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We present a detailed quantitative description of the recently proposed “slingshot effect.” Namely, we
determine a broad range of conditions under which the impact of a very short and intense laser pulse
normally onto a low-density plasma (or matter locally completely ionized into a plasma by the pulse)
causes the expulsion of a bunch of surface electrons in the direction opposite to the one of propagation of
the pulse, and the detailed, ready-for-experiments features of the expelled electrons (energy spectrum,
collimation, etc). The effect is due to the combined actions of the ponderomotive force and the huge
longitudinal field arising from charge separation. Our predictions are based on estimating 3D corrections to
a simple, yet powerful plane 2-fluid magnetohydrodynamic (MHD) model where the equations to be solved
are reduced to a system of Hamilton equations in one dimension (or a collection of) which become
autonomous after the pulse has overcome the electrons. Experimental tests seem to be at hand. If confirmed
by the latter, the effect would provide a new extraction and acceleration mechanism for electrons,
alternative to traditional radio-frequency-based or Laser-Wake-Field ones.
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I. INTRODUCTION AND SETUP

Laser-driven plasma-based acceleration (LPA) mecha-
nisms were first conceived by Tajima and Dawson in 1979
[1] and have been intensively studied since then. In
particular, after the rapid development [2,3] of chirped
pulse amplification laser technology—making available
compact sources of intense, high-power, ultrashort laser
pulses—the laser wake field acceleration (LWFA) mecha-
nism [1,4,5] allows us to generate extremely high accel-
eration gradients (>1 GV=cm) by plasma waves involving
huge charge density variations. Since 2004 experiments
have shown that LWFA in the so-called bubble (or blowout)
regime can produce electron bunches of high quality (i.e.
very good collimation and small energy spread), energies of
up to hundreds of MeVs [6–8] or more recently even
GeVs [9,10]. This allows a revolution in acceleration
techniques of charged particles, with a host of potential
applications in research (particle physics, materials science,
structural biology, etc.) as well as applications in medicine,
optycs, etc.
In the LWFA and its variations the laser pulse traveling in

the plasma leaves a wakefield of plasma waves behind; a
bunch of electrons (either externally [11] or self-injected
[12]) can be accelerated “surfing” one of these plasma

waves and exit the plasma sample just behind the pulse, in
the same direction of propagation of the latter (forward
expulsion). In Ref. [13] a new LPA mechanism, named the
slingshot effect, has been proposed, in which a bunch of
electrons are expected to be accelerated and expelled
backwards from a low-density plasma sample shortly after
the impact of a suitable ultrashort and ultraintense laser
pulse in the form of a pancake normally onto the plasma
(see Fig. 1). The surface electrons (i.e. plasma electrons in a
thin layer just beyond the vacuum-plasma interface) first
are all displaced forward (with respect to the ions) by the
ponderomotive force Fp ≔ h−eðvc × BÞzi generated by the
pulse, leaving a layer of ions completely depleted of
electrons (here hi is the average over a period of the laser
carrier wave, E, B are the electric and magnetic fields, v is
the electron velocity, c is the speed of light, ẑ is the
direction of propagation of the laser pulse); Fp is positive
(negative) while the modulating amplitude ϵs of the pulse
respectively grows (decreases). These electrons are then
pulled back by the longitudinal electric force Fz

e ¼ −eEz

exerted by the ions and the other electrons, and leave the
plasma. (In the meantime, the pulse proceeds deeper into
the plasma, generating a wakefield.) Tuning the electron
density in the range where the plasma oscillation period TH
[14] is about twice the pulse duration τ, we can make these
electrons invert their motion when they are reached by the
maximum of ϵs, so that the negative part of Fp (due to the
subsequent decrease of ϵs) adds to Fz

e in accelerating them
backwards; thus the total work W ¼ R

τ
0 dtFphvzi done by

the ponderomotive force is maximal [15]. Provided the
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laser spot size R is sufficiently small a significant part of the
expelled electrons will have enough energy to win the
attraction by ions and escape to infinity.
Very short τ’s and huge nonlinearities make approxima-

tion schemes based on Fourier analysis and related methods
(slowly varying amplitude approximation, frequency-
dependent refractive indices,…) inconvenient. On the
contrary, in the relevant space-time region a MHD descrip-
tion of the impact is self-consistent, simple and predictive
(collisions are negligible, and recourse to kinetic theory is
not needed). Here we develop and improve the 2-fluid
MHD approach introduced in [13,16] and apply it to
determine a broad range of conditions enabling the effect,
as well as detailed quantitative predictions about it (a brief
summary is given in [17,18]). In section II we study the
plane problem (R ¼ ∞) and show that for sufficiently low
density and small times (after the impact) we can neglect
the radiative corrections [backreaction of the plasma on the
electromagnetic (EM) field (3)] and determine the motion
of the surface electrons in the bulk by (numerically) solving
a single system of two coupled first order ordinary differ-
ential equations of Hamiltonian form, if the initial densityen0 is step-shaped, or a collection of such systems, other-
wise; the role of “time” is played by the lightlike coordinate
ξ ¼ ct − z. The rough model of [13] considered only step-
shaped en0 and was based on neglecting Fz

e during the
forward motion, Fp during the backward motion of the
electrons; the estimates could be considered reliable only
for very low, unrealistic en0. Here en0 needs no longer to be
so low, nor step-shaped, as in [13], because we take Fz

e, Fp

in due account during the whole motion of the electrons. In
Sec. III we heuristically modify the potential energy outside
the bulk to account for finite R and determine a R-range
such that the motion of the surface electrons coming from
some inner cylinder ρ2 ≤ r2 < R2 be (by causality) well
approximated by the solution of the correspondingly
modified Hamilton equations; we then find which electrons

indeed escape to infinity and estimate in detail their final
energy spectrum, collimation, total number, charge and
energy. To be specific, in Sec. IV we specialize predictions
to potential experiments at the FLAME facility (LNF,
Frascati) or the ILIL laboratory (INO-CNR, Pisa). We
welcome 3D simulations and experiments checking these
predictions; the experimental conditions are at hand in
many laboratories. In Sec. V we discuss the results, the
conditions for their validity and draw the conclusions.
As a context remark, we recall that relatively simple

2-fluid magnetohydrodynamic models can be used also to
describe the complicated physics of the impact of very
intense and short laser pulses on overdense solid targets. If
the density gradient of the target is sufficiently steep, the
massive displacement of electrons (induced by the ponder-
omotive force) with respect to ions (named snowplow in
[19,20]) produces a longitudinal electric force which may
accelerate also protons or other light ions, either backward
or forward, by the so-called skin-layer ponderomotive
acceleration [21] or relativistically induced transparency
acceleration [19,20] mechanisms.

A. The 2-fluid magnetohydrodynamic framework

The setup is as follows. We assume that the plasma is
initially neutral, unmagnetized and at rest with electron (and
proton) density equal to zero in the region z < 0. We
describe the plasma as consisting of a static background
fluid of ions (the motion of ions can be neglected during
the short time interval in which the effect occurs) and a fully
relativistic collisionless fluid of electrons, with the “plasma
+ EM field” system fulfilling the Lorentz-Maxwell and the
continuity equations. We show a posteriori that such a
magnetohydrodynamic (MHD) treatment is self-consistent
in the spacetime region of interest. We denote as xeðt;XÞ the
position at time t of the electrons’ fluid element initially
located at X ≡ ðX; Y; ZÞ, and for each fixed t as Xeðt; xÞ the
inverse map [x≡ ðx; y; zÞ]. For brevity, we refer to such a

FIG. 1. Schematic stages of the slingshot effect.
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fluid element as to the “X electrons”; to the fluid elements
with arbitrary X, Y and specified Z, or with X in a specified
region Ω, respectively as the “Z electrons” or the “Ω
electrons”. We denote as m, ne, ve the electron mass,
Eulerian density and velocity and often use the dimension-
less fields βe ≡ ve=c, ue ≡ pe=mc ¼ βe=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2e

p
,

γe ≡ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2e

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2e

p
. The equations of motion

are

dpe
dt

¼ −e
�
Eþ ve

c
∧ B

�
;

∂txeðt;XÞ ¼ ve½t; xeðt;XÞ� ð1Þ

in CGS units (d=dt≡ ∂t þ ve ·∇x is the electrons’material
derivative) and the initial conditions are peð0;XÞ ¼ 0,
xeð0;XÞ ¼ X for Z ≥ 0. The Lagrangian fields depend on
t, X, rather than on t, x, and are distinguished by a tilde, e.g.
~neðt;XÞ ¼ ne½t; xeðt;XÞ�. The continuity equationdne=dtþ
ne∇x · ve ¼ 0 follows from the local conservation of the
number of electrons, which amounts to

~neðt;XÞ det
�∂xe
∂X

�
¼ en0ðXÞ≡ ~neð0;XÞ: ð2Þ

We assume that en0 is independent of X, Y and, as said,
vanishes if Z < 0; also as a warm-up to more general
Z-dependence, we start by studying the case that it is
constant in the region Z ≥ 0: en0ðZÞ ¼ n0θðZÞ, where θ is
the Heaviside step function.We consider a purely transverse
EM pulse in the form of a pancake with cylindrical
symmetry around the z-axis, propagating in the positive ẑ
direction and hitting the plasma surface z ¼ 0 at t ¼ 0. We
schematize the pulse as a free plane pulse multiplied by a
“cutoff” function χRðρÞ which is approximately equal to 1
for ρ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

≤ R and rapidly goes to zero for ρ > R
(with some finite radius R, see Fig. 1(a))

E⊥ðt; xÞ ¼ ϵ⊥ðct − zÞχRðρÞ; B⊥ ¼ ẑ × E⊥ ð3Þ

[in particular we consider χRðρÞ≡ θðR − ρÞ]; the “pump”
ϵ⊥ðξÞ vanishes outside some finite interval 0 < ξ < l [22].

II. PLANE WAVE IDEALIZATION

In the plane problem (R ¼ ∞) the invertibility of
xe∶ X ↦ x for all fixed t amounts to zeðt; ZÞ being
strictly increasing with respect to Z for all t. Equation (2)
becomesh
~ne

∂ze∂Z
i
ðt; ZÞ ¼ en0ðZÞ ⇔ neðt; zÞ ¼ en0½Zeðt; zÞ� ∂Ze∂z ðt; zÞ:

ð4Þ

Regarding ions as immobile, the Maxwell equations imply
[16] that the longitudinal component of the electric field is

related to ~NðZÞ≡ R
Z
0 dZ0 en0ðZ0Þ (the number of electrons

per unit surface in the layer 0 ≤ Z0 ≤ Z) by

Ezðt; zÞ ¼ 4πef ~NðzÞ − ~N½Zeðt; zÞ�g: ð5Þ

We partially fix the gauge [16] imposing that the transverse
(with respect to ẑ) vector potential itself is independent
of x, y, and hence is the physical observable
A⊥ðt; zÞ ¼ −

R
t
−∞ dt0cE⊥ðt0; zÞ; then cE⊥ ¼ −∂tA⊥, B ¼

B⊥ ¼ ẑ ∧ ∂zA⊥. As known, the transverse component of
the Lorentz equation ð1Þ1 implies p⊥e − e

cA
⊥ ¼ const on the

trajectory of each electron; this is zero at t ¼ 0, hence
p⊥e ¼ mcu⊥e ¼ eA⊥=c. Hence u⊥e is determined in terms of
A⊥. As in [16], we introduce the positive-definite field

se ≡ γe − uze; ð6Þ

which we name electron s-factor. uze, γe, β⊥e , βze are
recovered from u⊥e , se through the formulas (44) of [16]:

γe ¼
1þu⊥2

e þ s2e
2se

; uze ¼
1þu⊥2

e − s2e
2se

; βe ¼
ue
γe
: ð7Þ

Remarkably, all of (7) are rational functions of u⊥e , se (no
square roots appear). Moreover, fast oscillations of u⊥e
affect γe, uze but not se [see the comments after (15)]. For
these reasons it is convenient to use u⊥e , se instead of u⊥e , uze
as independent unknowns. The evolution equation of se
(difference of the ones of γe, uze; the former is the scalar
product of ð1Þ1 with pe=γem2c2) reads

γe
dse
dt

¼ eEz

mc
se þ ð∂t þ c∂zÞu⊥2

e : ð8Þ

The Maxwell equation for A⊥ takes the form
ð∂2

0−∂2
zÞA⊥þA⊥4πe2ne=mc2γe¼0; Eq. (3) with R ¼ ∞

implies A⊥ðt; zÞ ¼ α⊥ðct − zÞ for t ≤ 0, where α⊥ðξÞ≡
−
R
ξ
−∞ dξ0ϵ⊥ðξ0Þ. Using the Green function of the

D’Alembertian ∂2
0 − ∂2

z , abbreviating x≡ ðt; zÞ, these
equations can be equivalently reformulated as the integral
equation (42) of [16]

A⊥ðt;zÞ−α⊥ðct− zÞ¼−
Z
Dx∩T

dt0dz0
�
2πe2ne
mcγe

A⊥
�
ðx0Þ

Dx≡fðt0;z0Þjt0 ≤ t; jz−z0j≤ ct−ct0g; T≡fxjjzj<ctg:
ð9Þ

The past, future causal cones Dx, T, the supports of A⊥,en0ðzÞ, and their intersections are shown in Fig. 2. For t < 0
Dx ∩ T is empty, and the right-hand side of ð9Þ1 is zero, as
it must be. Below we shall analyze the consequences of
neglecting it also for small t, and determine the range of
validity of such an approximation.
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A. Motion of the electrons

Let û⊥ðξÞ≡ eα⊥ðξÞ=mc2; vðξÞ≡ û⊥2ðξÞ;
Fz
eðz; ZÞ≡ −4πe2f ~NðzÞ − ~NðZÞg: ð10Þ

~Fz
eðt; ZÞ≡ Fz

e½zeðt; ZÞ; Z� is the longitudinal electric force
acting on the Z electrons at time t; it is conservative, as it
depends on t only through zeðt; ZÞ. The approximation
A⊥ðt; zÞ ¼ α⊥ðct − zÞ implies u⊥e ðt; zÞ ¼ û⊥ðct − zÞ, and
the last term of (8) vanishes. Replacing (5) in the
Lagrangian version of (8), we find for each Z ≥ 0 the
equation ~γe∂t ~se ¼ −~sefFz

e=mc. The initial condition is
~seð0; ZÞ≡ 1. The other equation to be solved is ð1Þ2 with
the initial condition xeð0;XÞ ¼ X. By (7) one is thus led to
the Cauchy problems (parametrized by Z ≥ 0)

∂t
ze−Z
c

¼ 1þv½ct− zeðt;ZÞ�− ~s2e
1þv½ct− zeðt;ZÞ�þ ~s2e

; ∂t ~se ¼
−~se
~γemc

fFz
e;

ð11Þ

zeð0; ZÞ − Z ¼ 0; ~seð0; ZÞ ¼ 1. ð12Þ

x⊥e ðt;XÞ is obtained from the solutions of (11)–(12)
using (1), (7):

x⊥e ðt;XÞ ¼ X⊥ þ
Z

t

0

dt0cβ⊥e ½t0; zeðt0; ZÞ�: ð13Þ

For all fixed Z the map t ↦ ~ξðt; ZÞ≡ ct − zeðt; ZÞ is
invertible, because the speed of electrons is always smaller
than c. We can simplify (11) by the change of variables
ðt; ZÞ ↦ ðξ; ZÞ, making the argument of v an independent
variable. Denoting the dependence on ðξ; ZÞ by a caret
[e.g. ŝðξ; ZÞ ¼ ~seðt; ZÞ] and introducing the displacement
from the initial position Δ̂ðξ; ZÞ≡ ẑeðξ; ZÞ − Z, we find
∂ξ ¼ ð~γe=c~seÞ∂t, and (11) becomes

Δ̂0 ¼ 1þ v
2ŝ2

−
1

2
; ŝ0 ¼ 4πe2

mc2
f ~N½Δ̂þZ�− ~NðZÞg ð14Þ

(the prime means differentiation with respect to ξ). For ξ ≤
0 vðξÞ≡ 0, Δ̂, ŝ remain constant, and we can replace the
initial conditions Δ̂ð−Z; ZÞ ¼ 0, ŝð−Z; ZÞ ¼ 1 by

Δ̂ð0; ZÞ ¼ 0; ŝð0; ZÞ ¼ 1. ð15Þ

An alternative derivation of (14)–(15) with a deeper insight
on the role of the s-factor is given in [23]. In the zero
density limit ~NðZÞ≡ 0, ŝ≡ 1, (14)–(15) is integrable, and
all unknowns are determined explicitly from ϵ⊥ [16,24]).
As v ≥ 0, even if ϵ⊥, u⊥, v oscillate fast with ξ, integrating
(14) makes relative oscillations of Δ̂ much smaller than
those of v and those of ŝ much smaller than the former;
hence, ŝ is practically smooth, see, e.g., Fig. 7. Setting
q≡ Δ̂, p≡ −ŝ, for each fixed Z (14) are the Hamilton
equations (with “time” ξ) q0 ¼ ∂Ȟ=∂p, p0 ¼ −∂Ȟ=∂q of a
system with Hamiltonian Ȟðq; p; ξ;ZÞ≡Hðq;−p; ξ;ZÞ,

HðΔ;s;ξ;ZÞ≡ γðs;ξÞþUðΔ;ZÞ; γðs;ξÞ≡ s2þ1þvðξÞ
2s

;

UðΔ;ZÞ≡4πe2

mc2
½ ~N ðZþΔÞ− ~N ðZÞ− ~NðZÞΔ�;

~N ðZÞ≡
Z

Z

0

dZ0 ~NðZ0Þ ¼
Z

Z

0

dZ0 en0ðZ0ÞðZ−Z0Þ:

ð16Þ

Defining U we have fixed the free additive constant so that
Uð0; ZÞ≡ 0 for each Z; H −

ffiffiffiffiffiffiffiffiffiffiffi
1þ v

p
is positive definite.

Below we shall abbreviate Pðξ;ZÞ≡ ðΔ̂ðξ;ZÞ; ŝðξ;ZÞÞ.
The right-hand side of ð14Þ2 is an increasing function of

Δ̂, because so is ~NðZÞ. As vðξÞ is zero for ξ ≤ 0 and
positive for small ξ > 0, then so are also Δ̂ðξ; ZÞ and
ŝðξ; ZÞ − 1. Both keep increasing until Δ̂ reaches a positive
maximum Δ̂ðξ̄; ZÞ at the ξ ¼ ξ̄ðZÞ > 0 such that

Δ̂0ðξ̄; ZÞ ¼ 0 ⇔ ŝ2ðξ̄; ZÞ ¼ 1þ vðξ̄Þ ð17Þ

[note that ξ̄ < l if vðlÞ ¼ 0]. We shall denote as ζ ≡
Δ̂½ξ̄ð0Þ; 0� the maximum penetration of the Z ¼ 0 electrons.
For ξ > ξ̄ðZÞ Δ̂ starts decreasing; ŝ reaches a maximum at
the ξ ¼ ξrðZÞ such that Δ̂ðξr; ZÞ ¼ 0 (i.e. at ξ ¼ ξrðZÞ the
Z electrons have regained their initial z). Both decrease for
ξ > ξrðZÞ, until ŝ becomes so small, and the right-hand side
of ð14Þ1 so large, that first Δ̂, and then ŝ − 1, are forced to
abruptly grow again to positive values. This prevents ŝ from
vanishing anywhere, consistently with (6). In ξ-intervals
where vðξÞ≡ vc ≡ const, H is conserved, and all trajecto-
ries Pðξ;ZÞ in phase space (paths) are level curves

FIG. 2. Past (light brown) and future (purple) causal cones Dx,
T; supports of A⊥ (light green) and en0ðzÞ (anthracite).

GAETANO FIORE and SERGIO DE NICOLA PHYS. REV. ACCEL. BEAMS 19, 071302 (2016)

071302-4



HðΔ; s;ZÞ ¼ hðZÞ, above the line s ¼ 0, integrable by
quadrature [25]. For Z ¼ 0 the paths are unbounded with
Δ̂ðξ; 0Þ → −∞ as ξ → ∞. For Z > 0 the paths are cycles
around the only critical point C≡ ðΔ; sÞ ¼ ð0; ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ vc
p Þ

(a center); therefore for ξ ≥ l vðξÞ ¼ vðlÞ, and these
solutions are periodic. There exists a Zb > 0 such that:
the paths Pðξ;ZÞwith Z < Zb cross the Δ̂ ¼ −Z line twice,
i.e. go out of the bulk and then come back into it; the path
Pðξ;ZbÞ is tangent to this line in the point ðΔ̂; ŝÞ ¼
ð−Zb;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vðlÞp Þ (where Δ̂0 ¼ 0); the paths Pðξ;ZÞ with

Z > Zb do not cross this line. For Z ≤ Zb let ξexðZÞ be the
first positive solution of the equation Δ̂ðξ; ZÞ ¼ −Z, i.e. at
ξ ¼ ξexðZÞ the Z electrons exit the bulk:

ẑe½ξexðZÞ; Z� ¼ 0: ð18Þ

The function ξexðZÞ is strictly increasing if ∂Zẑe > 0.
For any family Pðξ;ZÞ of solutions of (14)–(15) let

ûz ≡ 1þ v− ŝ2

2ŝ
; γ̂≡ 1þ vþ ŝ2

2ŝ
;

x̂eðξ;XÞ ¼ Xþ Ŷðξ; ZÞ; Ŷðξ; ZÞ≡
Z

ξ

0

dy
ûðy;ZÞ
ŝðy; ZÞ ;

ct̂ðξ; ZÞ ¼ Zþ Ξ̂ðξ; ZÞ;

Ξ̂ðξ; ZÞ≡
Z

ξ

0

dy
γ̂ðy;ZÞ
ŝðy;ZÞ ¼ ξþ Δ̂ðξ; ZÞ ð19Þ

(note that Ŷz ¼ Δ̂). The so defined û, γ̂, x̂e are the
solutions—expressed as functions of ξ, X—of all equations
and initial conditions [26]. Note that x̂e, t̂ can be obtained
also solving the system of functional equations

ξ¼ ct−z; Ξ̂ðct−z;ZÞ¼ ct−Z; x−X¼ Ŷðct− z;ZÞ
ð20Þ

[by (19) the second is actually equivalent to the
z-component of the third] with respect to t, x. Clearly
Ξ̂ðξ; ZÞ is strictly increasing and invertible with respect to ξ
for all fixed Z. Solving (20) with respect to ξ, x (resp. ξ, X)
as functions of t, X (resp. of t, x) and replacing the results
in û; γ̂; ŝ;… one obtains the solutions in the Lagrangian
(resp. Eulerian) description: in particular one finds
(generalizing [16])

~ξðt;ZÞ ¼ Ξ̂−1ðct−Z;ZÞ; xeðt;XÞ ¼Xþ Ŷ½~ξðt;ZÞ;Z�;
zeðt;ZÞ ¼ Zþ Δ̂½~ξðt;ZÞ;Z� ¼ ct− ~ξðt;ZÞ;
~seðt;ZÞ≡ ŝ½~ξðt;ZÞ;Z�; ~ueðt;ZÞ ¼ û½~ξðt;ZÞ;Z�;
X⊥
e ðt;xÞ ¼ x⊥ − Ŷ⊥½ct− z;Zeðt; zÞ�;
ueðt; zÞ ¼ û½ct− z;Zeðt; zÞ�: ð21Þ

Indeed, it is straightforward to check that ½zeðt; ZÞ; ~seðt; ZÞ�
is the solution of (11)–(12) and peðt; xÞ≡mcueðt; zÞ,
xeðt;XÞ of the PDE’s (1) with the initial conditions
peð0;XÞ ¼ 0, xeð0;XÞ ¼ X for Z ≥ 0.
From (17), (18), ð19Þ5, the times of maximal penetration

and of expulsion of the Z electrons are

t̄ðZÞ ¼ Z þ Ξ̂ðξ̄; ZÞ
c

; texðZÞ ¼
Z þ Ξ̂ðξex; ZÞ

c
: ð22Þ

Deriving (21) and the identity y≡ Ξ̂½Ξ̂−1ðy; ZÞ; Z� we
obtain a few useful relations, e.g.

∂Ξ̂−1

∂Z ¼ −ŝ
γ̂

∂Δ̂
∂Z

����
ξ¼Ξ̂−1ðy;ZÞ

;
∂ze
∂Z ¼ ŝ

γ̂

∂ẑe
∂Z

����
ξ¼Ξ̂−1ðct−Z;ZÞ

;

∂Ze

∂z ¼ γ̂

ŝ∂Zẑe

����
ðξ;ZÞ¼ðct−z;Zeðt;zÞÞ

: ð23Þ

By (23), ∂Zẑe ≡ 1þ ∂ZΔ̂ > 0 is thus a necessary and
sufficient condition for the invertibility of the maps
ze∶Z ↦ z, xe∶ X ↦ x (at fixed t), justifying the hydro-
dynamic description of the plasma adopted so far and the
presence of the inverse function Zeðt; zÞ in (21). Finally,
from (4), (23) we find also

neðt; zÞ ¼ en0½Zeðt; zÞ�
γ̂

ŝ∂Zẑe

����
ðξ;ZÞ¼ðct−z;Zeðt;zÞÞ

: ð24Þ

We can test the range of validity of the approximation
A⊥ðt; zÞ ¼ α⊥ðct − zÞ by showing that the latter makes the
modulus of the right-hand side of (9) much smaller than
α⊥ðct − zÞ on D≡ fðt; zÞj0 ≤ ct − z ≤ ξexðZMÞ; 0 ≤ ctþ
z ≤ ξexðZMÞg (ZM is defined below), or equivalently
[multiplying by e=mc2 and using (24)]

for x≡ ðt; zÞ ∈ Djδu⊥ðt; zÞj ≪ ju⊥ðct − zÞj;

δu⊥ðt; zÞ≡
Z
Dx∩T

dt0dz0
2πe2 ~n0½Zeðt0; z0Þ�u⊥ðct0 − z0Þ
mc½ŝ∂Zẑe�ðξ;ZÞ¼ðct0−z0;Zeðt0;z0ÞÞ

;

ð25Þ

actually, it suffices to check this inequality on the world-
lines of the expelled electrons.

B. Auxiliary problem: constant initial density

As a simplest illustration of the approach, and for later
application to a step-shaped initial density, we first consider
the case that en0ðZÞ ¼ n0. Then Fz

e is the force of a harmonic
oscillator (with equilibrium at ze ¼ Z) Fz

eðze; ZÞ ¼
−4πn0e2½ze − Z� ¼ −4πn0e2Δ; the Z-dependence disap-
pears completely in (14)–(15), which reduces to the auxiliary
Cauchy problem
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Δ0 ¼ 1þv
2s2

−
1

2
; s0 ¼MΔ; Δð0Þ¼ 0; sð0Þ¼ 1; ð26Þ

whereM ≡ 4πe2n0=mc2. The potential energy in (16) takes
the form UðΔ; ZÞ≡MΔ2=2. Problem (26), and hence also
its solution ½ΔðξÞ; sðξÞ�, the value of the energy as a function
of ξ and the functions defined in (19), are Z-independent. It
follows ∂ZΔ̂≡ 0 and by (23) the automatic invertibility of
zeðt; ZÞ; moreover, the inverse function Zeðt; zÞ has the
closed form

Zeðt; zÞ ¼ ct − Ξðct − zÞ ¼ z − Δðct − zÞ ð27Þ

[here ΞðξÞ≡ ξþ ΔðξÞ], what makes the solutions (21)
of the system of functional equations (20), as well as those
of (1), completely explicit in terms of Ξ and the inverse Ξ−1

only. As a consequence, all Eulerian fields depend on
t, z only through ct − z (i.e. evolve as traveling-waves). In
Fig. 3-left we plot some solution of (26). If vðξÞ≡ vc ≡
const all paths Pðξ;ZÞ are cycles around C (Fig. 3-right),
corresponding to periodic solutions.Within the bulk electron

trajectories for slowly modulated laser pulse like the ones
considered in Sec. IV are typically as plotted in Fig. 8; in
average they have no transverse drift, but a longitudinal
forward/backward one. Figure 4 shows a couple of corre-
sponding charge density plots.

III. 3-DIMENSIONAL EFFECTS

We now discuss the effects of the finiteness of R. For
brevity, for any nonnegative r, L we shall denote as Cr the
infinite cylinder of equation ρ ≤ r, as CL

r the cylinder of
equations ρ ≤ r, 0 ≤ z ≤ L. The ponderomotive force of
the pulse will boost forward (as in Fig. 8) only the small-Z
electrons located within (or nearby) CR. These forward
boosted electrons (FBE) will be thus completely expelled
out of a cylinder which will reach its maximal extension Cζ

R
around the time t̄ð0Þ of maximal longitudinal penetration
ζ≡ Δ̂½ξ̄ð0Þ; 0� of the Z ¼ 0 electrons. The displaced
charges modify E. By causality (see Appendix A), for x
near the ~z axis Eðt; xÞ is the same as in the plane wave case
for t≲ t̄ð0Þ þ R=c, and smaller afterwards. We choose en0,
R so that they fulfill

½tex − t̄�c
R

∼ 1; r≡ R −
ζðtex − l=cÞ
2ðtex − t̄Þ θðctex − lÞ > 0

ð28Þ

FIG. 3. (a) Solution of (26) for Ml2 ¼ 26 and the vðξÞ as in
Sect. IV of average intensity I ¼ 1019 W=cm2. (b) Paths Pðξ;ZÞ
around the center C for Ml2 ¼ 26, vc ¼ 0.

FIG. 4. Normalized charge density plot 1 − ne=n0 under the
same conditions as in Fig. 7 after about 25 fs (up) and 70 fs
(down), i.e. resp. before and after the maximal penetration time
t̄ð0Þ ¼ 51 fs; in the latter picture the electrons travelling back-
wards make light yellow-blue striped the region between the
yellow and the white-blue striped ones.
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and condition (25) for all x ¼ ðt; xÞ such that
t≲ t̄ð0Þ þ R=c; here t̄≡ t̄ð0Þ, tex ≡ texð0Þ are the times
of maximal penetration and of expulsion from the bulk of
the Z ¼ 0 electrons [see (22)]. [As en0 grows from zero the
right-hand side of (25) does as well, whereas t̄ð0Þ; texð0Þ −
t̄ð0Þ decrease]. In Appendix Awe show that conditions (28)
respectively ensure that these FBE, at least within an inner
cylinder ρ ≤ r ≤ R: (i) move approximately as in Sec. II
until their expulsion; (ii) are expelled before lateral elec-
trons (LE), which are initially located outside the surface of
CR and are attracted towards the ~z-axis (see Fig. 1(c)),
obstruct their way out. For the validity of our model we
must a posteriori check also that the expelled Cr electrons
remain in CR,

i:e: their transverse oscillations Δxe are ≪ R: ð29Þ

In the plane model the expelled Z > 0 electrons cannot
escape to z → −∞ because they are decelerated by the
constant electric force ~Fz

eðt; ZÞ ¼ 4πe2 ~NðZÞ > 0, see (10).
The real electric force fFzr

e > 0 acting on the Cr electrons
after expulsion is generated by charges localized in CR;
hence fFzr

e ∝ 1=z2e as ze → −∞, and the escape of expelled
electrons is no more excluded a priori. Moreover, sincefFz
eðt; 0Þ ¼ 0, it should be also fFzr

e ðt; 0Þ ¼ 0, allowing the
escape of the Z ¼ 0 electrons; by continuity there will exist
some positive ZM ≤ Zb such that the CZM

r electrons escape
to infinity. We stick to the estimate fFzr

e on the ~z-axis
electrons; we assume that after the pulse has overcome
them, they move along the ~z-axis. Actually this will be
justified below if û⊥ðlÞ≃ 0, which in turn holds if, as
usual, l ≫ λ [see the comments after (33)]. In Fig. 5(a) we
schematically depict the charge distribution expected
shortly after the expulsion. The light blue area is occupied
only by the X ∈ CZM

r electrons. The orange area is
positively charged due to an excess of ions. For any
Z-electrons moving along the ~z-axis consider the surfaces
S0, S1, S2 occupied at time t by the X0 ∈ Cr electrons
respectively having Z0 ¼ 0; Z; Z2ðZÞ, where Z2ðZÞ is
defined by the condition ~NðZ2Þ ¼ 2 ~NðZÞ, which ensures
that the electron charges contained between S0, S1 and S1,
S2 are equal (in the figure S0, S1, S2 are respectively
represented by the left border of the blue area, the dashed
line and the solid line). The longitudinal electric force fFzr

e
acting at time t on this Z-electron is nonnegative and can be
decomposed and bound as follows [13]:

0 ≤ fFzr
e ðt; ZÞ ¼ −e ~Ez

−ðt; ZÞ − e ~Ez
þðt; ZÞ ≤ Fz

er½ ~Δðt; ZÞ; Z�:

Here ~Ez
−ðt; ZÞ stands for the part of the longitudinal electric

field generated by the electrons between S0, S2; since those
between S0, S1 have by construction the same charge as
those between S1, S2, but are more dispersed, it will be

−efEz
−ðt; ZÞ ≤ 0. The part −efEz

þðt; ZÞ of fFzr
e generated by

the ions and the remaining electrons (at the right of S2) will
be smaller than the force Fz

er generated by the charge
distribution of Fig. 5(b), where the remaining electrons are
located farther from ð0; 0; zeÞ (in their initial positions X0,
not in the ones at t) and hence generate a smaller repulsive
force. This explains the second inequality in the equation.
In Appendix B we show that for ze ≡ Z þ Δ ≤ 0

Fz
erðΔ;ZÞ
2πe2

¼ 2 ~NðZÞ−
Z

Z2ðZÞ

0

dZ0 en0ðZ0ÞðZ0− zeÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZ0− zeÞ2þ r2

p : ð30Þ

Commendably, Fz
er is conservative, nonnegative and goes

to zero as Δ → −∞, while it reduces to zero for Z ¼ 0

and to 4πe2 ~NðZÞ as r → ∞, as fFz
e in ð10Þ3; it becomes a

function of t (resp. ξ) through ~Δðt; ZÞ [resp. Δ̂ðξ; ZÞ] only.
We therefore modify the dynamics outside the bulk
replacing Fz

e by Fz
er, or equivalently U by Ur in (16),

where Ur is continuous and equals U for ze ≡ Z þ Δ ≥ 0,
and the potential energy (B2) associated to Fz

er for
ze ≡ Z þ Δ ≤ 0; there Ur is a decreasing function of Δ

FIG. 5. (a) schematic picture of the expected charge distribution
shortly after the expulsion (long arrows) of surface electrons;
short arrows represent the inward motion of the lateral electrons;
(b) simplified charge distribution generating the effective poten-
tial energy.
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with finite left asymptotes (B3). Wewill thus underestimate
the final energy of the electrons, because Fz

er is larger than
the real electric force fFzr

e decelerating the electrons
outside the bulk; this makes our estimates safer. In
Fig. 6 we plot suitably rescaled U and Ur foren0ðZÞ ¼ n0θðZÞ. After the pulse is passed we can compute
γ as a function of Δ, Z using energy conservation
mc2γ þ UrðΔ; ZÞ ¼ const. For the expelled electrons the
final relativistic factor γfðZÞ≡ γeðΔ ¼ −∞; ZÞ is the
decreasing function (B4). The maximum of γfðZÞ is
γM ≡ γfð0Þ. Let ZM ≤ Zb be the Z fulfilling γfðZÞ ¼ 1.
The estimated total number Ne, electric charge (in absolute
value) Q, and kinetic energy E of the X ∈ CZM

r escaped
electrons are thus

Ne ∼ πr2 ~NðZMÞ; Q ∼ eNe;

E ∼mπc2r2
Z

ZM

0

dZ en0ðZÞ½γfðZÞ − 1�: ð31Þ

The number of escaped X0 ∈ CZM
r electrons with Z ≤ Z0 ≤

Z þ dZ is estimated as πr2 en0ðZÞdZ, that with relativistic
factor between γ and γ þ dγ is estimated as dN ¼
πr2½ en0ðZÞ=jdγf=dZj�Z¼ẐðγÞdγ, where ẐðγÞ is the inverse

of γfðZÞ (a strictly decreasing function, see Appendix B).
Hence the fraction of escaped electrons with final relativ-
istic factor between γ and γ þ dγ is estimated as νðγÞdγ,
where

νðγÞ≡ 1

Ne

dN
dγ

¼ 1

~NðZMÞ
en0ðZÞ

jdγf=dZj
����
Z¼ẐðγÞ

ð32Þ

determines the associated energy spectrum. As α⊥ðξÞ ¼
α⊥ðlÞ if ξ ≥ l, by (7) the final transverse deviation of the
escaped electrons will be

β⊥f
βzf

ðZÞ ¼ u⊥f
uzf

ðZÞ ¼ u⊥fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2fðZÞ − 1 − u⊥2

f

q ; ð33Þ

where u⊥f ≡ û⊥ðlÞ. This is an increasing function of Z,
because γfðZÞ is decreasing. If λ ≪ l then u⊥f ≃ 0 (see next
section), and (33) is negligible unless Z≃ ZM.

A. Step-shaped initial density

If en0ðZÞ ¼ n0θðZÞ then ~NðZÞ ¼ n0θðZÞZ, and for Z ≥ 0

Fz
erðΔ; ZÞ
2πn0e2

¼
�−2Δ ðelastic forceÞ; ze > 0;

2Z þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZ þ ΔÞ2 þ r2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZ − ΔÞ2 þ r2

p
; ze ≤ 0.

ð34Þ

Since the first expression is the same as in the caseen0ðZÞ ¼ n0, the motion of the Z-electron will be as in
subsection II B until ξ ¼ ξexðZÞ. The second expression
goes to the constant force 4πn0e2Z as r → ∞, as expected.
The motion for ξ > ξexðZÞ will be studied in detail in [25];
we plot the graphs of a typical solution (until the expulsion)
in Fig. 7 and a few corresponding electron trajectories in
Fig. 8. We can readily understand that it will be

∂Zẑeðξ; ZÞ > 0 for all ξ and 0 ≤ Z ≤ ZM, since this holds
for ξ ≤ ξexðZÞ [by the comments following (26)], and both
ξexðZÞ and the decelerating force Fz

erðΔ; ZÞ (outside the
bulk) increase with Z, while the speed of exit from the bulk
decreases with Z, whence the distance between electrons
with different Z increases with ξ, t. The Zb introduced
before (18) is now the solution of the equationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vðlÞp þMZ2

b=2 ¼ h, i.e., the Z corresponding to

FIG. 6. Rescaled longitudinal electric potential energies u≡ U=4πn0e2l2, ur ≡ Ur=4πn0e2l2 for (a) idealized plane wave R=l ¼ ∞ or
(b) for R=l ¼ 0.85, plotted as functions of Δ for Z=ZM ¼ 0, .2, .4, .6, .8, 1; the horizontal dashed lines are the left asymptotes of ur for
the same values of Z=ZM. Here the initial electron density is step-shaped: en0ðZÞ ¼ n0θðZÞ.
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the zero longitudinal velocity and the final value of the
energy h after the interaction of the pulse; one can
determine h evaluating H at ξ ¼ l, h¼ 1

2
fsðlÞþ ½1þvðlÞ�=

sðlÞþM½ΔðlÞ�2g. Hence,

Zb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ΔðlÞ�2 þ ½sðlÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vðlÞ

p
�2=2MsðlÞ

q
: ð35Þ

γfðZÞ, νðγÞ admit rather explicit forms (B7), (B8).
In Sec. IV we plot spectra νðγÞ corresponding to
several n0 and intensities. Moreover, Q ¼ πr2en0ZM,

E ¼ πr2n0mc2
R ZM
0 dZ½γfðZÞ − 1�. Finally, if ξexð0Þ < l

then δu⊥ in (25) becomes

δu⊥ðt;zÞ¼M
2

Z
ct−z

0

dξ0
û⊥ðξ0Þ
sðξ0Þ

Z
ctþz

0

dξ00θ
�
ξ0 þξ00

2
−Ξðξ0Þ

�
:

ð36Þ

IV. NUMERICAL RESULTS

We assume for simplicity that the pulse is a slowly
modulated sinusoidal function linearly polarized in the x
direction: ϵ⊥ðξÞ ¼ ϵsðξÞx̂ cos kξ, the modulating amplitude
ϵsðξÞ ≥ 0 is nonzero only for 0 < ξ < l, and slowly varies
on the scale of the period λ≡ 2π=k ≪ l, i.e. λjϵs0j ≪ jϵsj
on the support of ϵs. Integrating by parts we find α⊥ðξÞ ¼
x̂ϵsðξÞðsin kξÞ=kþOð1=k2Þ [23] and, in terms of the
rescaled amplitude wðξÞ≡ eϵsðξÞ=kmc2,

û⊥ðξÞ≃ x̂wðξÞ sinðkξÞ; vðξÞ≃ w2ðξÞsin2ðkξÞ; ð37Þ

where a≃ b means a ¼ bþOð1=k2Þ. Note that, as
ϵsðξÞ ¼ 0 for ξ ≥ l, this implies u⊥f ¼ û⊥ðlÞ≃ 0, as
anticipated.
If we approximate as χRðρÞ≡ θðR − ρÞ the cutoff

function in (3), the average pulse intensity on its support
is I ¼ cE=πR2l. Here E is the EM energy carried by the
pulse,

E ¼
Z
V
dV

E⊥2 þB⊥2

8π
≃R2

4

Z
l

0

dξϵ⊥2ðξÞ≃R2

8

Z
l

0

dξϵ2sðξÞ:

ð38Þ

High power lasers produce pulses where λ ∼ 1 μm and ϵs is
approximately Gaussian, ϵsðξÞ ∝ exp ½−ðξ − ξ0Þ2=2σ�; σ is
related to the fwhm (full width at half maximum) l0 of ϵ2s by
σ ¼ l02=4 ln 2. If initially matter is composed of atoms then
ϵsðct − zÞ can be considered zero where it is under the
ionization threshold, because the pulse has not converted
matter into a plasma yet. Hence we adopt as a modulating
amplitude ϵsðξÞ the cutoff Gaussian

ϵgðξÞ ¼ bg exp

�
−ðξ− l=2Þ2

2σ

�
θðξÞθðl− ξÞ; σ¼ l02

4 ln2
;

b2g ¼
16

ffiffiffiffiffiffiffi
ln2

pffiffiffi
π

p E
R2l0

; l2 ¼ l02ffiffiffiffiffiffiffi
ln2

p ln

� ffiffiffiffiffiffiffi
ln2

p
mc2EðeλÞ2

Ui
ffiffiffi
π

p
l0ðπRmc2Þ2

�
;

ð39Þ

where Ui is the first ionization potential (for Helium
Ui ≃ 24 eV); the formula for b2g follows replacing the
Ansatz ð39Þ1 in (38) [neglecting the tails left out by the

FIG. 7. (a) Laser pulse of average intensity I ¼ 1019 W=cm2

and shape as in Sec. IV, with l ¼ 18.75 μm. (b–c) Corresponding
solution of (14)–(15) for initial density en0ðZÞ ¼ n0θðZÞ, with
n0 ¼ 21 × 1017 cm−3 (i.e. Ml2 ¼ 26).
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cutoff θðξÞθðl − ξÞ]. Numerical computations are easier if
we adopt [16] as ϵsðξÞ the following cutoff polynomial:

ϵpðξÞ≡ bp
4
½1 − ð2ξ=lp − 1Þ2�2θðξÞθðlp − ξÞ; ð40Þ

bp, lp are determined by the requirement to lead to the same
fwhm and E: b2p ¼ 5040E=R2lp and lp ¼ 5l0=2.
We now present the results of extensive numerical

simulations based on the experimental parameters available
already now at the FLAME facility [27] or in the near
future at the ILIL facility [28]: l0 ≃ 7.5 μm (implying
lp ¼ 18.75 μm), λ≃0.8 μm (implying klp¼2πlp=λ≃147),
E ¼ 5 J, and R tunable by focalization in the range
10−4 ÷ 1 cm. We model the electron density: first as the
step-shaped one en0ðZÞ ¼ n0θðZÞ (this allows analytical
derivation of more results); then as a function smoothly
increasing from zero to the asymptotic value n0, with
substantial variation in the interval 0 ≤ Z ≤ L≡ 20 μm
(as motivated by experiments, see Sec. V), more preciselyen0ðZÞ ¼ n0θðZÞ tanhðZ=LÞ. We have numerically solved
the corresponding systems (14)–(15) and proceeded as in
Sec. III, for R ¼ 16, 15, 8, 4, 2, 1 μm [resp. leading to

average intensities I=1019 ðW=cm2Þ≃1;1.1;4;16;64;255],
n0 in the range 1017 cm−3 ≤ n0 ≤ 3 × 1020 cm−3 and
Z ≤ ZM; all results follow from these solutions.
In Fig. 9-left we plot the maximal final relativistic factor

γM of the expelled electrons as a function of n0, with the
above values of I and en0ðZÞ ¼ n0θðZÞ; each graph stops
where n0 becomes too large for conditions (25), ð28Þ1, or
(29) to be fulfilled and is red where condition ð28Þ2 is no
more fulfilled. The latter prevents collisions with the LE
and becomes superfluous if the target is a solid cylinder of
radius R (since then there are no LE) [29]; the I ¼
64; 255 × 1019 W=cm2 graphs are plot green for densities
corresponding to the lightest solids (aerogels) available
today. As expected [13]: 1) as n0 → 0 γM − 1 ∝ n0I2;
2) each graph γMðn0; IÞ has a unique maximum γMMðIÞ≡
γMðn0M; IÞ at n0M ∼ n̄0, where n̄0 is the density making
ξ̄ð0Þ ¼ l=2, namely such that the Z ¼ 0 electrons reach the
maximal penetration ζ ¼ Δ̂ðl=2; 0Þ when they are reached
by the pulse maximum. The dependence of γM on n0 is
anyway rather slow. The striking γMMðIÞ ∝ I behavior
shown in Fig. 9 up-center hints at scaling laws and will
be discussed elsewhere. In Fig. 10 we plot sample spectra
νðγÞ for I=1019 ðW=cm2Þ≃ 1; 4; 16; 64 and en0 compatible

FIG. 8. Trajectories gone in ca. 150 fs by electrons initially located at Z=ZM ¼ 0, 0.25, 0.5, 0.75, 1 under conditions as in Fig. 7.

FIG. 9. (a) relativistic factor γM of the Z ¼ 0 expelled electrons (the maximal one) as a function of the step-shaped initial electron
density n0, for few values of the intensity I; the maximum of each graph is denoted as γMM. (b): γMM vs I. (c): u⊥ & its correction δu⊥
along the X ¼ 0 electrons’ worldlines for n0 ¼ 24 × 1019 cm−3, I ¼ 255 × 1019 W=cm2: δu⊥ is negligible.
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with (25), (28), (29). In Table I we report our main
predictions for the same I (equivalently, R) and en0. The
final energies of the expelled electrons range from few to
about 15 MeV. The spectra (energy distributions) are rather
flat for the step-shaped densities, albeit they become more
peaked near γM as n0 grows; if en0ðZÞ grows smoothly from
zero to about the asymptotic value n0 in the interval
0 ≤ Z ≤ L ∼ 20 μm, they can be made much better (almost
monochromatic) by tuning L. The collimation of the
expelled electron bunch is very good, by (33); in all cases
considered in Table I we find deviations β⊥f =βzf of 1 ÷ 2

milliradiants for the ðρ; ZÞ ¼ ð0; 0Þ and 4 ÷ 10milliradiants
for the ðρ; ZÞ ¼ ð0; 0.9ZMÞ expelled electrons.

We now discuss the conditions guaranteeing the validity
of our model. The comments after (34) show for all ξ the
invertibility of the maps ẑeðξ; ·Þ∶Z ↦ z in the interval
0 ≤ Z ≤ ZM, and therefore the self-consistency of this
2-fluid MHD model, in the step-shaped density case;
numerical study of the map ẑeð·; ξÞ∶Z ↦ z shows that this
holds true also in the continuous density case. Numerical
computations show that (25) is fulfilled at least on the Z ≤
ZM electrons’ worldlines, even with the highest densities
considered here (see, e.g., Fig. 9 right). Finally, the data in
Table I show that (28), (29) are fulfilled.
If we choose ϵsðξÞ as the cutoff Gaussian, instead

of the cutoff polynomial, convergence of numerical

FIG. 10. Sample spectra of the expelled electrons for pulse amplitudes of the form (40) with continuous initial electron densitiesen0ðZÞ≡ n0θðZÞ tanhðZ=LÞ, L ¼ 20 μm (graphs a-d), or step-shaped initial electron densities en0 ≡ n0θðZÞ (graphs e–f). The values of
n0 and of the average pulse intensity I are the same as in Table I.

TABLE I. Sample inputs and outputs for possible experiments. In the “p, g” columns the initial electron densities are step-shaped,en0ðZÞ ¼ n0θðZÞ, and the amplitudes are resp. of the Gaussian, polynomial forms (39), (40); in the “PoP14” columns we report results
computed in [13] with poorer approximation. In the “cg,cp” columns the initial electron densities are the continuous ones en0ðZÞ ¼
n0θðZÞ tanhðZ=LÞ with L ¼ 20 μm, and the amplitudes are resp. of the forms (39), (40).

pulse energy E ≃ 5 J, wavelength λ≃ 0.8 μm, fwhm l0 ≃ 7.5 μm, spot radius R≃ 1 ÷ 16 μm

p PoP14 p PoP14 p g cp cg cp cg cp cg cp cg

Pulse spot radius R (μm) 15 15 16 16 2 2 16 16 16 16 8 8 4 4
Mean intensity I (1019 W=cm2) 1.1 1.1 1 1 64 64 1 1 1 1 4 4 16 16
Initial el. density n0 (1018 cm−3) .64 .64 .64 .64 64 64 3.2 3.2 8 8 32 32 160 160
Ratio ½texð0Þ − t̄ð0Þ�c=R 0.8 .75 1.3 1.9 0.8 0.8 0.6 0.7 1.1 1.1 1.7 2.1
Ratio r=R 0.6 0.7 1 1 0.6 0.7 0.8 0.9 0.8 1 1 1
Ratio ΔxMe =R .02 .02 .14 .09 .02 .19 .02 .17 .05 .04 .1 .06
Maximal relativistic factor γM 2.5 1.83 2.3 1.65 16 14 2.5 2.4 2.7 2.6 6.6 5.6 11 8.1
Max. expulsion energy H (MeV) 1.3 0.94 1.2 0.9 8.1 7.2 1.3 1.2 1.4 1.3 3.4 2.9 5.4 4.2
Tot expelled charge jQjð10−10 CÞ 1.7 3.8 2.2 3.2 3.7 3.1 1.9 2.2 3.7 2.9 3.5 4 3.8 3.5
Tot. exp. kin. energy Eð10−4 JÞ 0.7 0.7 16 12 0.8 0.8 1.6 1.1 4.5 4.0 8.6 5.8
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computations is slower, but the outcomes do not differ
significantly. Sample computations show that choices of
other continuous en0ðZÞ lead to similar results, provided the
function en0ðZÞ is increasing and significantly approaches
the asymptotic value n0 in the interval 0 ≤ Z ≤ L ∼ 20 μm.

V. DISCUSSION, FINAL REMARKS,
CONCLUSIONS

These results show that indeed the slingshot effect is a
promising acceleration mechanism of electrons, in that it
extracts from the targets highly collimated bunches of
electrons with spectra which can be made peaked around
the maximum energies by adjusting R, en0; with laser pulses
of a few joules and duration of few tens of femtoseconds (as
available today in many laboratories) we find that the latter
range up to about ten MeV (it would increase with more
energetic pulses). The spectra (distributions of electrons as
functions of the final relativistic factor γf), their depend-
ence on the electron density and pulse intensity, the
collimation and the backward direction of expulsion in
principle allow to discriminate the slingshot effect from the
LWFA or other acceleration mechanisms. In Table I and
Fig. 10 we have reported detailed quantitative predictions
of the main features of the effect for some possible choices
of parameters in experiments at the present FLAME, the
future upgraded ILIL facilities, or similar laboratories. Low
density gases or aerogels (the lightest solids available
today) are targets with appropriate electron densities.
The steepest z-oriented density gradient of a gas sample

isolated in vacuum is attained just outside a nozzle
expelling a supersonic gas jet in the xy plane; across the
lateral border of the jet the density may vary from about
zero to almost the asymptotic value n0 in about L ∼ 20 μm
[27]. Hence if we choose a supersonic helium jet as the
laser pulse target the initial electron density is reasonably
approximated by the choice en0ðZÞ ¼ n0θðZÞ tanhðZ=LÞ,
and the predictions of Table I, Fig. 10(a–d) are reliable. By

the way, the values of n0 considered in Table I are
considerably higher than in typical LWFA experiments.
Step-shaped en0ðZÞ are unrealistic approximations of

densities of gas samples, but reasonable ones of solids
(for which ΔZ ≪ λ), provided n0 exceeds 48 × 1018 cm−3,
which is the electron density of aerographene (the lightest
aerogel so far: mass density ¼ 0.00016 g=cm3). Silica
areogels, with a wide range of densities from 0.7 to
0.001 g=cm3, electron densities of the order of
1020=cm−3 and porosity from 50 nm down to 2 nm in
diameter (i.e. much smaller than λ) have been produced and
extensively studied [30,31]. Therefore the results of the
last two “p,g” columns of Table I [and the corresponding
spectra, Fig. 10(e)] are applicable to aerogels, while those
of the first four are presently only of academic interest.
The quantitative predictions of our model are based on a

rather rigorous plane-wave, 2-fluid magnetohydrodynamic
model [32] and simple, but heuristic approximations for the
3D corrections, which certainly affect their liability. We
welcome numerical 3D simulations (particle-in-cell ones,
etc.) to improve the latter. Experimental tests are easily
feasible with the equipments presently available in many
laboratories. We welcome experiments testing the effect.
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APPENDIX A: FINITE R CONDITIONS

As known, for any spacetime region D its future Cauchy
development DþðDÞ is defined as the set of all points x for
which every past-directed causal (i.e. non-spacelike) line
through x intersects D (see Fig. 11 left). Causality implies:

FIG. 11. Left: future Cauchy development DþðDÞ of a generic domain D. Right: D0
1 (light blue) and D

þðD0
1Þ (shaded region between

the blue and light blue hypersurfaces) in ðρ; z; ctÞ coordinates (we have dropped the inessential angle φ); worldlines of the X ¼ 0

electrons (red) and of a couple of off-~z-axis electrons (yellow); the former remain in DþðD0
1Þ longer.
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If two solutions of the system of dynamic equations
coincide in some open spacetime region D, then they
coincide also in DþðDÞ. Therefore, knowledge of one
solution determines also the other (which we will distin-
guish by adding a prime to all fields) in DþðDÞ.
In the problem at hand the solutions are exactly known

for t ≤ 0, i.e. before the laser-plasma interaction begins. We
use causality adopting: (1) as D a region D0

R (see Fig. 11
right) of equations −ϵ ≤ t ≤ 0 and either ρ < R or z > 0,
with some ϵ > 0 (we can take also ϵ ¼ 0 if we assign onD0

R
also the time derivatives of the Aμ, u); (2) as the known
solution the plane one induced (Sec. II) by the plane
transverse electromagnetic potential, which can be approxi-
mated as A⊥ðt; zÞ ¼ α⊥ðct − zÞ under the assumption (25);
(3) as the unknown solution the “real” one induced by the
“real” laser pulse Aμ

fðt; xÞ, which we approximate as a
potential leading to Eq. (3). It is easy to show that DþðD0

RÞ
is the union of three regions, resp. of equations:
(a) z ≥ ct ≥ 0; (b) ct ≥ z ≥ 0 and ρþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2t2 − z2

p
≤ R;

(c) t ≥ 0, z < 0 and ρþ ct ≤ R (see Fig. 11). In DþðD0
RÞ

the two solutions coincide, in particular a “real” electron
worldline xe0ðt;XÞ remains equal to the plane solution
worldline xeðt;XÞ as long as xeðt;XÞ ∈ DþðD0

RÞ.
By continuity, we expect that the two solutions remain

close to each other also in a neighborhood ofDþðD0
RÞ. This

is confirmed by estimates [13] involving the retarded
electromagnetic potential (in the Lorentz gauge ∂ · A ¼ 0)

Aμðt; xÞ ¼ Aμ
fðt; xÞ þ

Z
d3x0

jμ½trðt; x − x0Þ; x0�
jx − x0j ; ðA1Þ

i.e. the general solution of the Maxwell equation □Aμ ¼
4πjμ with a current jμðt; xÞ vanishing for t < 0; here
trðt; x − x0Þ≡ t − jx − x0j=c, Aμ

fðt; xÞ fulfills □Aμ
f ¼ 0

(determining the t → −∞ behavior), andE¼ −1
c ∂tA−∇A0,

B ¼ ∇ × A. Since the formation of Cζ
R is completed at

t ¼ t̄ð0Þ, and the “information” [encoded in (A1)] about the
finite radius of Cζ

R takes a time R=c to go from the lateral
surface ρ ¼ R to the ~z-axis, then if Eq. ð28Þ1 is fulfilled the
X ¼ 0 electrons (red worldline in Fig. 11) move approx-
imately as in Sec. II until the expulsion. Similarly, the
Z≃ 0, ρ≲ r electrons (yellow worldlines in Fig. 11) move
approximately as in Sec. II until t̄þ ðR − rÞ=c, i.e. get the
main backward boost (acceleration is maximal around t̄).
Equation ð28Þ2 is equivalent to

tex ≲ l=c; ⇒ r≃ R;

or 0 < ðtex − l=cÞvρa < R ⇒ r≃ R − ðtex − l=cÞvρa > 0:

If the left-hand side of the first line is fulfilled the surface
electrons are expelled while the laser pulse is still entering
the bulk and thus producing an outward force that keeps the
LE out of Cζ

R. Otherwise, the left-hand side of the second
line ensures that the distance inward traveled by the most
dangerous LE (the Z ¼ 0 ones) after the pulse has
completely entered the bulk is less than R; vρa stands for
the average ρ-component of the velocity of these LE. By
geometric reasons vρa < vza≡ average z-component of the
X ¼ 0 electrons velocity in their backward trip within the
bulk; our rough estimate vρa ≃ vza=2 ¼ ζ=ðtex − t̄Þ2 gives
ð28Þ2. Equation (28) is thus explained.

APPENDIX B: FINITE R ENERGIES

Using cylindrical coordinates ðy; ρ;φÞ for X0, one easily
finds that for ze ≡ Z þ Δ ≤ 0 the electric force generated
by the static charge distribution of Fig. 5(b), the associated
potential energy mc2Ur and the left asymptotes of Ur are

Fz
erðΔ; ZÞ≡

Z
Z2ðZÞ

0

dy en0ðyÞ Z r

0

dρ
2πe2ρðy − zeÞ

½ρ2 þ ðy − zeÞ2�3=2

¼ −2πe2
Z

Z2ðZÞ

0

dy
en0ðyÞðy − zeÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy − zeÞ2 þ r2

p þ 4πe2 ~NðZÞ: ðB1Þ

UrðΔ; ZÞ≡ μ

2

Z
Z2ðZÞ

0

dy ~n0ðyÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ r2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy − Z − ΔÞ2 þ r2

q �
− μ ~NðZÞΔ − μ ~N ðZÞ;

ðB2Þ

Urð−∞; ZÞ ¼ μ

2

Z
Z2ðZÞ

0

dy ~n0ðyÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ r2
q

− y

�
þ μ

Z
Z

0

dy ~n0ðyÞy: ðB3Þ

Here μ≡ 4πe2=mc2. Ur is continuous in ð−Z; ZÞ, since we have chosen Uð−Z; ZÞ as the (Δ-independent) “additive
constants.” Energy conservation implies

γ þ UrðΔ; ZÞ ¼ ˆγ½l; Z� þ Ur½Δ̂ðl; ZÞ; Z� ¼ γ̂½ξexðZÞ; Z� þ Urð−Z; ZÞ:
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The last equality holds only if ẑeðl; ZÞ ≥ 0, i.e. l ≤ ξexðZÞ; the right-hand side is the electrons’ energy when expelled from
the bulk. This leads to the final relativistic factor

γfðZÞ ¼ γ̂ðl; ZÞ − μ ~NðZÞẑeðl; ZÞ þ
μ

2

Z
Z2ðZÞ

0

dy ~n0ðyÞ
�
y −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
y − ẑeðl; ZÞ�2 þ r2

r i

¼ γ̂½ξexðZÞ; Z� þ
μ

2

Z
Z2ðZÞ

0

dy ~n0ðyÞ
�
y −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ r2

q �
if l ≤ ξexðZÞ: ðB4Þ

Deriving this and the identity ~N½Z2ðZÞ� ¼ 2 ~NðZÞ we find en0½Z2ðZÞ� dZ2

dZ ¼ 2 en0ðZÞ and that, as claimed, γfðZÞ is strictly
decreasing, since dγf=dZ is negative-definite:

dγf
dZ

¼ ∂ γ̂ðl;ZÞ
∂Z − μ

2
dZ2

dZ ~n0½Z2ðZÞ�
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½Z2ðZÞ − ẑeðl; ZÞ�2 þ r2
p

− Z2ðZÞ
i

−μ ~n0ðZÞẑeðl; ZÞ − μ ~NðZÞ ∂ẑeðl;ZÞ∂Z ¼ ∂ γ̂
∂Z ðl; ZÞ − μ ~NðZÞ ∂ẑe∂Z ðl; ZÞ

− μ ~n0ðZÞ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Z2ðZÞ − ẑeðl; ZÞ�2 þ r2

q
− Z2ðZÞ þ ẑeðl; ZÞ�: ðB5Þ

For the step-shaped initial density, setting ϕ≡ Δ̂ðl; ZÞ − Z,

UrðΔ; ZÞ ¼
M
4

�
ðΔ − ZÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔ − ZÞ2 þ r2

q
− 4ZðΔþ ZÞ þ r2sinh−1

Δ − Z
r

− ðΔþ ZÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔþ ZÞ2 þ r2

q
− r2sinh−1

Δþ Z
r

þ 2Z2 þ 2Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Z2 þ r2

p
þ r2sinh−1

2Z
r

�
;

Urð−∞; ZÞ ¼ MZ
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Z2 þ r2

p
− Z þ r2

2Z sinh
−1 2Z

R

�
; ðB6Þ

γfðZÞ ¼ γ̂ðl; ZÞ þ M
4

�
ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕþ r2

p
− 4ZΔ̂ðl; ZÞ þ r2sinh−1 ϕ

r −½ϕþ 2Z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ϕþ 2Z�2 þ r2

p
− r2sinh−1 ϕþ2Z

r

	
ðB7Þ

¼ γ̂½ξexðZÞ� þ M
h
Z2 − Z

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Z2 þ r2

p
− r2

4
sinh−1 2Z

r

i
if l ≤ ξexðZÞ:

If l ≤ ξexðZÞ then ∂Z γ̂ ¼ 0 ¼ ∂ZΔ̂ at ξ ¼ ξexðZÞ, eq. (B5) reduces to dγf=dZ ¼ M½Z −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Z2 þ r2

p
�, and (32) to

1=νðγÞ ¼ MZM

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Z2 þ r2

p
− Z

i
Z¼ẐðγÞ

: ðB8Þ

[1] T. Tajima and J. M. Dawson, Laser Electron Accelerator,
Phys. Rev. Lett. 43, 267 (1979).

[2] D. Strickland and G. Mourou, Compression of amplified
chirped optical pulses, Opt. Commun. 56, 219 (1985).

[3] M. D. Perry and G. Mourou, Terawatt to petawatt subpico-
second lasers, Science 264, 917 (1994); and references
therein.

[4] L. M. Gorbunov and V. I. Kirsanov, ZhETF 93, 509 (1987)
[Excitation of plasma waves by an electromagnetic wave
packet, Sov. Phys. JETP 66, 290 (1987)].

[5] P. Sprangle, E. Esarey, A. Ting, and G. Joyce, Laser
wakefield acceleration and relativistic optical guiding,
Appl. Phys. Lett. 53, 2146 (1988).

[6] S. P. Mangles, C. D. Murphy, Z. Najmudin, A. G. Thomas,
J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster,
J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J.
Langley, W. B. Mori, P. A. Norreys, F. S. Tsung,
R. Viskup, B. R. Walton, and K. Krushelnick, Monoener-
getic beams of relativistic electrons from intense
laser-plasma interactions, Nature (London) 431, 535
(2004).

[7] C. G. R. Geddes, Cs. Tóth, J. van Tilborg, E. Esarey, C. B.
Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P.
Leemans, High-quality electron beams from a laser wake-
field accelerator using plasma-channel guiding, Nature
(London) 431, 538 (2004).

GAETANO FIORE and SERGIO DE NICOLA PHYS. REV. ACCEL. BEAMS 19, 071302 (2016)

071302-14

http://dx.doi.org/10.1103/PhysRevLett.43.267
http://dx.doi.org/10.1016/0030-4018(85)90120-8
http://dx.doi.org/10.1126/science.264.5161.917
http://dx.doi.org/10.1063/1.100300
http://dx.doi.org/10.1038/nature02939
http://dx.doi.org/10.1038/nature02939
http://dx.doi.org/10.1038/nature02900
http://dx.doi.org/10.1038/nature02900


[8] J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E.
Lefebvre, J.-P. Rousseau, F. Burgy, and V. Malka, A laser-
plasma accelerator producing monoenergetic electron
beams, Nature (London) 431, 541 (2004).

[9] X. Wang et al., Quasi-monoenergetic laser-plasma accel-
eration of electrons to 2 GeV, Nat. Commun. 4, 1988
(2013).

[10] W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura,
C. Benedetti, C. B. Schroeder, Cs. Tóth, J. Daniels, D. E.
Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes,
and E. Esarey, Multi-GeV Electron Beams from Capillary-
Discharge-Guided Subpetawatt Laser Pulses in the
Self-Trapping Regime, Phys. Rev. Lett. 113, 245002
(2014).

[11] A. Irman, M. J. H. Luttikhof, A. G. Khachatryan, F. A. van
Goor, J. W. J. Verschuur, H. M. J. Bastiaens, and K.-J.
Boller, Design and simulation of laser wakefield accel-
eration with external electron bunch injection in front of the
laser pulse, J. Appl. Phys. 102, 024513 (2007).

[12] C. Joshi, Plasma accelerators, Sci. Am. 294, 40 (2006).
[13] G. Fiore, R. Fedele, and U. de Angelis, The slingshot effect:

A possible new laser-driven high energy acceleration
mechanism for electrons, Phys. Plasmas 21, 113105 (2014).

[14] TH grows with the oscillation amplitude ζ, but goes to the
nonrelativistic period Tnr

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πm=n0e2

p
as ζ → 0.

[15] If τ ≪ TH , then while the pulse is passing Fz
e can be

neglected, and the motion of the electron is close to the one
in vacuum; the backward acceleration takes place after-
wards and is due only to Fz

e, hence the final energy is
smaller. Whereas if τ ≫ TH—which was the standard
situation in laboratories until a couple of decades ago—
then Fpvz oscillates many times about 0, W ≃ 0, and the
backward acceleration is washed out.

[16] G. Fiore, On plane-wave relativistic electrodynamics in
plasmas and in vacuum, J. Phys. A 47, 225501 (2014).

[17] G. Fiore and S. De Nicola, A “slingshot” laser-driven acceler-
ationmechanismof plasma electrons,Nucl. Instrum.Methods
Phys. Res., Sect. A 829, 104 (2016).

[18] G. Fiore, On very short and intense laser-plasma inter-
actions, Ricerche Mat. (in press), doi: 10.1007/s11587-
016-0270-3.

[19] A. A. Sahai, F. S. Tsung, A. R. Tableman, W. B. Mori, and
T. C. Katsouleas, Relativistically induced transparency
acceleration of light ions by an ultrashort laser pulse

interacting with a heavy-ion-plasma density gradient, Phys.
Rev. E 88, 043105 (2013).

[20] A. A. Sahai, Motion of the plasma critical layer during
relativistic-electron laser interaction with immobile and
comoving ion plasma for ion acceleration, Phys. Plasmas
21, 056707 (2014).

[21] J. Badziak, S. Glowacz, S. Jablonski, P. Parys, J. Wolowski,
H. Hora, J. Krása, L. Láska, and K. Rohlena, Production of
ultrahigh ion current densities at skin-layer subrelativistic
laser-plasma interaction, Plasma Phys. Controlled Fusion
46, B541 (2004).

[22] Albeit the pump (3) violates the Maxwell equations (due to
the ρ-dependence), we adopt it as for our purposes it is
essentially equivalent to one that fulfills the Maxwell
equations and at the time of impact coincides with it in
the main part of its support, while rapidly decaying outside
(this and similar approximations, e.g. the paraxial one, are
currently used in the literature).

[23] G. Fiore, Travelling waves and a fruitful ‘time’ reparamet-
rization in relativistic electrodynamics, arXiv:1607.03482.

[24] G. Fiore, On plane waves in diluted relativistic cold
plasmas, Acta Appl. Math. 132, 261 (2014).

[25] G. Fiore, A plane-wave model of the impact of short laser
pulses on plasmas (to be published).
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