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As particle accelerator beam power increases, stress on beam windows and targets increases. Many
simulations are carried out to model the dynamic stresses that are induced in these critical components by
near instantaneous beam heating. However while it is often easy to obtain simulation results there are few
analytical solutions available to check the accuracy of simulation techniques. We follow the strand of
several authors over the years who have offered analytical solutions to the classic problem of radial stress
waves in a beam window. Many of these significant contributions have still had niggling issues with regard
to resolving peak stress and limitations on the applied initial heating condition. We formulate an analytical
expression for the radial pressure waves based on a Green’s function solution of Feynman’s wave equation.
A complete analysis of the problem demonstrates that a hypothesis that beam induced pressure waves are
composed of a static and transient component is indeed correct. The analytical expression is shown to give
stable bounded solutions with easily determined peak stress levels. Finally a comparison between analytical
expression and finite element analysis of the problem yields some general guidelines that should be adhered
to for achieving accurate stress wave simulations.
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I. INTRODUCTION

The interaction of a particle beamwith a beamwindow or
target causes heating of the material in a time much shorter
than the time required for the material to physically expand.
This results in higher stress levels than would occur if the
material was heated by the same amount slowly and what is
generally referred to as an inertial responsemanifested as the
propagation of pressurewaves through thematerial. Inmany
high energy physics experiments involving accelerators and
in neutron spallation sources beam windows are used to
separate the particle accelerator vacuum from the target
station atmosphere or to separate the target station atmos-
phere from a target cooling circuit. A beam window failure
would mean closure of a facility for some considerable time
and damage to critical components. As such it is important to
understand the safe operating limits of these critical com-
ponents. The peak induced mechanical stress in a beam
windowmust be compared to the strength or fatigue limit of
the material as part of good component design.
Finite element analysis (FEA) is often used to calculate

this important value of peak beam induced stress. For
reasons of achieving safe long term operation beam win-
dows are typically designed to operate within the elastic
regime so that in continued service any induced stress waves

only result in completely reversible elastic deformations of
the window material. As such we can simulate the stress
using a Hooke’s law linear elastic model to represent the
strength of the window material. Explicit hydro-codes such
as Autodyn and LS-Dyna have also been used to simulate
elastic and plastic stress wave propagation [1,2]. The
forward marching solvers employed by these explicit codes
also allow them to simulate shock waves where there are
appreciable changes in density of the material. This capabil-
ity is not required for the simulation of beam windows and
targets which are designed to operate in the elastic regime.
There are certain rules which must be adhered to when

simulating inertial effects in windows with finite element
analysis. In order to highlight these rules we present an
analytical expression for the one dimensional propagation
of radial pressure waves in a disc and then compare this
with an implicit FEA simulation. There have been several
previous presentations of analytical solutions for the
propagation of radial waves in discs over the years. The
most famous is that of Sievers in 1974 [3] where he
presents useful analytical expressions for the stress in a
constrained disc resulting from instantaneous and ramped
heating in a “top hat” profile (Fig. 1) represented by the
following expressions.

T ¼ T0 if 0 ≤ r ≤ r0 ð1Þ

T ¼ 0 if r0 ≤ r ≤ R ð2Þ

In 2000 Montanez and Sievers [1] presented new
validation of Sievers’ original work showing good agree-
ment between the hydro-code LS-Dyna and the expressions
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from 1974. One observation of the presented results is that
the peak stress predicted by the analytical solution does not
agree with the finite element modeling, the sharp peaks in
the analytical solution are put down to the discontinuity in
initial condition and these are apparently smeared out in the
numerical solution. Zheng et al. [4] published a solution for
the radial stress waves in a disc subject to a smooth initial
condition defined as follows and shown in Fig. 2.

T ¼ T0 if 0 ≤ r ≤ r0 − δ ð3Þ

T ¼ T0

2

�
1 − sin

π

2δ
ðr − r0Þ

�
if r0 − δ ≤ r ≤ r0 þ δ

ð4Þ
T ¼ 0 if r0 ≤ r ≤ R ð5Þ

We note their example results in significant stress spikes
similar to those shown by Sievers. Here we present an
analytical expression for the pressure in a beam window
following sudden heating by a Gaussian beam defined as
follows and shown in Fig. 3.

TðrÞ ¼ T0e−ðr
2=2σ2Þ ð6Þ

We are interested in a Gaussian heating profile as many
of the particle accelerator beams we work with are
Gaussian in nature, however it is easily seen that the
method presented can be used for other spatial heating
functions. We first assume that the total pressure induced
by the beam heating is comprised of a “quasistatic”
component and a transient inertial component as follows

Pðr; tÞ ¼ psðrÞ þ ptðr; tÞ ð7Þ
where Pðr; tÞ is the total pressure, psðrÞ is the quasistatic
component of pressure and ptðr; tÞ is the transient compo-
nent of pressure. We use some classical mechanics to derive
the quasistatic component resulting from the imposed
temperature profile. We refer to this as static as it is only
reduced by thermal conduction typically taking place
relatively slowly compared to the passage of radial waves.
We then present a solution to the one dimensional radial
wave equation as derived by Feynman [5] to obtain the
transient component of pressure in the beam window. A test
case is used to compare the final analytical expression with
results from the finite element code ANSYS with a view to
providing guidance for setting up FEA models of beam
induced pressure waves.

II. FORMULATION OF THE
ANALYTICAL EXPRESSION

We first determine the static pressure for the case of plane
stress, the equivalent result for plane strain is presented later.
Plane stress assumes no stress perpendicular to the radial
direction akin to a foil or beamwindow. Plane strain assumes
no axial deflection and is akin to an infinitely long cylinder,
i.e., the problem addressed by Zheng [4]. The following
plane stress expressions for radial stress, σr, and hoop stress,
σθ, [6] in a disc with temperature as a function of radius and
with no deflection at r ¼ R (i.e., constrained at the outer
radius) are used to determine the static pressure.

σr ¼ −Eα
�
1

r2

Z
r

0

TðrÞrdr þ ð1þ νÞ
ð1 − νÞ

1

R2

Z
R

0

TðrÞrdr
�

ð8Þ

σθ ¼ −Eα
�
− 1

r2

Z
r

0

TðrÞrdr þ ð1þ νÞ
ð1 − νÞ

1

R2

×
Z

R

0

TðrÞrdr þ TðrÞ
�

ð9Þ

Where E is the Young’s modulus, α is the thermal
expansion coefficient, ν is Poisson’s ratio and R is the
radius of the window. In the case of plane stress, pressure is
directly related to stress in the following way and is the
average of the two principal components (radial and hoop),
i.e.,

FIG. 2. Continuous initial condition as employed by Zheng
et al.

FIG. 3. Gaussian initial condition as used in the method
presented here.

FIG. 1. “Top hat” initial condition as employed by Sievers et al.
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P ¼ −
�
σr þ σθ

2

�
ð10Þ

We substitute the Gaussian temperature profile [Eq. (6)]
into Eqs. (8) and (9), then following integration of Eq. (10)
we arrive at Eq. (11) for the static pressure as a function of
radius.

psðrÞ ¼ EαT0

�ð1þ νÞ
ð1 − νÞ

σ2

R2
f1 − eð−R2=2σ2Þg þ 1

2
eð−r2=2σ2Þ

�
ð11Þ

Now addressing the transient component we start with
the radial wave equation as defined by Feynman

1

c2
∂2pt

∂t2 ¼ 1

r
∂pt

∂r þ ∂2pt

∂r2 ð12Þ

where pt is the transient component of pressure, and there
is no variation in pressure with angle and c is the speed of
sound in the material which for the plane stress problem is
calculated as follows with ρ representing density of the
window material [7].

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
ρð1 − ν2Þ

s
ð13Þ

The following initial condition is used

∂pt

∂t ðt ¼ 0Þ ¼ 0 ð14Þ

and in addition the Neumann boundary condition which
implies no displacement at r ¼ R i.e., the outer rim of the
window is constrained.

∂pt

∂r ðr ¼ RÞ ¼ 0 ð15Þ

According to Polyanin [8,9], the solution to Eq. (12) with
the given initial and boundary conditions can be repre-
sented with the following integral,

ptðr; tÞ ¼
∂
∂t

Z
R

0

ptðε; 0ÞGðr; ε; tÞdε ð16Þ

where G is a Green’s function defined in the following way
and ε is an additional spatial variable with the same bounds
as r, i.e., 0 < ε < R,

Gðr; ε; tÞ ¼ 2tε
R2

þ 2ε

cR

X∞
n¼1

1

λnJ20ðλnÞ
J0

�
λn

r
R

�

× J0

�
λn

ε

R

�
sin

�
λn

ct
R

�
ð17Þ

and λn represents the roots of the Bessel function of order 1,
i.e., J1ðλÞ ¼ 0. Noting that

∂
∂t

Z
R

0

ptðε; 0ÞGðr; ε; tÞdε ¼
Z

R

0

ptðε; 0Þ
∂
∂t Gðr; ε; tÞdε

ð18Þ

and also

∂
∂t Gðr; ε; tÞ ¼

2ε

R2
þ 2ε

R2

X∞
n¼1

1

J20ðλnÞ
J0

�
λn

r
R

�

× J0

�
λn

ε

R

�
cos

�
λn

ct
R

�
ð19Þ

Then substituting Eq. (19) back into Eq. (18) we have the
following general expression for any initial transient
pressure profile

ptðr; tÞ ¼
2r
R2

þ 2

R2

X∞
n¼1

1

J20ðλnÞ
J0

�
λn

r
R

�
cos

�
λn

ct
R

�

×
Z

R

0

rptðr; 0ÞJ0
�
λn

r
R

�
dr ð20Þ

Now we must turn our attention to the initial transient
pressure profile that results from constant volume heating.
We assume instantaneous heating of the window at t ¼ 0
such that the material has no time to expand during heating,
i.e., constant volume heating. This is a reasonable
assumption if the beam pulse duration is significantly shorter
than the characteristic wave propagation time. Instantaneous
heating results in a total pressure, P, that is purely the
pressure due to constant volume heating denoted here asPcv.
We then derive the transient component of pressure at t ¼ 0
using Eq. (7)

ptðr; t ¼ 0Þ ¼ PcvðrÞ − psðrÞ ð21Þ
where for the case of plane stress, it can be shown that
constant volume heating results in the following pressure as a
function of the temperature profile

PcvðrÞ ¼
EαTðrÞ
1 − ν

ð22Þ

Substituting Eqs. (11) and (22) into (21) we arrive at the
initial condition for the transient pressure resulting from
Gaussian heating.

ptðr; t ¼ 0Þ ¼ EαT0ð1þ νÞ
1 − ν

×

�
1

2
eð−r2=2σ2Þ − σ2

R2
f1 − eð−R2=2σ2Þg

�
ð23Þ

Applying this into Eq. (20) gives us the following
expression for the transient component of pressure in the
disc as a result of the instantaneous Gaussian heating
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ptðr; tÞ ¼
2

R2

EαT0ð1þ vÞ
1 − v

�X∞
n¼1

J0ðλn r
RÞ

J20ðλnÞ
cos

�
λn

ct
R

�

×
Z

R

0

r

�
1

2
eð−r2=2σ2Þ − σ2

R2
f1 − eð−R2=2σ2Þg

�

× J0

�
λn

r
R

�
dr

�
ð24Þ

We now have the two terms of Eq. (7) and so based on
our premise that the static and transient components of
pressure make up the total pressure we have derived an
analytical expression for the pressure in a beam window
following instantaneous Gaussian heating. Equation (24)
can be easily represented with a simple code to perform the
required summation and numerical integration. A stable
accurate solution is found with a modest number of terms.
At this point it is useful for the engineer of beam

windows to note the relationships between the calculated
pressure and stress. Examination of Eqs. (8) and (9) reveals
that radial and hoop stress are equal at r ¼ 0 and that at this
point P ¼ −σr. We also find that P is a maximum at r ¼ 0.
In other words the peak pressure occurring at the center of
the disc also signifies the peak radial stress in the disc.
Using the Von-Mises criteria for plane stress i.e., [6],

σVM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ2r þ σ2θ − σrσθÞ

q
ð25Þ

Then at r ¼ 0 (where σr ¼ σθ), Eq. (25) simplifies to

σVM ¼ jσrj ¼ jPj ð26Þ
For the case of plane strain we follow the same procedure

as above, except that sound speed, constant volume
pressure and static pressure must be calculated for the
case of no axial deflection. For brevity the derivation of
these terms is left to the reader.

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eð1 − νÞ
ρð1þ νÞð1 − 2νÞ

s
ð27Þ

PcvðrÞ ¼
EαTðrÞ
ð1 − 2νÞ ð28Þ

For the static pressure we again refer to classic mechan-
ics [6]. In plane strain the longitudinal stress component σz
is nonzero and so this time we have three components of
stress as follows

σr ¼ − αE
ð1 − νÞr2

�
r2

R2ð1 − 2νÞ
Z

R

0

TðrÞrdr þ
Z

r

0

TðrÞrdr
�

ð29Þ

σθ ¼ − αE
ð1 − νÞr2

�
r2

R2ð1 − 2νÞ
Z

R

0

TðrÞrdr

−
Z

r

0

TðrÞrdr þ TðrÞr2
�

ð30Þ

σz ¼ − αE
ð1 − νÞ

�
2ν

R2ð1 − 2νÞ
Z

R

0

TðrÞrdr þ TðrÞ
�

ð31Þ

All three principle components of stress must now be
considered in the relation between pressure and stress

ps ¼ − ðσr þ σθ þ σzÞ
3

ð32Þ

We substitute the Gaussian temperature profile shown in
Eq. (6) into Eqs. (29), (30) and (31). Following integration
of Eq. (32) we arrive at Eq. (33) for the static pressure as a
function of radius.

psðrÞ ¼
2EαT0

3ð1 − νÞ

×

�
σ2ð1þ νÞ
R2ð1 − 2νÞ f1 − eð−R2=2σ2Þg þ eð−r2=2σ2Þ

�
ð33Þ

Substituting Eqs. (33) and (28) into (21) we arrive at the
initial condition for the transient pressure resulting from
Gaussian heating.

ptðr; t ¼ 0Þ ¼ EαT0ð1þ νÞ
ð1 − νÞð1 − 2νÞ

×

�
1

3
eð−r2=2σ2Þ − 2σ2

3R2
f1 − eð−R2=2σ2Þg

�
ð34Þ

Equations (33) and (34) can be combined in the same
way as was done for the plane stress case in order to find the
total pressure.

III. COMPARISON WITH FINITE
ELEMENT ANALYSIS

We now consider a test case of a grade 5 titanium alloy
beam window with the following parameters

Window radius, R 0.05 m
Young’s modulus, E 114 GPa
Linear thermal expansion coefficient, α 8.6 × 10−6 K−1
Poisson’s ratio, ν 0.34
Density, ρ 4430 kg=m3

Gaussian temperature coefficient, T0 100 K
Gaussian sigma, σ 0.01 m

ANSYS Mechanical was used [10] to complete a finite
element analysis of the test case using plane elements with
the option for plane-stress or plane-strain set as required.
The finite element analysis uses an implicit solver and
assumes a linear elastic material model based on Hooke’s
law. Transient structural time integration is employed to
simulate the inertial effects. We note that in the following
comparisons the plotted pressures are normalized by
dividing by the initial pressure at r ¼ 0 as follows
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normalized pressure ¼ pressure
Pcvðr ¼ 0Þ ð35Þ

Figures 4, 5 and 6 show the normalized total pressure at
different radial positions demonstrating perfect agreement
between the ANSYS simulation and the analytical expres-
sion presented here. Figure 7 shows the Von-Mises stress
occurring in the window at r ¼ 0 as calculated by the
expressions presented here and from ANSYS. In order to

achieve this agreement with the ANSYS simulation the
courant number criteria must be respected i.e.,

δt <
δx
c
; ð36Þ

where δx is the size of a finite element cell and δt is the
maximum time step. In addition δxmust be small enough to
resolve the peaks of pressure. The width of the pressure

FIG. 4. Normalized total pressure at r ¼ 0 for the test case
assuming plane stress.

FIG. 5. Normalized total pressure at r ¼ σ for the test case
assuming plane stress.

FIG. 6. Normalized total pressure at r ¼ R for the test case
assuming plane stress.

FIG. 7. Von-Mises stress at r ¼ 0 for the test case assuming
plane stress.
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spikes depends on the sharpness of the initial temperature
profile. A good guideline for a Gaussian initial condition is
that

δx <
σ

5
ð37Þ

In order to capture the effect of instantaneous heating the
initial time step in the simulation, during which the
temperature rise occurs, must be sufficiently short.

Typically an initial time step that is 100 times shorter than
the characteristic expansion time of the component in
question will be sufficient, i.e.,

δt1 <
L

100c
ð38Þ

where δt1 is the initial time step and L is the characteristic
dimension. This is easily tested by comparing the pressure

FIG. 9. Pressure wave components at t ¼ 2 μs for the test case
assuming plane stress.

FIG. 8. Pressure wave components at t ¼ 0 for the test case
assuming plane stress.

FIG. 10. Pressure wave components at t ¼ 4 μs for the test case
assuming plane stress.

FIG. 11. Propagation of transient component of pressure for the
test case assuming plane stress.

T. R. DAVENNE and P. LOVERIDGE PHYS. REV. ACCEL. BEAMS 19, 093501 (2016)

093501-6



at the end of the first time step to Eq. (22) for plane stress or
(28) for plane strain.
To illustrate the hypothesis of pressure waves being

decomposable into two components each component is
plotted as a function of radius for several different times in
Figs. 8, 9, and 10. Figure 11 shows the propagation of
transient pressure resulting from Eq. (24). The final
comparison shows the difference between a plane strain
and plane stress model (Fig. 12). Again there is excellent
agreement with the analytical solutions. It can be noted that
the plane strain model exhibits higher pressure levels as a
result of the axial constraint and that the fundamental
oscillation frequency is higher due to the greater sound
speed [Eq. (27) compared to Eq. (13)].

IV. CONCLUSIONS

An analytical expression is formulated for the pressure
waves induced by instantaneous heating of a beam window.
The total pressure waves are shown to be comprised of a

static and transient component. The analytical solution is
shown to be bounded and stable. Solutions are presented
for a plane stress model representing a foil or window and a
plane strain model representing a long cylinder. Perfect
agreement between the analytical solution and an implicit
finite element method is achieved. Guidelines for achieving
accurate calculation of pressure waves with finite element
analysis are presented. These are principally that numerical
time steps must be small enough to capture the passage of a
wave as defined by the Courant number and that there must
be enough spatial discretization to resolve gradients in the
initial condition.
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