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Knowledge of the transverse four-dimensional beam rms parameters is essential for applications that
involve lattice elements that couple the two transverse degrees of freedom (planes). Of special interest is the
elimination of interplane correlations to reduce the projected emittances. A dedicated rotating system for
emittance measurements (ROSE) has been proposed, developed, and successfully commissioned to fully
determine the four-dimensional beam matrix. This device has been used at the high charge injector (HLI) at
GSI in a beam line which is composed of a skew quadrupole triplet, a normal quadrupole doublet, and
ROSE. Mathematical algorithms, measurements, and the analysis of errors and the decoupling capability
for ion beams of 83Kr13þ at 1.4 MeV=u are reported in this paper.

DOI: 10.1103/PhysRevAccelBeams.19.072802

I. INTRODUCTION

Emittance is an important figure of merit for propagation
of charged particle beams. It is defined as the amount of
phase space being occupied by the particle distribution to
quantify the beam quality and to match the following
optics. Precise knowledge from measurements of particle
distribution parameters is important for accelerator design
and for phase-space manipulation. However, most of the
published work is just on separated measurements of two-
dimensional x − x0 and y − y0 subphase spaces (planes)
[1–3]. For simplicity, correlations between the two planes,
i.e. x − y, x − y0, x0 − y, and x0 − y0 are often assumed as
zero. However, such interplane correlations may be pro-
duced by interplane coupling fields such as dipole fringes,
solenoids, and titled magnets [4] or just by beam losses.
Ion beams extracted from electron cyclotron resonance

(ECR) ion sources have a complex structure in the four-
dimensional phase space [5]. Distributions with equal
projected rms emittances are strongly correlated after
extraction [6–8]. Correlations increase the projected rms
emittances. Removing correlations reduces the effective
emittances without introduction of beam loss through
scraping for instance. In order to remove unknown corre-
lations, they must be quantified by measurements.
Accordingly, four-dimensional diagnostics has the major
task of allowing for elimination of interplane coupling.
For beam lines comprising just noncoupling elements as

upright quadrupoles, dipoles, and accelerating gaps, the
horizontal and vertical beam dynamics are decoupled. The
design of such beam lines can be accomplished ignoring

eventual interplane correlations in the beam as long as the
projected distribution parameters are known at the beam
line entrance. This convenience of ignoring correlations
cannot be further afforded, if the beam line includes
coupling elements as solenoids or skew quadrupoles for
instance. In those cases even the projected distribution
parameters along the beam line will depend on interplane
correlations at the entrance of the beam line [9].
Using standard slit and grid emittance measurement

devices [10,11] and multislit or screen devices [12] such
as the pepper-pot technique, the projected phase-space
distributions, i.e. the horizontal and vertical rms emittances,
can be measured. The slit determines the location of the
phase-space element. A subsequent grid measures the
angular distribution of the ions that passed the slit. By
moving the slit and recording the angular distribution at
each slit position, the projected phases-space distribution is
measured. The direction of movements of the slit and grid
determines the plane onto which the four-dimensional
distribution is projected. Interplane correlation matrix
elements cannot be measured directly using a slit and grid
configuration.
There is considerable work on measuring four-

dimensional distributions using pepper-pots [13–15] for
ion beams at energies below 150 keV=u, where the beam is
stopped by the pepper-potmask. However, thismethod is not
applicable at energies beyond 150 keV=u due to technical
reasons, i.e. doubtful readout by temperature-dependent
screens and fixed resolutions by holes and screens [16].
Four-dimensional emittance measurements were proposed
and conducted for instance in [17–21] at electron machines.
Other options based on a phase space tomography technique
have been developed to reconstruct the two-dimensional
phase space in [22] and the full four-dimensional phase space
in [23,24]. The combination of skew quadrupoles with a slit
and grid emittance measurement device has been applied
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successfully for high intensity uranium ions at an energy of
11.4 MeV=u at GSI [25]. This paper reports on a method
without skewquadrupoles that features reduced time (about a
factor of 3) needed to perform the measurements within
about one hour.
The paper starts with an introduction of the parameters

that quantify four-dimensional particle distributions.
Section III is on the method of a rotating system for
emittance measurements (ROSE); analytical calculation
and numerical analysis are elaborated comprehensively.
Section IV is on the commissioning method and software
for measuring and evaluating the full four-dimensional
beam matrix. Section V shows the capability of ROSE to
provide the input for successful elimination of interplane
coupling.

II. FOUR-DIMENSIONAL RMS QUANTITIES

Four-dimensional beam rms-emittance measurements
require determination of ten unique elements of the second
moments beam matrix. The 4 × 4 symmetric second
moments beam matrix C can be expressed as [26]

C ¼

2
666664
hxxi hxx0i hxyi hxy0i
hx0xi hx0x0i hx0yi hx0y0i
hyxi hyx0i hyyi hyy0i
hy0xi hy0x0i hy0yi hy0y0i

3
777775; ð1Þ

where x and y are the horizontal and vertical coordinates,
respectively, and x0 and y0 are their derivatives with respect
to the longitudinal coordinate.
Four of the matrix elements quantify the coupling. If at

least one of the elements of the off-diagonal submatrix is
nonzero, the beam is transversely coupled. Projected rms
emittances εx and εy are quantities which are used to
characterize the transverse beam quality in the laboratory
coordinate system and are invariant under linear uncoupled
(with respect to the laboratory coordinate system) sym-
plectic transformations. Projected rms emittances are the
rms phase space areas from projections of the particle
distribution onto the planes, and their values are equal
to the square roots of the determinants of the on-diagonal
2 × 2 submatrices, i.e. phase space area divided by π:

εμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hμμihμ0μ0i − hμμ0i2

q
; ð2Þ

where μ refers to either x or y. The dimensionless parameter
α relates to the μ − μ0 correlation and the β function refers
to the beam width. They are defined as

αμ ¼ −
hμμ0i
εμ

; βμ ¼
hμμi
εμ

: ð3Þ

The eigen emittances ε1 and ε2 are invariant under
coupled linear symplectic transformations provided by

solenoids or skew quadrupoles for instance [27]. None
of the projected emittances can be smaller than the smaller
of the two eigen emittances. The eigen emittances can be
expressed as [28]

ε1;2 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−tr½ðCJÞ2� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr2½ðCJÞ2� − 16jCj

qr
: ð4Þ

The square matrix J is the skew-symmetric matrix with
nonzero entries in the block diagonal off form and J is
defined as

J ≔

2
6664

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

3
7775: ð5Þ

The eigen emittances are equal to projected rms emit-
tances if and only if all interplane correlations are zero. If
the second moments beam matrix has correlations between
horizontal and vertical phase spaces [see Eq. (1)], the eigen
emittances and projected rms emittances are different. The
product of the eigen emittances cannot be larger than the
product of projected rms emittances. The four-dimensional
beam rms emittance is calculated as

ε4d ¼ ε1ε2 ¼
ffiffiffiffiffiffi
jCj

p
≤ εxεy: ð6Þ

The coupling parameter t is introduced to quantify
interplane coupling as

t ≔
εxεy
ε1ε2

− 1 ≥ 0; ð7Þ

and if t is equal to zero, there are no interplane correlations
and the projected rms emittances are equal to the eigen
emittances.

III. ROSE METHOD

ROSE has been developed to measure the full four-
dimensional transverse beam matrix of ion beams as shown
in Fig. 1. It is a slit and grid combination being installed
inside a rotatable vacuum chamber. In the slit and grid
system of ROSE the slit has an opening width of dslit ¼
0.2 mm and the step width is typically δμ ¼ 0.5 mm. Slit
and grid are separated by d ¼ 300 mm, the wire distance is
dwire ¼ 1.0 mm, and the intermediate step number for
moving the grid is n ¼ 4. The spacial and angular reso-
lution of the emittance measurements is accordingly

Δμ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdslitÞ2 þ ðδμÞ2

q
; ð8Þ

C. XIAO et al. PHYS. REV. ACCEL. BEAMS 19, 072802 (2016)

072802-2



Δμ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdwire
1þnÞ2 þ ðdslitÞ2

q
d

ð9Þ

determined to be 0.5 mm=0.9 mrad. The emittance meas-
urement unit can be rotated around the beam axis by a total
of 270° and the rotation can be done within 2 min. One
emittance measurement takes about 15 min. For rotation no

shutters need to be closed. The vacuum pressure increases
from few 10−8 mbar to few 10−7 mbar during rotation.
Afterward the pressure recovers within about 3 min. A
detailed description of the mechanical setup can be found
in [29].
ROSE has been installed at the high charge injector

(HLI) section [30], as it is fed by an ECR source that
provides correlated beams. It is installed as a mobile setup,
i.e. the corresponding chamber may be installed at many
locations along the versatile GSI beam lines. The complete
beam line consists of one skew quadrupole triplet and one
regular quadrupole doublet followed by the ROSE unit as
shown in Fig. 2.

A. Mathematical algorithms

The transport of the beam matrix from location i to
location f can be calculated as (see Fig. 3)

Cf ¼ MCiMT; ð10Þ

where M is the transport matrix between location i and
location f

M ¼

2
6664
m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

3
7775 ≔

�
Mxx Mxy

Myx Myy

�
: ð11Þ

As the ROSE beam line is without coupling elements
if the skew quadrupole triplet is switched off, the off-
diagonal submatrices of the transport matrices vanish, i.e.
Mxy ¼ Myx ¼ 0. The transportsMa orMb of single particle
coordinates from location i to location f using magnet
settings a or b are described by transfer matrices through

FIG. 1. Rotating system for emittance measurements: a single-
plane slit and grid emittance measurement device housed in a
chamber which can be rotated around the beam axis. The total
length of ROSE is 833 mm.

FIG. 2. Setup of the beam line with ROSE. The beam enters from the left.
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2
6664
x

x0

y

y0

3
7775
a;b

f

¼

2
666664
ma;b

11 ma;b
12 0 0

ma;b
21 ma;b

22 0 0

0 0 ma;b
33 ma;b

34

0 0 ma;b
43 ma;b

44 :

3
777775

2
6664
x

x0

y

y0

3
7775
i

; ð12Þ

from Eq. (12); the correlated beam second moments of
the off-diagonal submatrices at location f using magnet
settings a and b can be written as

hxyia;bf ¼ ma;b
11 m

a;b
33 hxyii þma;b

11 m
a;b
34 hxy0ii

þma;b
12 m

a;b
33 hx0yii þma;b

12 m
a;b
34 hx0y0ii; ð13Þ

hxy0ia;bf þhx0yia;bf ¼ðma;b
11 m

a;b
43 þma;b

21 m
a;b
33 Þhxyii

þðma;b
11 m

a;b
44 þma;b

21 m
a;b
34 Þhxy0ii

þðma;b
12 m

a;b
43 þma;b

22 m
a;b
33 Þhx0yii

þðma;b
12 m

a;b
44 þma;b

22 m
a;b
34 Þhx0y0ii; ð14Þ

hx0y0ia;bf ¼ ma;b
21 m

a;b
43 hxyii þma;b

21 m
a;b
44 hxy0ii

þma;b
22 m

a;b
43 hx0yii þma;b

22 m
a;b
44 hx0y0ii: ð15Þ

Rotating clockwise the emittance measurement unit by θ
is equivalent to rotating the beam by −θ around the beam
axis. After rotation, the new particle coordinates using
magnet settings a or b are transported by a simple rotation
matrix

2
6664
x

x0

y

y0

3
7775
a;b

θ

¼

2
6664

cosθ 0 sinθ 0

0 cosθ 0 sinθ

−sinθ 0 cosθ 0

0 −sinθ 0 cosθ

3
7775
2
6664
x

x0

y

y0

3
7775
a;b

f

: ð16Þ

According to Eq. (16) horizontal second moments after
rotation using magnet settings a and b are expressed as

hxxia;bθ ¼ cos2θhxxia;bf þ 2 sin θ cos θhxyia;bf

þ sin2θhyyia;bf ; ð17Þ

hxx0ia;bθ ¼ cos2θhxx0ia;bf þ sin θ cos θhxy0ia;bf

þ sin θ cos θhx0yia;bf þ sin2θhyy0ia;bf ; ð18Þ

hx0x0ia;bθ ¼ cos2θhx0x0ia;bf þ 2 sin θ cos θhx0y0ia;bf

þ sin2θhy0y0ia;bf : ð19Þ

All elements of the transport matrices Ma;b
xx and Ma;b

yy are
known from magnet settings. The second moments hxxia;bf ,

hxx0ia;bf , hx0x0ia;bf , hyyia;bf , hyy0ia;bf , and hy0y0ia;bf before

rotation and hxxia;bθ , hxx0ia;bθ , and hx0x0ia;bθ after rotation can
be measured. Combining Eq. (13) to Eq. (19), the solution
of the searched coupled matrix elements at location i can be
summarized to a set of linear equations8>>>>>>>>>>><
>>>>>>>>>>>:

Γ11hxyii þ Γ12hxy0ii þ Γ13hx0yii þ Γ14hx0y0ii ¼ Λ1

Γ21hxyii þ Γ22hxy0ii þ Γ23hx0yii þ Γ24hx0y0ii ¼ Λ2

Γ31hxyii þ Γ32hxy0ii þ Γ33hx0yii þ Γ34hx0y0ii ¼ Λ3

Γ41hxyii þ Γ42hxy0ii þ Γ43hx0yii þ Γ44hx0y0ii ¼ Λ4

Γ51hxyii þ Γ52hxy0ii þ Γ53hx0yii þ Γ54hx0y0ii ¼ Λ5

Γ61hxyii þ Γ62hxy0ii þ Γ63hx0yii þ Γ64hx0y0ii ¼ Λ6

ð20Þ

with

Γ11 ¼ ma
11m

a
33; Γ12 ¼ ma

11m
a
34;

Γ13 ¼ ma
12m

a
33; Γ14 ¼ ma

12m
a
34; ð21Þ

Γ21 ¼ ma
11m

a
43 þma

21m
a
33; Γ22 ¼ ma

11m
a
44 þma

21m
a
34;

Γ23 ¼ ma
12m

a
43 þma

22m
a
33; Γ24 ¼ ma

12m
a
44 þma

22m
a
34;

ð22Þ

Γ31 ¼ ma
21m

a
43; Γ32 ¼ ma

21m
a
44;

Γ33 ¼ ma
22m

a
43; Γ34 ¼ ma

22m
a
44; ð23Þ

and with the same procedure for setting b

Γ41 ¼ mb
11m

b
33; Γ42 ¼ mb

11m
b
34;

Γ43 ¼ mb
12m

b
33; Γ44 ¼ mb

12m
b
34; ð24Þ

Γ51 ¼ mb
11m

b
43 þmb

21m
b
33; Γ52 ¼ mb

11m
b
44 þmb

21m
b
34;

Γ53 ¼ mb
12m

b
43 þmb

22m
b
33; Γ54 ¼ mb

12m
b
44 þmb

22m
b
34;

ð25Þ

FIG. 3. Sketch of the ROSE beam line with a rotatable slit/grid
emittance scanner. All beam second moments are measured at
location f. Applying the inverted transfer matrix they are trans-
ported backwards to location i of the initial and constant beam
matrix Ci. Full beam transmission between location i and
location f is required.
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Γ61 ¼ mb
21m

b
43; Γ62 ¼ mb

21m
b
44;

Γ63 ¼ mb
22m

b
43; Γ64 ¼ mb

22m
b
44; ð26Þ

and finally

Λ1¼hxyiaf; Λ2¼hxy0iafþhx0yiaf; Λ3 ¼hx0y0iaf; ð27Þ

Λ4¼hxyibf; Λ5¼hxy0ibfþhx0yibf; Λ6 ¼hx0y0ibf: ð28Þ

Our goal is to determine the unknown coefficients hxyii,
hxy0ii, hx0yii, and hx0y0ii such that the linear model is a best
fit to the observed data Λ1;Λ2;…Λ6. Consider a system of
n ¼ 6 linear equations with k ¼ 4 variables [see Eq. (20)]
being an overdetermined linear system

2
6666666664

Γ11 Γ12 Γ13 Γ14

Γ21 Γ22 Γ23 Γ24

Γ31 Γ32 Γ33 Γ34

Γ41 Γ42 Γ43 Γ44

Γ51 Γ52 Γ53 Γ54

Γ61 Γ62 Γ63 Γ64

3
7777777775

2
6664

hxyii
hxy0ii
hx0yii
hx0y0ii

3
7775 ¼

2
6666666664

Λ1

Λ2

Λ3

Λ4

Λ5

Λ6

3
7777777775
: ð29Þ

A system of equations is considered overdetermined if
there are more equations than unknowns. The method of
ordinary least squares can be used to find an approximate
solution to overdetermined systems and the solution of
Eq. (29) can be written with the normal equations

2
6664

hxyii
hxy0ii
hx0yii
hx0y0ii

3
7775 ¼ ðΓTΓÞ−1ΓTΛ; ð30Þ

where

Γ ¼

2
6666666664

Γ11 Γ12 Γ13 Γ14

Γ21 Γ22 Γ23 Γ24

Γ31 Γ32 Γ33 Γ34

Γ41 Γ42 Γ43 Γ44

Γ51 Γ52 Γ53 Γ54

Γ61 Γ62 Γ63 Γ64

3
7777777775
; Λ ¼

2
6666666664

Λ1

Λ2

Λ3

Λ4

Λ5

Λ6

3
7777777775
; ð31Þ

provided ðΓTΓÞ−1 exists (the k ¼ 4 columns of Γ are
linearly independent). With this formula an approximate
solution is found if no exact solution exists, and it gives an
exact solution if one does exist.

B. Measurement procedure

Projected rms-emittance measurements can be per-
formed at various angles, i.e. 0°, 90°, and Θ° (any angle
which is not equivalent to 0° or 90°) to reconstruct the full
four-dimensional beam matrix Ci. Rotation by 0°=90° will
just measure the usual uncoupled second moments.
Minimum of four, but more reliable six measurements is
sufficient to measure the complete four-dimensional beam
matrix: (i) measurements at θ ¼ 0° with optics a (and b).
(ii) measurements at θ ¼ 90° with optics a (and b).
(iii) measurements at θ ¼ Θ° with optics a and b.
If just four measurements are applied to evaluate the full

beam matrix at location i, the uncoupled second moments
for setting b at location f, i.e. hxxibf, hxx0ibf, and hx0x0ibf are
calculated from the final uncoupled second moments for
setting a, i.e. hxxiaf, hxx0iaf, and hx0x0iaf using the transport

matrices Ma
xx and Mb

xx.
The four measurements (projected rms emittances and

Twiss parameters) and their deliverables are as follows:
(i) θ ¼ 0°, magnet setting a delivers hxxiaf, hxx0iaf, and
hx0x0iaf. (ii) θ ¼ 90°, magnet setting a delivers hyyiaf,
hyy0iaf, and hy0y0iaf. (iii) θ ¼ Θ°, magnet setting a delivers
hxxiaθ , hxx0iaθ , and hx0x0iaθ . (iv) θ ¼ Θ°, magnet setting b
delivers hxxibθ , hxx0ibθ , and hx0x0ibθ .
From step (i) the uncorrelated second moments hxxii,

hxx0ii, and hx0x0ii are obtained at location i by simple back
transformation through inversion of Eq. (12). From step (ii)
the uncorrelated beam moments hyyii, hyy0ii, and hy0y0ii
are obtained at location i in the same way. Steps (iii) and
(iv) deliver hxyia;bf , hxy0ia;bf þ hx0yia;bf , and hx0y0ia;bf at
location f [Eq. (13) to Eq. (15)]. Finally, Eq. (30) deter-
mines the correlated second moments hxyii, hxy0ii, hx0yii,
and hx0y0ii at location i. The four-dimensional second
moments beam matrix is then finally reconstructed at
location i from four measurements.
If six measurements are applied, the uncoupled second

moments for setting b at location f are measured directly.

C. Minimizing the measurement errors

The vector Λ [see Eq. (30)] is sensitive to the emittance
measurements at location f. During emittance measure-
ments, finite grid bin resolution and background noise have
influence on the measured second moments. The typical
error of directly measured second moments is about�10%.
These errors enter into the inversion of Eq. (30).
In general a nonsquare matrix Γ has no inverse in the

usual sense. But if Γ has full rank, a pseudoinverse can be
defined as [31]

Γ† ¼ ðΓTΓÞ−1ΓT ð32Þ

and the condition number of this overdetermined linear
system is defined as
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κðΓÞ ≔ ∥Γ∥2∥Γ†∥2; ð33Þ

being larger than or equal to 1.0. The Frobenius norm, or
the Hilbert-Schmidt norm of Γ and Γ† are defined as

∥Γ∥2 ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Xk
j¼1

ðΓi;jÞ2
vuut ; ∥Γ†∥2 ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
i¼1

Xn
j¼1

ðΓ†
i;jÞ2

vuut :

ð34Þ

The condition number associated with the linear equa-
tions [see Eq. (29)] is a measure for how well conditioned
the matrix is. If the condition number is large, even a small
error in emittance measurements may lead to radically
different results for the beam coupling parameter evalua-
tions. On the other hand, if the condition number is small
the error in evaluation will not exceed notably the error in
emittance measurements. The numerical stability (degen-
eration of the system) is better if the condition number is
small. Well-conditioned matrices have condition numbers
which are closed to 1.0.
We summarize that in order to obtain reliable evaluation

results a four-dimensional emittance measurement needs:
(i) one reference emittance measurement with 100% trans-
mission efficiency between location i and location f to
obtain projected beam parameters at location i (on-diagonal
section of beam matrix of Ci). (ii) all quadrupoles varied
numerically in a brute-force method in order to check each
setting for full transmission efficiency from location i to
location f, and for reasonable beam sizes on slit and grid
(2 mm < σrms < 5 mm in our case). In the plane spanned
by the two quadrupole gradients these settings form finite
areas. We refer to these areas as safety islands in the
following. (iii) All settings from safety islands are com-
bined to determine combinations of two settings a and b
corresponding to a low condition number.

IV. MEASUREMENTS AND EVALUATIONS

In a first measurement the projected rms emittances and
Twiss parameters at the exit of the ROSE beam line were
measured as listed in Table I. A beam of 83Kr13þ at
1.4 MeV=u has been used, the beam intensity through
the ROSE was about 20 eμA, and space-charge effects can
be neglected in this case. The skew triplet and normal
doublet were switched off and the transmission through the

setup was 100%. Uncoupled second moments at location i
were obtained from 0°=90° measurements at location f to
reconstruct the on-diagonal section of Ci. In order to match
reasonable beam sizes on the slit and gird locations and to
assure full transmission, the strengths of Q1 and Q2 were
varied numerically to check all available doublet settings, i.e.
the safety islands including all reasonable doublet settings
were defined. Combining two settings of the doublet (Q1 and
Q2, Q1

0 and Q0
2) from the safety islands, the corresponding

condition number of the matrix Γ was calculated using
Eq. (33). Since there are N doublet settings inside the safety
islands, N2 combinations of two doublet settings were
obtained. Finally, the combination of doublet settings a
and b with minimum condition number κðΓÞ is applied.
The doublet setting a: Q1=Q2 ¼ 13.2= − 12.6 T=m and

setting b: Q10=Q20 ¼ 9.4= − 10.2 T=m were selected as
they provide the condition number 13.2. The condition
number is determined by the transfer matrix from position i
to position f, i.e. it does not depend on the number of
measurements [four or six, see Eq. (33)]. The safety islands
and the selected doublet settings are plotted in Fig. 4.

A. Beam with low coupling

Measurements at 0°, 90°, and −30° using settings a and b
with the skew triplet being switched off were done. The

TABLE I. Projected rms emittances and Twiss parameters
measured at ROSE for 83Kr13þ at 1.4 MeV=u (reference mea-
surements).

Rotation angle αrms βrms [m/rad] εrms [mm mrad]

0° −2.92 12.92 2.03
90° −1.63 10.52 2.43

FIG. 4. Safety islands (blue dots) and the selected doublet
settings (red dots) applied during the measurements.

TABLE II. Measured projected rms emittances and Twiss
parameters at the exit of the ROSE beam line with the skew
triplet being switched off.

Rotation angle Setting αrms βrms [m/rad] εrms [mm mrad]

0° a 0.25 3.97 1.93
0° b −0.01 4.53 1.93
90° a −1.84 3.97 2.45
90° b −1.06 6.63 2.81
−30° a −0.41 3.78 2.27
−30° b −0.57 4.76 2.16
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measured Twiss parameters together with the projected rms
emittances are listed in Table II. Two evaluations using
four or six measurements were done independently for
comparison.
The beam second moments matrix Ĉð4Þ applying four

measurements at location i with skews off is calculated as
(in units of mm and mrad)

Ĉð4Þ ¼

2
6664

4.79 −2.54 −0.14 −0.17
−2.54 2.12 −0.29 −0.22
−0.14 −0.29 5.02 0.02

−0.17 −0.22 0.02 1.20

3
7775: ð35Þ

The beam second moments matrix Ĉð6Þ applying six
measurements at location i with skews off is calculated as
(in units of mm and mrad)

Ĉð6Þ ¼

2
6664

4.79 −2.54 −0.10 −0.44
−2.54 2.12 −0.25 −0.12
−0.10 −0.25 5.02 0.02

−0.44 −0.12 0.02 1.20

3
7775: ð36Þ

Evaluation of the two eigen emittances of Ĉð4Þ and Ĉð6Þ
reveals ε1 ¼ 2.63 and 2.63 mm mrad and ε2 ¼ 1.66 and
1.61 mm mrad. The corresponding coupling parameters t
are 0.08 and 0.11. Both evaluations produce similar eigen
emittances and coupling parameters. The rms ellipses of the
matrices Ĉð4Þ and Ĉð6Þ in the projections are shown
in Fig. 5.

B. Beam with large coupling

As no significant initial correlations were found to be
present in the HLI beam, the skew triplet was switched on
in order to create correlation. Measurements were done at
0°, 90°, and 30° using settings a and b. The Twiss
parameters together with the projected rms emittances
are listed in Table III.
The beam second moments matrix ~Cð4Þ at location i

applying four measurements with skews on is calculated as
(in units of mm and mrad)

~Cð4Þ ¼

2
6664

8.57 −4.34 −3.28 −1.10
−4.34 3.35 −0.74 1.52

−3.28 −0.74 11.20 −3.05
−1.10 1.52 −3.05 1.87

3
7775: ð37Þ

The beam second moments matrix ~Cð6Þ at location i
applying six measurements with skews on is calculated as
(in units of mm and mrad)

~Cð6Þ ¼

2
6664

8.57 −4.34 −3.83 −1.15
−4.34 3.35 −0.54 1.52

−3.83 −0.54 11.20 −3.05
−1.15 1.52 −3.05 1.87

3
7775: ð38Þ

Evaluation of the two eigen emittances of ~Cð4Þ and ~Cð6Þ
reveals ε1 ¼ 2.40 and 2.47 mm mrad and ε2 ¼ 2.04 and

FIG. 5. Projected rms ellipses from measurements applying
four or six measurements with the skew triplet being switched off.
Red and blue ellipses indicate the beam matrices Ĉð4Þ and Ĉð6Þ.
The projected rms emittances and the Twiss parameters are
indicated. The two matrices produce almost identical rms ellipses
and feature similar eigen emittances and coupling parameters.

TABLE III. Measured projected rms-emittances and Twiss
parameters at the exit of the ROSE beam line with the skew
triplet being switched on.

Rotation angle Setting αrms βrms [m/rad] εrms [mm mrad]

0° b −0.14 4.61 3.15
0° a 0.10 3.95 3.13
90° b −2.45 8.79 3.41
90° a −2.69 7.35 3.33
30° b −0.55 2.25 3.20
30° a −0.80 2.68 4.67
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1.58 mm mrad. The corresponding coupling parameters t
are 1.19 and 1.74. The beam is significantly coupled.
Comparing the beam matrices ~Cð4Þ and ~Cð6Þ, the differ-
ence between their larger eigen emittances is small but the
smaller eigen emittances are different. The projected rms
ellipses of these matrices are shown in Fig. 6. According to
the rms ellipses in the projections, the rms ellipses look
very similar but feature different eigen emittances and
coupling parameters.

C. Error analysis of couplings and eigen emittances

For emittance measurement results of ROSE (slit and
grid method), finite grid bin resolution and background
noise had influence on measured second moments.
Measured second moments on the projected rms emittance
had a typical maximum error of approximately �10%. In
order to evaluate the errors mentioned above, we use a
statistical method in which the error values of each
measured second moments are normally generated within
given maximum values (three times of standard deviation is

equal to the maximum error: �10%). The influences of
these errors on the final coupled second moments applying
four and six measurements are calculated and the corre-
sponding frequency accounts are shown in Figs. 7 and 8
together with Gaussian fits. In statistics, a frequency count
is a measure of the number of times that an event occurs.
The relative frequency (or empirical probability) of an
event refers to the absolute frequency normalized to the
total number of events

f ¼ n
N
; ð39Þ

where the parameters n and N are defined as subgroup and
total frequency count. All the relative frequencies add up
to 100%.
Comparison of the coupled second moments with errors,

Figs. 7 and 8, reveals that the mean coupled second
moments are practically equal [Eqs. (35) to (38)] to the
measured ones. The corresponding projected rms emittan-
ces and Twiss parameters with errors have been analyzed as
well and are listed in Appendix A. The influence of these
errors on the eigen emittances applying four and six
measurements is calculated and the corresponding fre-
quency accounts are shown in Figs. 9 and 10.
Comparison of the eigen emittances with and without
errors reveals that the rms error span covers the values
without errors if the beam is almost uncoupled; see Fig. 9.
If the beam is strong correlated, see Fig. 10, the rms error
span still covers the values without errors for three of the
four eigen emittances.
The larger uncertainty on the measured eigen emittances

for a beam inhabiting considerable correlations is already
known from conventional rms-emittance measurements in
one single plane (see Appendix B). The uncertainty of the
measured single plane emittance is larger if the beam is
strongly convergent or divergent, i.e. if it is correlated. This is
just from the fact that the final observable, i.e. the emittance,
is calculated from a difference [see Eq. (2)] between
measured quantities. Differences are much more prone to
errors from their constituents as sums or products. This
sensitivity known from single-plane emittance measure-
ments occurs in four-dimensional measurements as well,
as the eigen emittances, especially ε2, are also calculated
from differences of measured quantities [Eq. (4)]. Therefore
away to reduce the error on themeasured eigen emittances is
to reduce the beam correlations prior to the measurements.
This method has been applied successfully for single-plane
measurements. In order to apply it to four-dimensional
emittance measurement it needs to be demonstrated that
the measured data are sufficiently accurate to perform this
reduction of correlations.

V. DECOUPLING PROSPECT ANALYSIS

Any arbitrary beam line including at least three inter-
plane coupling elements may serve to remove all interplane

FIG. 6. Projected rms ellipses from measurements applying
four or six measurements with the skew triplet being switched on.
Red and blue ellipses indicate the beam matrices ~Cð4Þ and ~Cð6Þ.
The projected rms emittances and the Twiss parameters are
indicated. According to the rms ellipses in the projections, the
rms ellipses look very similar but feature different eigen emit-
tances and coupling parameters.
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correlations. Here a beam line composed of two normal
triplets which are separated by a skew triplet is chosen. If
this beam line is set to decouple the beam matrix ~Cð4Þ
calculated from four measurements of the large coupling
case, the corresponding decoupling transport matrix Rð4Þ is
determined from the required gradients as (in units of mm
and mrad)

Rð4Þ ¼

2
6664
−1.0739 −2.5538 −0.3601 −0.8825
0.5100 0.4121 0.3255 0.4084

−0.4128 −1.8553 −0.1854 2.1513

0.1740 0.4424 −0.3239 −0.8710

3
7775;

ð40Þ
and the decoupled second moments matrix gets

FIG. 7. Relative frequencies of the coupled second moments with skews off, the upper and lower pictures indicate the results with
errors applying four and six measurements, respectively. Blue columns indicate the coupled second moments with errors and red
solid lines indicate fits using Gaussian functions. The modified coupled second moments are evaluated as hxyi¼
−0.14�0.14=−0.10�0.14mm2, hxy0i ¼ −0.17� 0.08= − 0.44� 0.08 mmmrad, hx0yi ¼ −0.29� 0.15= − 0.25� 0.15 mmmrad,
and hx0y0i ¼ −0.22� 0.06= − 0.12� 0.06 mrad2.

FIG. 8. Relative frequencies of the coupled second moments with skews on, the upper and lower pictures indicate the results with errors
applying four and six measurements. Blue columns indicate the coupled second moments with errors and red solid lines indicate fits using
Gaussian functions. The modified coupled second moments are evaluated as hxyi¼−3.28�0.39=−3.83�0.38mm2, hxy0i ¼
−1.10�0.13=−1.15�0.13mmmrad, hx0yi¼−0.74�0.24=−0.54�0.24mmmrad, and hx0y0i¼−1.52�0.07=−1.52�0.07mrad2.
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~Cdð4Þ ¼ Rð4Þ ~Cð4ÞRð4ÞT

¼

2
6664

9.80 0.00 −0.17 0.04

0.00 0.43 −0.04 −0.01
−0.17 −0.04 6.62 0.00

0.04 −0.01 0.00 0.86

3
7775: ð41Þ

In the following this transfer matrix Rð4Þ is applied to the
beam matrix ~Cð6Þ

~Cdð6Þ ¼ Rð4Þ ~Cð6ÞRð4ÞT

¼

2
6664

9.62 0.15 −0.03 −0.03
0.15 0.27 −0.09 0.08

−0.03 −0.09 6.78 0.00

−0.03 0.08 0.00 0.89

3
7775: ð42Þ

The coupling parameter t of beam matrices ~Cdð4Þ and
~Cdð6Þ are evaluated to be 6.3 × 10−4 and 1.4 × 10−2, i.e.
the beam is practically decoupled. The decoupling transfer
matrix Rð4Þ, constructed from four measurements will
decouple the case from six measurements. The decoupling
beam line is sensitive to the rms ellipses in the different
projections. It is not sensitive to their eigen emittances and
coupling parameters.
If the measurement errors are considered, the coupling

parameters before and after the decoupling beam line using
identical transfer matrix Rð4Þ are evaluated and shown
in Fig. 11.

FIG. 9. Relative frequencies of the eigen emittances with skews
off. The upper and lower pictures indicate the results applying
four and six measurements, respectively. Red and blue columns
indicate the eigen emittances and blue and red solid lines indicate
fits using Gaussian functions. Black dashed lines indicate the
measured eigen emittances without errors, and black solid lines
indicate the rms error spans. Applying error analysis, the eigen
emittances are ε1 ¼ 2.64� 0.27=2.64� 0.27 mmmrad and
ε2 ¼ 1.65� 0.14=1.61� 0.14 mmmrad.

FIG. 10. Relative frequencies of the eigen emittances with
skews on. The upper and lower pictures indicate the results
applying four and six measurements, respectively. Red and blue
columns indicate the eigen emittances and blue and red solid lines
indicate fits using Gaussian functions. Black dashed lines indicate
the measured eigen emittances without errors, and black solid
lines indicate the rms error spans. Applying error analysis, the
eigen-emittances are ε1 ¼ 2.43� 0.19=2.53� 0.20 mmmrad
and ε2 ¼ 2.04� 0.17=1.98� 0.22 mmmrad.

FIG. 11. Relative frequencies of the coupling parameters. The
upper and lower pictures indicate the results applying Eq. (41) and
Eq. (42). Red and blue columns indicate the values before and after
decoupling and blue and red solid lines indicate fits usingGaussian
functions.Applying the identical transfermatrixRð4Þ, the coupling
parameters are reduced from t ¼ 0.94� 0.21=1.06� 0.26 to
t ¼ 0.05� 0.06=0.05� 0.05.

C. XIAO et al. PHYS. REV. ACCEL. BEAMS 19, 072802 (2016)

072802-10



After decoupling the beam line, most of the coupling
parameters of decoupled beam matrices ~Cdð4Þ and ~Cdð6Þ
are smaller than t ¼ 0.1, i.e. the beams are practical
decoupled. Accordingly, even for beams being consider-
ably coupled, just four measurements are required to
determine the four-dimensional beam parameters with
sufficient precision to allow for elimination of all interplane
correlations by an appropriate beam line.

VI. CONCLUSION

A new method using an rotatable slit and grid emittance
measurement device called ROSE has been developed and
commissioned to measure the four-dimensional second
order beam matrix. It will allow precise and mobile
four-dimensional emittance measurements. This unique
setup works with high reliability. During ROSE commis-
sioning it was found that three of the parameters extracted
from the four-dimensional beam matrix (eigen emittance
ε1;2 and the t parameter) are quite sensitive even to very
small errors in the measurements, especially for notably
correlated beams t > 1. Despite careful choice of the optics
reducing this sensitivity, fluctuations in ε1;2 and t were
observed for a beam with considerable correlation. This
observation confirms results from earlier single-plane
emittance measurements, that featured large errors in case
the beam was correlated. However, ROSE provides as
major deliverable the optics to fully decouple a correlated
beam. This optics is quite insensitive to the exact value of

ε1;2 and t as it just depends on the second moments. The
latter can be measured with sufficient precision. ROSE
therefore provides the input for advanced coupled beam
dynamics methods as the four-dimensional beam envelope
model [32–36], for instance.
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APPENDIX A: MEASURED PROJECTED
RMS EMITTANCES AND TWISS PARAMETERS

WITH ERRORS

The corresponding projected rms emittances and Twiss
parameters with errors (mean �σ) at the entrance to the
ROSE beam line are listed in Table IV.

APPENDIX B: RMS EMMITTANCE ERROR

Equation (2) states

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hxxihx0x0i − hxx0i2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hxxihx0x0i
1þ α2

s
ðB1Þ

and since second moments hxxi, hxx0i, and hx0x0i are
independent, the total error of the measured emittance δε
is written as

δε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ∂ε
∂hxxi δhxxi

�
2

þ
� ∂ε
∂hx0x0i δhx

0x0i
�

2

þ
� ∂ε
∂hxx0i δhxx

0i
�

2

s
; ðB2Þ

where δhxxi, δhxx0i, and δhx0x0i are the errors of the measured second moments. Accordingly,

TABLE IV. Projected rms emittances and Twiss parameters at the entrance of the ROSE beam line with errors. For x − x0, y − y0,
x − y0, and y − x0 phase spaces are in units of mmmrad, 1, and m. For x − y phase space is in units of mmmm, 1, and 1. For x0 − y0 phase
space is in units of mrad mrad, 1, and 1.

Parameters Skew triplet Measurements x − x0 y − y0 x − y x0 − y0 x − y0 x0 − y

εrms 1.93� 0.05 2.46� 0.37 4.90� 0.10 1.59� 0.25 2.40� 0.36 3.25� 0.07
αrms Off Four 1.32� 0.04 −0.01� 0.05 0.03� 0.03 0.14� 0.04 0.07� 0.03 0.09� 0.05
βrms 2.48� 0.04 2.01� 0.30 0.98� 0.02 1.32� 0.18 1.96� 0.27 1.55� 0.03
εrms 1.93� 0.05 2.46� 0.37 4.90� 0.10 1.60� 0.25 2.37� 0.37 3.25� 0.07
αrms Off Six 1.32� 0.04 −0.01� 0.05 0.02� 0.03 0.08� 0.04 0.18� 0.04 0.08� 0.05
βrms 2.48� 0.04 2.01� 0.28 0.98� 0.02 1.31� 0.18 1.99� 0.28 1.54� 0.03
εrms 3.15� 0.08 3.66� 0.65 9.55� 0.84 1.99� 0.04 3.86� 0.07 6.28� 0.50
αrms On Four 1.38� 0.03 0.80� 0.20 0.34� 0.05 −0.77� 0.03 0.28� 0.03 0.18� 0.04
βrms 2.72� 0.02 3.27� 0.19 0.89� 0.08 1.69� 0.05 2.22� 0.04 1.90� 0.15
εrms 3.15� 0.08 3.76� 0.57 9.49� 0.78 1.99� 0.04 3.85� 0.07 6.38� 0.46
αrms On Six 1.38� 0.03 0.77� 0.17 0.40� 0.05 −0.77� 0.03 0.29� 0.03 0.08� 0.04
βrms 2.72� 0.02 3.25� 0.19 0.90� 0.08 1.69� 0.05 2.23� 0.04 1.92� 0.14
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δε

ε
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þα2

hxxihx0x0i

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þα2

β εδhxxiÞ2þðβεδhx0x0iÞ2þ4ðαεδhxx0iÞ2
q

2ε
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þα2

β δhxxiÞ2þðβδhx0x0iÞ2þ4ðαδhxx0iÞ2
q

2ε
: ðB3Þ

Large α will cause large δε=ε for emittance measurements. In turn δε=ε is minimized for α ¼ 0, i.e. for an
uncoupled beam.
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