THEORETICAL STUDY OF A WAVEGUIDE THZ FREE ... PHYS. REV. ACCEL. BEAMS 19, 094201 (2016)

The dispersion relation (F16) is solved as follows. First, let us expand the function R (7, 7,) as

R (reory) = Wa () 3 a™ (@) ()
k=0

where the weight function W, (r?) is described as
W (r?) = Cfor(r?).

and C is the normalization constant. The function f,(!m"lnl)(rx, ry) satisfies the orthogonality condition:

o0 2|\m o 2|n m|,|n m|,|n
A dr.r? +1A dry 2 D o el (g () = 6.

The product of the Bessel function, which appears in Eq. (F14), can be expanded by f, (.| (ry.1y), as

T Ueer )y (eyry) = > Cl s L (s )Y,
k=0

where

C|m|,\n|1 y / dr, / dr, r|m|+1r|y”|+1J|m‘(k r )J|,,|(k r )fglml""‘)(rx, ry)WJ_(rz).

By substituting Eq. (F20) into Eq. (F14), Eq. (F14) is simplified as

(o]

m,n,m',n' o 4n? - 1
KU (1 [y ry) = =D (k)2 D Z b Y Pug(m'.nnyim. i)

m n=-—co

n)C ny ab n,(zt (S(q q) "‘)"” i _
e T (1 -6, 0)(1=6, o) ——— e (-1 — e~
|nx||nv|4ﬂ26 ( o)l n,.0) >2ab [e 2 (-1) e

mrx nm m|,|n m| |n
<3 (2.2 )f<' ),

|n |77; |n |7[ anrs / /
chm,.m/’j( 7 S g A 1
=0 “

where
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) . (—mtn)n . (=itny)x i (=m+n)rx . (i4ny)x
P T, K ) sin"———=sin—; sin*———==sin—
g (M g nysm, i) = — | 4nab _ — — - .

4ot |2z 2 \Y (itny)n (it ) (citn)z (it )
CoVl ™ &2 ~ 2 2 2 2 2
M7 gin ('71+2’1x)ﬂ sin (—7’;”)')” el gip (rh+2nx)ﬂ sin (;‘JF;,\')”

+ (itn)z (=ii+ny)z - (4n )z (ii+ny)m

2 2 2 2

X —
o Liw 2 Dk _ o _ m’z’ _ i’n’ o 2 Dk @ _ m’n® _ i’n?
o= L2 +i(20 + 1)k, +iq—i LT 0404 Dk, +ig+i AP _ iy

<L o (K 2 4y w [(K\? i’: ;| K\?2
8k,,.c ot 8k,.c = Bk \ 7
x {—einiﬂ(—l)lm/|fza—2p+2(‘ ) —eil%ﬂ(—l)m/fza_zp(‘ mzrw + L

e <‘ mrr,, |ng|zr, )} (F23)

+e" 2 I npt2
c—2p+ a a

mrr,, |nx|n'rw

a

_inle mnr,, |ngzr,
te " Ty |————
a a

When we retain the first order terms for K/7, qu(m’ My Ny TR, n) is approximated as

(_;H’nv)” 3 (_ﬁ7+nx>”i (;H’nvv)”

P Te K 24 20 sin (_m;"X>”sin St i gin S g
m' n,, nym,n — a - - -
@q ( Xy ) 7 T (=in+n,)x (=it+ny)x (=m+n)r (Atny)x
p) p)

&M gin (’71+”x) sin (= ﬁ;’%)” el gin (mtn)m sin (n "" DL
(V;lJF";) (=n+ny)z - (m+n)x (n+n» L4
2 2 2 2
=2 2 2 22
l(l)+lsz+lq_l ____nb_gr l(‘)+lsz+lq+l L_a__ 721

mrur,, N \ng|zr,

))}

a

) e )

) N Jo( mar,  |ng|ar,

x {—e#(—l)m’ {12( m

L i {] ('ﬁmrw |ng|zr,,
B R 1

a a a
1 1
" mn® _ nln’ - e ia?
— ik, g = i\[% = PE - BE ik g i % = - T
{_e ey H’mul) H('mgiﬂ
a a a a

L i (Jo <’ mar,  |nwr, mar,,  |nglar,

)=o)}

By inserting Egs. (F17) and (F22) into Eq. (F16), multiplying it by f; (k) )" AT and integrating it over 7,
and ry, the final expression of the matrix form for the dispersion relation is derived as

a

P S S e o s)
m' .n'=—oc0 j=0 =0

where
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mn l ‘
mnl/ /d}// dr/ dr (=

2aky)? 42 S 1
Mt — mslal=Goriy (27ks)” 4T
mial ke = C dab 2 4abmZ

xolly=—00

m'|,|n’ m'|,|n’ 2\m’ 12n 1
(I N )(r r)fy N D(r ) ||+ \ |+ Ofor(7) F26)
( y) — ikg(m + n)) oy
— _ My Ny ab e P
2. Py, (m' ny i, i) —= ] |nz|5e T (16, 0)(1 =8, 0)
(F27)

2ra

which gives the existence condition of the eigenvalue ¢ for

any amplitude aimﬂ) as a function of w. The beam growth

rate is given by the imaginary part of ¢. Its double provides
a FEL gain.

1. Dispersion relation for a hollow beam case

In order to calculate the beam growth rate (the half of the
FEL gain), we have to make models for the unperturbed
part of the distribution function f,. For example, let us
consider a hollow beam:

1 e ) Jnyle mr nw |nx|ﬂ |nyl=
b( (=)l — == )Cm|,n.k<7 b>cm’|nl< )

Perturbations on the hollow beam take place only at
r = Ry. As a result, Ry has the characteristic as

R 6(1 r2>rm|rn
w.q —oaTx Ty -
RO

Comparing Eq. (F17) with Eq. (F31), we find that the

function f ]((\ml-\n\) (ry. ry) is nonzero constant only for k = 0
and vanishes otherwise.
By using Eq. (F19), we obtain

(F31)

1 r? 3
D=6 1=— ], F28 () _ 1 2
for(rP) =— R ( R (F28) 15 = i | , (F32)
s Ry m.Jn
where R is the transverse beam size. The weight function .0
W, (r?) is chosen to be
2 A || = /'2' cos2"I+1gsin2+1940
W (r )-5( 2) (F29) 0
R
_ @)l )
The normalization constant C in Eq. (F18) is given by (2[m| +2[n| +2)!!
C = 2R (F30) In this case, Eq. (F21) can be simplified as
= Rk,
2
m|,|n m|+1_|n|+1 r
C‘m‘ |”‘O(kx’k ‘ . / dr / d}" V‘ . ‘ . Jm(erx)'ln(kyry)6<] _R(2)>
2 Jiisin k2 + K2R
R Ty Ro) (kRo) (b R (34
/2% (\/k§ + K2Ry a1
where Eq. (F32) and
Ai dosin*'0cos 10, (asin§)J, (b cos 6) = (@ o) Syt (\/ a* + b2>, for Mu, Mv > —1,  (F35)

are used.
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Equations (F26) and (F27) can be finally given by

Afoy(r)
) —81/
ﬁmn ﬂmn :/ d}’ - -
M
U [ig + 20k ke, P — i LKIGRE — iky(m + n))
kk
=2i W/ dy foi(v) ’ 30
ke Jo T fig + 2k b, 2 — i LSRG — iky(m + n)?
2k )2 477:2 © 1

0 — ml+lni=( )y (k)" A7 e
a0 = C  4ab Z:_m dab

xolty

x - .. n, n, ab e
X Z Py (' n nys i, i) o e (1= 6, 0)(1 =6, 0)

mn=—
22 =2 2
I e 0 e R J\m\+\n|+1< E TR ) mx , \Il Az \I - RG
x (e (=)l — =77 —Ry - Ry
2rab v/ 2% o (\/mﬂ + 2R )lm\ﬂn\“ a b /2|
J SRR
|+ ’|+1( i 0) 'l /|n Il
o m'|+|n <|nx|7TRO) ’ Z|HRO ] (F37)
a

272 |n.|2n'2 \m/HWH]
n F/a
| x‘z Y . RO

a

The simplified dispersion relation for the hollow beam is expressed as

[Se]

ay"™ o Y MU al"") =0, (F38)

m' .n'=—c0

a. In the case of infinitely wide (@ — c0) waveguide

In some of planar undulators for waveguide FELs, the horizontal size of the waveguide far exceeds the vertical size. In
this case, the rectangular waveguide is basically identical to two parallel plates.

For the infinitely wide waveguide, we obtain

jlmltnl=(m|+]n']) - 2 o © K\ 2 [sin EPm)z - giiin gjpy (14m)7
mno _ L re (K\*|sin—5=— " sin—
Mm/.n/’() - b Z /_oo dkx ~Z 4c < <j}> (—n+ny)m (n+ny)zw
n_‘.:—oo n=—00 @ —2 —2
> 2i o [(K\? o [(K\?]?
x =17, +J, "
GZOO{—[% + 20+ Dk, + g + % — 12 - b—}{ [8sz€ < ) ] ! [Sszc (y) ] }

X (1 =6, o)le™m(=1)l"1 —1]
¥ 22 |m|+|n|+1
/2| | (\/ ki + 7Ro)
Jm’ o ( _f_‘"v‘”R > "
SN s ) (kr) (2R, )" (F39)
5 W 2 g\l b
\/20‘|m'|,\n/|< e+ RO)

Equation (F39) is approximated as
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1 (o)
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X — (F40)
m!(m+ D[(=2(2+ 26+ Dk, +q)* +2% - Z£ 45 )Rz}“”
f
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