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Accelerating cavities that excite multiple modes at integer harmonics of the fundamental frequency have
the potential to be used to suppress the onset of rf breakdown and reduce the pulsed surface heating at high
accelerating gradients. Understanding the effect of an additional harmonic cavity mode on the longitudinal
beam dynamics is important to their development and use. A Hamiltonian that describes the longitudinal
motion of a particle as it traverses a chain of multiharmonic cavities has been derived and is applied to the
case of a second harmonic cavity. The Hamiltonian is based upon formalisms found in literature for the
fundamental harmonic and is extended to include different longitudinal field distributions and harmonic
frequencies. The study initially explores the longitudinal motion for moderate accelerating gradients with
high-β protons, as this will allow fundamental properties of the stable region (acceptance and shape of the rf
bucket) to be determined. High accelerating gradients are also investigated but the focus will be on phase
stability throughout. This work concludes by considering the longitudinal dynamics of a modified
European Spallation Source accelerator, comprised of multiharmonic cavities that has specifications
broadly consistent with the accelerator.
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I. INTRODUCTION

High gradient electric fields are used to accelerate
charged particles. The accompanying intense electric and
magnetic fields on the surface of the cavity [1,2] can cause
rf breakdown and give rise to pulsed surface heating [3].
Radio-frequency breakdown is a complex phenomenon,
and the role of the magnetic field in a breakdown is an
active area of study, however it is believed that surface field
emission and surface heating could both be precursors to a
breakdown event. Accelerating cavities that can support
multiple harmonically related eigenmodes could be used to
deepen the understanding of rf breakdown and pulsed
surface heating at high accelerating gradients [4], both for
CLIC-like applications [5–7], as well as applications for
other linear colliders [8].
Multiharmonic cavities have unconventional surface

electric and magnetic field profiles that can potentially
lower the surface field emission and/or pulsed surface
heating without compromising the gradient. Two particular
phenomena found in multiharmonic cavities provide the

main motivation for their use: (a) the anode-cathode effect
[4], which can be found in an asymmetric multiharmonic
cavity that is designed such that the cathode fields are
significantly smaller than the anode fields. This effect will
raise the work function barrier to suppress field and
secondary electron emission, and (b) a reduction in the
surface heating by lowering the average H2

∥ along the
surface [9]. Experiments are currently under way that aim
to provide an experimental basis to these effects [10–12].
Accelerators have long been utilizing harmonic rf

systems to improve the quality and lifetime of particle
bunches [13,14]. However, these rf systems rely on the
fabrication of additional cavities operating with a funda-
mental frequency that is a factor of h larger than the main
accelerating cavities [15], where h is the harmonic number.
The phase of the harmonic cavity can be adjusted such that
the bunch sees a linear field accelerating field [16]. This
reduces the energy spread and lengthens the bunch,
allowing for much higher beam lifetimes. This is particu-
larly important for the European XFEL project [17], for
example, where the energy spread reduction can result in a
laser with much higher brilliance.
For a cavity that excites multiple harmonic modes to be

used in an accelerator, the combined effect of the funda-
mental and harmonic mode on the longitudinal dynamics
needs to be explored. To achieve this, a Hamiltonian is
derived that describes the behavior of particles with
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deviations from a particle with idealized phase and energy
(the so-called synchronous particle). Multiharmonic accel-
erating cavities have additional harmonic modes present
that follow different (and higher order) longitudinal pro-
files. The formalisms currently found in literature [18,19]
will need to be generalized and extended in order to model
these types of cavity.
In this study we derive the general Hamiltonian for a

standing wave (SW) multiharmonic cavity that excites a
TM010 mode with any higher harmonic mode. The
Hamiltonian will be applicable to a variety of modal
configurations, and will describe the longitudinal motion
of particles as they traverse a linear accelerator comprising
a chain of multiharmonic cavities. Protons with initial
energies of several GeV will be used throughout. Two cases
will be studied: first for small accelerating gradients of
approximately 10 kV=m. This allows the general features
of the stable accelerating region to be determined. Then
high accelerating gradients of approximately 10 MV=m
will be applied, in order to better understand how this work
could be applied to specific linacs.
The next section outlines the model for a single mode

cavity using the well-known Hamiltonian. Section III will
derive a general-purpose Hamiltonian for a particle tra-
versing a cavity that can excite two harmonic modes. In
Sec. IV, this Hamiltonian is applied to a cavity that consists
of a fundamental accelerating TM010 mode with a second
harmonic TM011 mode. The relative phase between the two
modes will be varied, while maintaining a constant accel-
erating gradient for the synchronous particle. Both low-
gradient and high-gradient acceleration will be explored.
This is followed in Sec. V by an application of the
Hamiltonian to an ESS-like cavity linac, in order to show
that cavities of this type can accelerate bunches with
parameters that are readily available. Comparisons to
results from tracking simulations will also be shown.
The final section provides some concluding remarks on
this study.
The work that is presented in this paper is applicable for

rf driven multiharmonic cavities. A linear accelerator setup
of this kind allows the amplitude and phase of the harmonic
field to be tuned, providing greater control over the
longitudinal dynamics. However, this work could also be
applied to a beam-driven collinear two beam accelerator.
In this setup, it is preferable to use a third harmonic cavity
(or any odd longitudinal distributions) over a second
harmonic (or any even longitudinal distribution) in order
to enhance the overall energy gain [4].
The anticipated benefit from surface heating reduction

and prevention of rf breakdown reduces with increa-
sing harmonic number [12]. This is because ΔT ∝
hH2

1i½ð1 − αÞ2 þ α2η2�, where ΔT is the temperature rise
on the surface of the cavity, α is the percentage contribution
to the total accelerating field from the harmonic mode, hH2

1i
is the average over one cycle of the magnetic field from the

fundamental mode on the surface squared, and η ≈ Hmax
h

Hmax
1

is

the ratio of the strength of the harmonic magnetic field to
the fundamental. As η approaches 1, the strength of the
magnetic field of the harmonic mode is approaching the
strength of the magnetic field of the fundamental mode. For
higher harmonics the value of η increases, and the maxi-
mum possible temperature reduction reduces. Therefore,
we only consider the case where h ¼ 2 here.

II. SINGLE MODE HAMILTONIAN

The multiharmonic Hamiltonian is an extension of the
single mode analysis. Therefore it is important to describe
the single mode case in order to understand how the
additional harmonic perturbs the rf bucket. The following
section provides a summary of work on the single mode
Hamiltonian originally found in Refs. [18,19].
For an infinite chain of SW cavities, the longitudinal

profile is cos ðkzÞ for a TM010 mode where z is the
longitudinal position within the cavity which is centered
on z ¼ 0, k ¼ 2π

βsλ
, βs is the normalized velocity of the

synchronous particle and λ is the wavelength of the
fundamental mode. The synchronous particle is a particle
that has the ideal phase and energy at any given position.
The derived Hamiltonian governs the longitudinal motion
of any particle traversing this cavity chain relative to the
synchronous particle. In order to achieve this, equations
concerning the evolution of the phase and energy of a
particle with respect to the longitudinal coordinate s must
be determined.
For a π-mode SW cavity, the phase advance of the rf field

from one cavity to the next is given by

ϕn ¼ ϕn−1 þ ω
g

βn−1c
; ð1Þ

where

g ¼ βs;n−1λ

2
ð2Þ

is the cavity gap, c is the velocity of light and ω is the
angular frequency of the mode. The subscripts s and n refer
to the synchronous particle and the cavity number, respec-
tively. From this, the phase advance of a particle relative to
the synchronous particle from cavity (n − 1) to cavity n is
given by

Δðϕ−ϕsÞn ¼Δϕn −Δϕs;n ¼ πβs;n−1

�
1

βn−1
−

1

βs;n−1

�
: ð3Þ

Applying a Taylor expansion for a small perturbation about
βs gives

1

β
−

1

βs
¼ 1

βs þ δβ
−

1

βs
≊ δβ

β2s
; ð4Þ
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where the change in velocity dβ across one cavity is given
by δβ ¼ δW=mc2γ3sβs, m is the mass of the particle and γs
is the relativistic gamma factor. This leads to the difference
equation that shows how the particles phase evolves with
cavity number. The energy gain of a particle also needs to
be in terms relative to the synchronous particle. For
simplicity this term is normalized to the rest energy of
particle under study. It therefore follows that the substitu-
tion w ¼ δW=mc2 ¼ ðΔWn − ΔWs;nÞ=mc2 can be made.
The phase difference equation is now given by

Δðϕ − ϕsÞn ¼ −π
w

γ3s;n−1β
2
s;n−1

: ð5Þ

The SW electric field of a TM010 mode is a combination
of the field profile in the z-direction and the oscillation at a
specific frequency, given by

ET ¼ E0 cos ðkzÞ cos ðωtþ ϕÞ; ð6Þ

where ϕ is the phase of the field when the particle is at
z ¼ 0 and E0 is the field amplitude. For a particle moving
with t ¼ z=βc, the energy gain of a particle as it crosses a
single cavity is given by

W ¼ qE0

Z
g=2

−g=2
cos ðkzÞ cos ðωtþ ϕÞdz ð7Þ

¼ qV0TðβÞ cosðϕÞ; ð8Þ

where V0 is the axial rf voltage, given by

V0 ¼ E0

Z
g=2

−g=2
cos ðkzÞdz ð9Þ

and TðβÞ is the transit time factor, which is determined by

TðβÞ ¼
E0

R g=2
−g=2 cos ðkzÞ cosðωzβcÞdz

V0

− tanðϕÞ
E0

R g=2
−g=2 cos ðkzÞ sinðωzβcÞdz

V0

: ð10Þ

The difference equation for the energy of the particle
with respect to the synchronous particle is

ΔWn − ΔWs;n ¼ qgE1TðβÞ½cosðϕnÞ − cosðϕsÞ�; ð11Þ

where E1 ¼ V0=g is the accelerating gradient.
Equations (5) and (11) can be written as a continuous

function, rather than having the discrete action of the
particles at the center of each cavity. Using n ¼ 2s=βsλ
they can be expressed as

dϕ
ds

¼ −2π
w

γ3sβ
3
sλ

¼ ∂H
∂w ð12Þ

and

dw
ds

¼ q
E1TðβÞ
mc2

½cosðϕÞ − cosðϕsÞ� ¼ −
∂H
∂ϕ : ð13Þ

As ϕ and w are variables canonically dependant on s, a
Hamiltonian can be constructed that describes the particle
motion in phase space, which is given as

H ¼ −
π

β3sγ
3
sλ

w2 − q
E1TðβÞ
mc2

½sinðϕÞ − ϕ cosðϕsÞ�: ð14Þ

This is consistent with the usual form of a Hamiltonian
H ¼ K þ V where K is the kinetic energy and is repre-
sented by the w-dependent term (first term in the expres-
sion) and V is the potential represented by the ϕ-dependent
term (second term in the expression). A particle that has a
deviation in phase or energy will orbit the synchronous
particle in phase space according to the Eqs. (12) and (13).
A particle orbit is found by plotting the ϕ and w points for a
set of initial coordinates. For increasingly large deviations,
the particles orbit becomes wider and wider, until even-
tually it becomes unstable. A stable orbit is one that follows
a closed curve, whereas an unstable orbit is an open curve
that trails off giving rise to high energy and phase
differences. It is important to know where the boundary
between stable and unstable orbits lie. This boundary is
known as the separatrix and it can be determined by two
points, the stable fixed point and the minimum phase for
stable motion. The stable fixed point lies at (ϕ ¼ −ϕs,
w ¼ 0). This is the maximum phase difference a particle
can have because at this point the particle will be gaining
the same energy as the synchronous particle, therefore no
phase space motion is expected. The minimum phase for
stable motion lies at zero kinetic energy (ϕ ¼ ϕ2, w ¼ 0),
which arises when the potential at this point is the same as
for the stable fixed point.
To calculate the value of the Hamiltonian on the

separatrix, ϕ2 needs to be determined. This is found by
equating the value of the potential at the minimum and
maximum phase boundaries. The potential at these points
are the same, i.e.

Vðϕ ¼ ϕ2Þ ¼ Vðϕ ¼ −ϕsÞ: ð15Þ

Figure 1 shows typical profiles pertaining to a 2 GeV
proton that experiences an accelerating gradient of
E0 ¼ 10 kV=m. The uppermost plot is the energy gain
of a particle across one cavity as a function of the initial
phase offset ϕ. The middle plot is the potential of the cavity
on the separatrix, where it can be seen that a potential well
exists in the region of stability. The lower plot shows the
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particle trajectory in phase space, which has been solved for
various initial phase offsets and covers both stable and
unstable orbits, including the separatrix. The acceptance of
a cavity is determined by calculating the area of the rf
bucket, and refers to the maximum bunch emittance that
can undergo stable acceleration. The conventional unit of
longitudinal acceptance is [eV][s], however here normal-
ized energy is being used. Therefore, the acceptance of the
separatrices shown here are in units of radians (which is
related to time through the fundamental frequency).
Henceforth, for convenience when referring to the normal-
ized acceptance, the term acceptance will be used.
In order to ensure the derived Hamiltonian is accurate, a

particle tracker based on Eq. (7) was created that numeri-
cally tracks a single particle through a chain of cavities for a
given offset ϕ and initial energy deviation w. This tracker
does not rely on any of the assumptions relating to constant
energy and velocity that followed in the derivation of the
Hamiltonian, and can be used as an indicator of the
accuracy of the Hamiltonian under a given set of param-
eters (for example initial energy and accelerating gradient).
A comparison between the Hamiltonian and the tracking
code for a 2 GeV proton with E0 ¼ 10 kV=m can be found
in Fig. 2. The phase width of the separatrix was in excellent
agreement between the Hamiltonian and the particle
tracker, and the amplitude of the rf bucket at ϕ ¼ ϕs
was within 0.5% at the peak value between the two cases.
A Hamiltonian inherently makes an assumption that

βsγs ¼ C, whereC is a constant. While this is not true in the

case of linear accelerators where moderate to high gradients
are required, the separatrix for the case with little to no
acceleration offers insight into the particle dynamics, and
reveals some important physics of the longitudinal phase
space. Some of the unique features found with no accel-
eration can then be seen in cases when high accelerating
gradients are included.
We will now discuss the validity of these approximations

and calculate the Jacobian determinant to verify the
accuracy of the linear map [18].
The Jacobian determinant provides the phase space area

preserving property (or a magnification factor for the single
particle emittance) and is equal to unity for any particle
transformation with a constant velocity. However when
acceleration is present a deviation from unity occurs, which
arises from the thin lens model that implements a momen-
tum impulse at the position of the cavity. This is because
the particle is gaining energy and therefore the velocity
changes either side of the gap. It is important to calculate
the magnitude of this deviation in order to ensure the linear
map is accurate. This can be calculated for a transformation
either side of the thin lens for a drift-kick-drift model.
Here, the phase before and after remains the same, ϕf ¼ ϕi

while the energy is increased after crossing the gap. This
gives the final energy as Wf ¼ Wi þ qgE1TðβÞ cosðϕiÞ.
The Jacobian determinant can be shown to be

∂ðWf;ϕfÞ
∂ðWi;ϕiÞ

¼
������
∂Wf

∂Wi

∂ϕf

∂Wi

∂Wf

∂ϕi

∂ϕf

∂ϕi

������
¼ 1 −

qgE1

2Wi
kT 0ðkÞ cosðϕiÞ; ð16Þ

where T 0ðkÞ ¼ dTðkÞ
dk . The determinant is clearly equal to

unity for no acceleration and it can be seen that when
acceleration is present the determinant deviates from unity.
This is not an issue for accurately calculating the trace of a
particle through the linac, as long as this deviation is
acceptably small. There are two ways of reducing this
deviation, either the acceleration gradient is reduced, or the
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FIG. 1. Top: Energy gain as a function of phase offset for a
particle traversing a single cavity. Middle: Potential for separa-
trix. Bottom: Phase space contours in black, separatrix in red and
stable orbits in blue.
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FIG. 2. Comparison of the Hamiltonian found in Eq. (14) with
results from a particle tracker based on the fundamental principle
of the energy gain of a particle as it traverses a cavity, found in
Eq. (7). The peak amplitude is in agreement to within 0.5%.
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initial energy of the particle is increased. This allows the
determinant to be very close to unity, which allows the
phase space behavior of particles to be accurately modeled
in the regimewhere moderate gradients are present. As seen
in Ref. [18], a phase correction can be applied that can
correct for any error that occurs when crossing the
boundary, however for the regimes which are being dis-
cussed here this is not needed. For example, with an initial
energy in the region of 6 times the rest mass of the particle
being used, the discrepancy of Eq. (16) is Oð10−3Þ
for 10 kV=m.
When moderate or high acceleration is present, β → 1

and dβ
dW → 0. This causes adiabatic phase damping (due to

the slower response of the particle in the phase coordinate)
which results in larger energy spreads. This behavior is a
consequence of the kinetic energy term in the Hamiltonian.
As βsγs increases, the kinetic term of the Hamiltonian is
decreasing. Due to the changing value of the Hamiltonian,
there is no longer a contour that represents the boundary
between stable and unstable orbits [18]. Instead the input
acceptance is calculated, which specifies the initial posi-
tions for an ensemble of particles that will be stable. The
input acceptance is a boundary in phase space for the initial
coordinates of a collection of particles. If a particle’s initial
coordinates are within the input acceptance, then the
particle will undergo a stable orbit and be captured by
the bucket. This effect is shown by the spiral-like trajecto-
ries seen in Fig. 3. The particle undergoes phase damping,
which results in a growth on the energy axis. It is also
possible for particles that have very high initial phase and
energy values to be captured by the bucket because the tail
from the separatrix extends until high values. A particle
with an initial position inside this tail will take a long time
to reach the bucket, but will eventually be captured with the
rest of the bunch. This type of behavior is unique to linacs
and has been seen at many different facilities [20].

A Hamiltonian that describes the motion in phase space
of a particle as it traverses through a cavity oscillating in a
single mode has been derived. In the next section, this
formalism will be extended to allow the modeling of two
harmonically related modes with different longitudinal
field profiles.

III. HAMILTONIAN FOR MULTIHARMONIC
CAVITIES

Here, a Hamiltonian is derived that facilitates an arbitrary
variation of the fundamental mode with an additional
harmonic. The electric field in a multiharmonic cavity
can be generalized as

ET ¼ ð1 − αÞEz1ðzÞ cos ðωtþ ϕÞ
þ αEzhðh; zÞ cos ½hðωtþ ϕÞ þ ϕnh�; ð17Þ

where h is the harmonic number of the mode, ϕnh is the
phase shift for the time-dependent component of the
harmonic mode, α is the percentage mode contribution
from the harmonic mode and Ez1ðzÞ and Ezhðh; zÞ are the
longitudinal field profiles for the fundamental and har-
monic modes respectively. The energy gain of a particle
traversing this field is given by

W ¼ q
�
ð1 − αÞ

Z
g=2

−g=2
Ez1ðzÞ½cos ðωtÞ cosðϕÞ

− sin ðωtÞ sinðϕÞ�dz

þ α

Z
g=2

−g=2
Ezhðh; zÞ½cos ðhϕÞ cos ðhωtþ ϕnhÞ

− sin ðhϕÞ sin ðhωtþ ϕnhÞ�dz
�
; ð18Þ

which can be simplified to

W ¼ qfð1 − αÞ½V1 cosðϕÞ − V2 sinϕ�
þα½Vh1 cos ðhϕÞ − Vh2 sin ðhϕÞ�g; ð19Þ

where

V1 ¼
Z

g=2

−g=2
Ez1ðzÞ cos

�
ω

z
βc

�
dz; ð20Þ

V2 ¼
Z

g=2

−g=2
Ez1ðzÞ sin

�
ω

z
βc

�
dz; ð21Þ

Vh1 ¼
Z

g=2

−g=2
Ezhðh; zÞ cos

�
hω

z
βc

þ ϕnh

�
dz; ð22Þ

Vh2 ¼
Z

g=2

−g=2
Ezhðh; zÞ sin

�
hω

z
βc

þ ϕnh

�
dz: ð23Þ

The difference equation for the energy gain can now be
given as

2 s 0 s
0.15
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FIG. 3. A single input acceptance is shown for
E0 ¼ 10 MV=m. The red curve is the boundary of the input
acceptance and the blue and black curves are particle trajectories
with different initial positions. The trajectory can move beyond
the boundary as the boundary only applies to the initial position
of the particles. The spiral nature is caused by the adiabatic phase
damping due to the increasing βsγs.
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ΔWn ¼ qW0½ð1 − αÞðV1½cosðϕÞ − cosðϕsÞ�
− V2½sinðϕÞ − sinðϕsÞ�Þ
þ α½Vh1ðcos ðhϕÞ − cos ðhϕsÞÞ
− Vh2ðsin ðhϕÞ − sin ðhϕsÞÞ��; ð24Þ

where W0 is a scaling factor introduced to ensure the
energy gain of the synchronous particle is the same for each
variation within each study.
As described in the previous section, one can now move

from discrete cavity gaps to continuous longitudinal
coordinates, using dn ¼ ds=g and w ¼ ðW −WsÞ=mc2,
this allows the coupled equations to be obtained as

dw
ds

¼ q
gmc2

½ð1 − αÞðV1½cosðϕÞ − cosðϕsÞ�

− V2½sinðϕÞ − sinðϕsÞ�Þ
þ α½Vh1ðcos ðhϕÞ − cos ðhϕsÞÞ

− Vh2ðsin ðhϕÞ − sin ðhϕsÞÞ�� ¼ −
∂H
∂ϕ ; ð25Þ

and

dϕ
ds

¼ −2π
w

γ3sβ
3
sλ

¼ ∂H
∂w : ð26Þ

The latter is unchanged from the single mode case.
By following the same procedure as found in the

previous section, a Hamiltonian that can be used to explore
several different regimes for a multiharmonic rf cavity can
be found and is given by

H ¼ −
π

β3sγ
3
sλ

w2 −
qW0

gmc2

�
ð1 − αÞ

�
V1½sinðϕÞ − ϕ cosðϕsÞ�

þ V2½cosðϕÞ þ ϕ sinðϕsÞ�
�

þ α

�
Vh1

�
sin ðhϕÞ

h
− ϕ cos ðhϕsÞ

�

þ Vh2

�
cos ðhϕÞ

h
þ ϕ sin ðhϕsÞ

���
: ð27Þ

The kinetic energy term remains unchanged from the
single mode case; this is because if a particle moves away
from the synchronous particle by dϕ in terms of the
fundamental, then the movement for the additional
harmonic will be hdϕ, which is taken into account in
the potential. The Hamiltonian simplifies when a
particular longitudinal profile is specified. For Ez1ðzÞ ¼
E0 cos ðkzÞ, i.e. an even function, then V2 ¼ 0 and
V1 ¼

R g=2
−g=2 E0 cos ðkzÞ cosðωzβcÞdz, whereas a reverse effect

happens for an odd longitudinal function. Similarly, this
also occurs for the harmonic mode when ϕnh ¼ 0.

Depending on whether Ezhðh; zÞ is even or odd, Vh1 or
Vh2 becomes 0 respectively. However, for cases when
ϕnh ≠ 0, this simplification does not occur.
The synchronous phase in a multiharmonic cavity

becomes more difficult to select as there are now two
independent modes in the cavity, and the contribution from
each one is dependent on its specific parameters. In order to
remain consistent between the treatment of each set of
parameters, a new method is used that allows an appro-
priate synchronous phase to be determined. First, a syn-
chronous phase Φs is chosen which, in the single mode
case, would correspond to a reduction in the peak accel-
erating gradient of cosΦs. Equation (19) is then solved for
ϕ to determine the peak energy gain in the cavity, Wmax.
The synchronous phase is then selected as the phase
required to reduce this peak gradient by cosΦs, i.e. such
that the energy gain of the synchronous particle, Ws, is
given by Ws ¼ Wmax cosΦs. Typically, we will use
Φs ¼ −π=3, which results in a gradient reduction of
50%. This is much larger than is typically used in a
practical accelerator, but it allows a greater insight into
the physics of the longitudinal dynamics for each case as it
increases the phase width of the rf bucket.
The linear map for this Hamiltonian is similar to the

single mode case, with an extension to include the addi-
tional mode. As before, the phases before and after the
transformation are the same, i.e. ϕf ¼ ϕi, the energy
transformation is now

Wf ¼ Wi þ qfð1 − αÞ½V1ðkÞ cosðϕiÞ − V2ðkÞ sinðϕiÞ�
þ α½Vh1ðkÞ cos ðhϕiÞ − Vh2ðkÞ sin ðhϕiÞ�g: ð28Þ

The Jacobian determinant of the Hamiltonian is given by

∂ðWf;ϕfÞ
∂ðWi;ϕiÞ

¼
������
∂Wf

∂Wi

∂ϕf

∂Wi

∂Wf

∂ϕi

∂ϕf

∂ϕi

������
¼1−

qk
2Wi

½ð1−αÞðV 0
1ðkÞcosðϕiÞ−V 0

2ðkÞsinðϕiÞÞ

þαðV 0
h1ðkÞcosðhϕiÞ−V 0

h2ðkÞsinðhϕiÞÞ�;
ð29Þ

where V 0ðkÞ ¼ dV=dk. The derivative of the harmonic
voltages gives rise to an h factor from the longitudinal
profile. This results in the harmonic mode being more
sensitive to errors in the linear map. Calculations have
shown that perturbations arising from this determinant are
of the same order as the single mode case (for the same
initial energy and accelerating gradient). Therefore, assum-
ing appropriate bunch parameters are chosen, no issue is
anticipated.
We now apply Eq. (27) to glean some insight into the

beam dynamics in second harmonic cavities.
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IV. SECOND HARMONIC CAVITY

When considering a second harmonic cavity that excites
TM010 and TM011 modes simultaneously, the harmonic
number is h ¼ 2 and Ezhðh; zÞ ¼ E0 sin ðhkzÞ.
Here, ϕnh is varied from 0 to π

2
and the acceptance of the

rf bucket is determined for each step. Throughout the
variation of ϕnh, a constant value of α ¼ 0.222 is used.
This value arises from an optimization of a second
harmonic cavity suitable for beam driven applications
[12]. The amplitude of the fundamental and harmonic
mode is kept constant at 10 kV=m, and the total energy
gain across the cavity is determined by ð1 − αÞW1 þ αW2.
The synchronous phase is selected as the phase that
gives a reduction in the total gradient corresponding to
Φs ¼ −π=3, with the synchronous phase being recalcu-
lated for each step as described in Sec. III.
As discussed before, two cases will be shown: one for

small accelerating gradients of 10 kV=m and one for high
accelerating gradients of 10 MV=m.
The particle trajectories are solved for different initial

conditions for a proton with an initial energy Wi ¼ 7m,
where m is the proton rest mass. These plots are shown for
different values of ϕnh in Fig. 4.

For ϕnh ¼ 0, a slight distortion in the energy gain as a
function of ϕ is observed around ϕ ¼ π=2. In the region of
the synchronous phase however, the energy gain is approx-
imately sinusoidal. This is why the shape of the separatrix
does not deviate significantly from the single mode case.
When ϕnh increases, the energy gain of a particle in the
region of ϕ > 0 begins to increase and draw level with the
energy gain at ϕ < 0. This culminates in a flattening of
the bucket at ϕnh ¼ 0.5π around ϕ ¼ 0. The bucket is now
much wider, and is flatter at the highest energy excursion.
This flattening is similar to some of the results obtained at
the PSB [14] and ELETTRA [15] where this type of
behavior can increase the lifetime of the beam.
The acceptance of each rf bucket can be found by

numerically calculating the area of the separatrix. This is
plotted in Fig. 5. It can be seen that initially, the acceptance is
reducing because the gradient of the energy gain vs phase
is reducing for the region around the synchronous particle.
However as the bucket begins to flatten, the phase width
increaseswhich causes the acceptanceof thebucket to riseup.
In order to verify the plots found in Fig. 4, single

particle tracking was performed and compared with the
Hamiltonian for ϕnh ¼ π

2
. The reason for choosing this
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FIG. 4. Phase space plots for a cavity exciting both the TM010 and TM011 modes. A phase shift is gradually applied to the TM011 mode
and the gradient is kept constant for each step. For all steps, E0 ¼ 10 kV=m. The upper plot in each step is the energy gain over the
cavity as a function of ϕ and the bottom is the phase space plots, where the red line marks the separatrix.
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particular step is because it is the most distinctive plot and
differs the most from a single mode separatrix. The results
from the tracking can be found in Fig. 6. The tracking was
found to be in excellent agreement, with the phase behavior
perfectly matching the Hamiltonian and an amplitude
difference of less than 0.5%, very similar to what was
seen in the single mode case.

We now model the same set of cavity parameters for the
case when E0 ¼ 10 MV=m. The input acceptance is
calculated for each step and the main features from each
of the graphs shown in Fig. 7 are still present. Here, the
spiral-like trajectories are omitted from the figures as they
do not provide any new insight into the dynamics. It can be
seen that as the energy gain is flattening in the region
around ϕ ¼ 0 for ϕnh → 0.5π, the input acceptance begins
to distort and expand around −ϕs. In the plots, the point ϕ2

refers to the position of the edge of the separatrix from the
case without acceleration. This is to show any additional
phase width that may be gained by including acceleration.
The area of the input acceptance behaves the same in the
case with acceleration as it does without acceleration, while
also retaining the same key features observed.
Having modeled the acceptance of the rf bucket in a

cavity that can excite a fundamental and second harmonic
mode, we now apply the procedure to an ESS-like linac.

V. APPLICATION OF HAMILTONIAN
TO A MODIFIED ESS LINAC

We now consider the application of these techniques to a
specific accelerator. We will show that a multiharmonic
cavity is capable of accelerating bunches that are provided
by the injection facility at the European Spallation Source
(ESS). The ESS will be a facility that will produce neutron
beams of unparalleled brightness via spallation [21]. This
will be achieved by accelerating protons up to 2.5 GeVand
colliding with a rotating tungsten target. The full proton
linac is comprised of several different types of cavities (as β
is increasing throughout the linac) which operate with
different frequencies. Here we investigate the implications
on longitudinal phase space of replacing the single mode
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cavities with multiharmonic cavities. In order to make this
analysis feasible, we will make some broad simplifications
on the composition of the linacs. This approachwill bemade
clear once the characteristics of the linac are described.
The proton accelerator consists of eight different sec-

tions, which include transfer lines and radio-frequency
quadrupoles (RFQ) at low energy, and then several different
types of cavities for higher energy acceleration. The drift
tube linac (DTL) and Spoke cavities operate at 352.2 MHz,
with an accelerating voltage of approximately 6 MV (see
Fig. 4.15 in [21]). The protons are then accelerated by a set
of 704.4 MHz superconducting cavities, which operate
with an accelerating gradient of 18 MV=m. As most of the
energy gain occurs in these high-β cavities, we will
approximate the ESS linac as one continuous structure
of identical cavities, all operating with frequency
704.4 MHz and 18 MV=m accelerating gradient. This
major simplification allows a direct comparison to be made
between the single mode and multiharmonic features and
we refer to this situation as an equivalent linac.
In each case, the input acceptancewill be computed for the

equivalent linac. This is from the tracking ofmany individual
particles along the linac. These will then be overlaid with a
distribution corresponding to the anticipated bunch param-
eters that are used as the input for theDTL section of the ESS
(Fig. 4.4 in [21]). It can be seen that, at the end of the RFQ
(but before the injection into the high-β cavities), the 5σ
energy spread is approximately 0.05 MeV, and the 5σ phase
spread is approximately 0.2 radians (at 704.4 MHz). For
simplicity, thebunch is represented as aGaussian distribution
which is truncated at 5σ in both dimensions.
First, we consider the beam dynamics in the equivalent

linac for the single mode case. For the cavities in the high-β
linac, the synchronous phase ϕs ¼ −π=12, we therefore use
the same synchronous phase for this case. Figure 4.14 in
Ref. [21] shows the input acceptance for the ESS linac,
starting from the DTL. We will first calculate the input
acceptance for the equivalent linac.
We then turn our attention to adding multiharmonic

cavities in place of the main accelerating cavities in the
equivalent linac. Multiharmonic cavities allow higher
gradients to be achieved without increasing the effect of
the intense surface electromagnetic fields. In order to
investigate this effect we maintain an accelerating gradient
of 18 MV=m from the fundamental mode, and add an
additional second harmonic field component and evaluate
the acceptance of the equivalent linac. We choose similar
parameters to that used in Sec. IV, h ¼ 2, α ¼ 0.222 and
ϕnh ¼ π=2, and adjust the synchronous phase such that
the equivalent reduction in energy gain corresponds to
Φs ¼ −π=12 (following the same procedure as used else-
where in this study). This is also shown with the same input
bunch distribution, but now it has been shifted to account
for the change in synchronous phase. The results from these
simulations are displayed in Fig. 8.

The input acceptance for the single mode equivalent
linac is in reasonable agreement with the full tracking used
for the ESS linac [21]. It can also be seen that the input
bunch readily fits inside the input acceptance, showing that
the input distribution truncated at 5σ could be accelerated in
a stable manner with minimal losses.
When introducing a second harmonic in addition to the

fundamental mode, it can be seen that (for the parameters
specified) the bucket width and bucket height both
increase. The input bunch distribution is fully enveloped
by the input acceptance, with more margin for error than
what would be expected for the single mode case.
In order to compare the output bunch parameters of the

equivalent linac, 5000 particles were tracked throughout
the linac for both single mode and multimode cases.
The relevant histograms for both the phase and energy
distributions can be found in Figs. 9 and 10.
It can be seen that the output phase distribution is very

similar for both cases (0.86 mrads for single mode vs
0.88 mrads for multimode). This can be expected because
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both distributions comfortably fit inside the input accep-
tance. Note that for this plot both curves have been shifted
by their respective synchronous phases. For the energy
distribution, it can again be seen that the original single
mode case is very similar to the multimode case (standard
deviation of 1.07 for single mode vs 1.00 for multimode),
except now there is a small asymmetry between negative
and positive energy deviations.
The aim of these calculations was to show that a

multiharmonic cavity could be used to accelerate bunches
with realistic phase space parameters. It is clear that, for
optimized parameters of the additional harmonic, multi-
mode cavities could be used for the acceleration and
transport of bunches from medium to high energies.

VI. CONCLUSION

We have derived a Hamiltonian in order to study the
longitudinal stability of charged particle beams. In addition
to the usual single mode beam dynamics, our methodology
is sufficiently general to accommodate additional modes.
The derivation of this Hamiltonian is based upon the
standard formalism found in the literature [18], which
we extend to allow for different longitudinal profiles. We
added a harmonic of the fundamental accelerating mode,
and investigated if the beam dynamics was appreciably
affected, and indeed if the beam remained phase stable.
This Hamiltonian can be applied to a variety of different
types of multiharmonic cavity, ranging from rf driven to
beam driven cavities, and could have potential applications
in proton or heavy ion linacs, or to multiharmonic cavities
that operate in the two beam acceleration scheme [4].
We have explored the fundamental characteristics of

acceptance for cavities in which a second harmonic of the
main accelerating mode has been independently added.
Furthermore, we considered the beam dynamics that would
occur in a proton linac with broadly similar characteristics
to that of the superconducting cavities in the main ESS
linac; albeit with some significant simplifying assumptions
in order to assess the main characteristics of the particles in
phase space and with no attempt to redesign the cavities

with a view to increasing the overall accelerating field. The
beam dynamics behavior, as predicted from simulations,
showed that the addition of a second harmonic can enhance
the overall acceptance. Thus, from the perspective of
longitudinal phase space alone, an addition of a harmonic
mode to the main accelerating mode is quite feasible.
This is the first analysis, to the knowledge of the authors,

which considers this aspect of longitudinal stability of
charged particles in multiharmonic cavities. The fabrication
and testing of these types of cavities is ongoing at the Yale
Beam Physics Laboratory [12]. However, the impact of
phase space beam dynamics is likely to be assessed at a
somewhat later stage as at present the focus is on the
implications on raising the accelerating field, whilst low-
ering the breakdown threshold and the effect from pulsed
surface heating [10]. For this reason comparison of experi-
ments to these phase space simulations is not likely to occur
in the near future.
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