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We find that dynamic aperture depends significantly on the bending radii of dipole magnets when
designing a small storage ring for Tsinghua Thomson scattering X-ray source (TTX) mainly because of the
nonlinearity of the dipole field. In this paper, we present systematic studies on the intrinsic-geometric
nonlinearity of dipole magnets. The Hamiltonian approach is used to determine the expressions of the
geometric nonlinear potential and the corresponding third-order resonance strengths. Simulations are
conducted to study these resonances. Our analysis results agree well with the tracking results at the third-
order resonances 3νx ¼ l and νx � 2νz ¼ l, where l’s are the integer multiple of the number of
superperiods.
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I. INTRODUCTION

Compact rings, which have many applications in various
research fields, such as compact light sources [1–3],
boosters [4], and hadron therapy [5–8], are of great interest
to many researchers mainly because of their inexpensive,
flexible, and high-performance properties. They are there-
fore considered excellent supplements to large-scale accel-
erator complexes.
The idea of using a compact laser-electron storage ring in

an inverse Compton scattering (ICS) X-ray source was
proposed by Huang and Ruth [1]. Intense ICS X-rays can
be produced at a MHz-repetition rate by the interactions
between electron beams stored in a compact ring and high
power laser pulses accumulated in an optical cavity. We
plan to add a small electron storage ring to the existing
Tsinghua Thomson scattering X-ray source (TTX) [9]. The
design of a 4.8-m ring for TTX is presented in [10].
Our lattice design ideas use dipole magnets with care-

fully adjusted bending radii and edge angles to provide
proper focusing in both transverse directions and quadru-
pole magnets to adjust the damping partition number and
momentum compaction factor. The bending radii of the
dipole magnets in the ring need to be very small because the
horizontal focusing strength induced by the dipole field is
inversely proportional to the square of the bending radius
(this dependence is shown in Sec. II A). Meanwhile, the

edge angles of the dipole magnets should be large enough
to provide a strong enough vertical focusing.
At the beginning, we designed several lattices with

circumferences of 2.8 m, 3.0 m, 3.6 m, 4.8 m, and
6.0 m, with bending radii of 0.1082 m, 0.1401 m,
0.1464 m, 0.2546 m, and 0.3501 m, respectively. In these
cases, the nonzero edge angles of the dipole magnets were
used to adjust the vertical betatron tunes. Only the linear
effects of the dipole fringe fields were considered by
applying Karl L. Brown’s formalism [11]. The fringe fields
of the quadrupole magnets were not included in the studies.
However, we found that enlarging the dynamic aperture
became more and more difficult when the bending radii of
dipole magnets became smaller. We started to look at the
nonlinearity of the dipole field, which was eventually
demonstrated the key limitation of the dynamic aperture
in the lattices mentioned above because nonlinear multipole
field did not exist in the lattice. We call this nonlinearity the
intrinsic-geometric nonlinearity of dipole field.
Furthermore, many studies [11–16] indicated that the

fringe fields of dipole magnets can influence the beam
dynamics in a ring, especially when the bending radii of
dipole magnets are small. In our studies [10], we have
considered the linear effects of dipole fringe fields, in
which the vertical gap of the dipole magnets (g) and the
fringe field integral (FINT) are variables. A Lie map
generator of the dipole fringe field was derived by
Hwang and Lee recently [16]. Their results show that
the nonlinear effects of dipole fringe fields are critical in the
TTX ring. Therefore, the serious consideration of the fringe
field effects is necessary in both the optimization of lattice
and the design of magnets. However, the nonlinear fringe
field effects are out of the scope of our paper.
In this paper, we present our studies of the intrinsic-

geometric nonlinearity of dipole magnets. We exclude all
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the other nonlinear sources, such as the nonlinearity of the
dipole fringe fields and the nonlinear multipole fields, to
simplify our study. The rest of this paper is organized as
follows. In Sec. II, the nonlinear Hamiltonian dynamics in
the Frenet-Serret coordinate system is discussed. The
expressions of the new Hamiltonian and the corresponding
resonance strengths in the action-angle variables are pro-
vided in this section. In Sec. III, we present the calculations
of the resonance strengths using the lattices based on the
TTX ring layout as examples. The resonance strengths of
the third-order resonance 3νx ¼ 4 and the third-order
coupling resonance νx − 2νz ¼ −2 driven by the dipole
fields are calculated both analytically and by fitting the
tracking data. The results from these two methods are
compared. The dependence of the resonance strengths on
the bending radii of dipole magnets is also studied. The
conclusion is in Sec. IV.

II. THEORY

A. Hamiltonian for particle motion

The Hamiltonian for particle motion in the Frenet-Serret
coordinate system can be expressed by (e.g., [17])

~H ¼ −
�
1þ x

ρ

��ðH − eϕÞ2
c2

−m2c2 − ðpx − eAxÞ2

− ðpz − eAzÞ2
�
1=2

− eAs; ð1Þ

where the six dimensional phase-space coordinates are
ðx; px; z; pz; t;−HÞ, ρ denotes the bending radius, and ϕ

and ~AðAx; Az; AsÞ are the scalar potential and vector
potential in the Frenet-Serret coordinate system,
respectively.
Since the transverse conjugate momenta px and

pz are much smaller than the total momentum

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH−eϕÞ2

c2 −m2c2
q

, we expand the Hamiltonian ~H up

to the second order in px and pz. The expanded
Hamiltonian is as follows:

~H≈−p
�
1þx

ρ

�
þ1þx=ρ

2p
½ðpx−eAxÞ2þðpz−eAzÞ2�−eAs:

ð2Þ

As mentioned above, we need to exclude all the non-
linear multipole components (e.g., sextupole terms) to
study the intrinsic-geometric nonlinearity of dipole field.
Therefore, the vector potential for a ring consisting of
ideal dipole and quadrupole fields can be represented by
Ax ¼ Az ¼ 0 and

Asðx; zÞ ¼ B0xþ
1

2ρ
B0x2 þ

1

2
B1x2 −

1

2
B1z2

where B0ðsÞ ¼ −p=ðeρÞ and B1ðsÞ ¼ ∂Bz=∂x are the
dipole field strength and quadrupole gradient, respectively.
By substituting the expressions of the vector potential

~AðAx; Az; AsÞ mentioned above into Eq. (2) and using ~px ¼
px=p and ~pz ¼ pz=p as the conjugate momenta, we can
obtain new Hamiltonian as follows:

H ¼
~H
p
¼ H0 þ Vnonlinear

H0 ¼
�
1

2
~px
2 þ 1

2
KxðsÞx2 þ

1

2
~pz
2 þ 1

2
KzðsÞz2

�

Vnonlinear ¼
1

2

x
ρ
ð ~px

2 þ ~pz
2Þ ð3Þ

where KxðsÞ ¼ ð 1
ρ2
− B1

BρÞ and KzðsÞ ¼ B1

Bρ are the horizontal

and vertical focusing functions with the dimension ½m−2�,
respectively, where H0 is the unperturbed Hamiltonian for
the linear betatron motion and Vnonlinear is the nonlinear
perturbing potential. Unlike the nonlinearities of multipole
fields discussed in many books (e.g., Chapter 2.VII in [17];
Chapter 13 and 14 in [18]), the Vnonlinear shown in Eq. (3) is
induced by the dipole field. This term is usually negligible
in the analysis of nonlinearity in a synchrotron with large ρ.
However, the expression of Vnonlinear shows that its impor-
tance in compact rings increases with decreased ρ.

B. Floquet transformation

We carry out the Floquet transformation [17] to the
Hamiltonian shown in Eq. (3) to obtain a clearer picture of
the particle motion. The original position-momentum
variables ðx; ~px; z; ~pzÞ are replaced by the action-angle
variables ðJx;ϕx; Jz;ϕzÞ using

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2βxJx

p
cosðΦxÞ

βx ~px þ αxx ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
2βxJx

p
sinðΦxÞ;

z ¼ ffiffiffiffiffiffiffiffiffiffiffi
2βzJz

p
cosðΦzÞ

βz ~pz þ αzz ¼ −
ffiffiffiffiffiffiffiffiffiffiffi
2βzJz

p
sinðΦzÞ;

where Φx ¼ ϕx þ χxðsÞ − νxθ and Φz ¼ ϕz þ χzðsÞ − νzθ
are the phase functions, αx, βx, αz and βz are the Courant-
Snyder parameters, χxðsÞ ¼

R
s
0

1
βx
ds and χzðsÞ ¼

R
s
0

1
βz
ds

are the betatron phases, νx and νz are betatron tunes, and
θ ¼ s=R denotes the orbiting angle around the ring, while
R is the mean radius of the ring.
The resulting Hamiltonian in action-angle variables can

be written as H̄ ¼ H̄0 þ V̄nonlinear, where the unperturbed
Hamiltonian is H̄0 ¼ RH0 ¼ νxJx þ νzJz, depending only
on action variables Jx and Jz. The unperturbed Hamiltonian
H̄0 is a constant in the new action-angle coordinate system
because θ is the new independent “time” variable after the
transformation.
The Floquet transformation of the nonlinear perturbing

potential is
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V̄nonlinear ¼
ffiffiffiffiffiffiffiffiffi
βxJx

p
ffiffiffi
2

p
ρ

��
α2xJx
2βx

−
Jx
2βx

�
cos 3Φx þ

�
αxJx
βx

�
sin 3Φx

þ
�
αxJx
βx

�
sinΦx þ

�
3α2xJx
2βx

þ Jx
2βx

þ α2zJz
βz

þ Jz
βz

�
cosΦx

þ
�
α2zJz
2βz

−
Jz
2βz

�
· cosðΦx þ 2ΦzÞ þ

�
αzJz
βz

�
· sinðΦx þ 2ΦzÞ

þ
�
α2zJz
2βz

−
Jz
2βz

�
· cosðΦx − 2ΦzÞ −

�
αzJz
βz

�
· sinðΦx − 2ΦzÞ

�
: ð4Þ

Given that the nonlinear perturbing potential V̄nonlinear is a periodic function of s, it can be expanded in Fourier harmonics
as follows:

V̄nonlinear ¼
X
l

fg3;0;3;0;lJ3=2x cosð3ϕx − lθ þ ξ3;0;3;0;lÞ

þ g1;0;3;0;lJ
3=2
x cosðϕx − lθ þ ξ1;0;3;0;lÞ

þ g1;0;1;2;lJ
1=2
x Jz cosðϕx − lθ þ ξ1;0;1;2;lÞ

þ g1;2;1;2;lJ
1=2
x Jz cosðϕx þ 2ϕz − lθ þ ξ1;2;1;2;lÞ

þ g1;−2;1;2;lJ
1=2
x Jz cosðϕx − 2ϕz − lθ þ ξ1;−2;1;2;lÞg ð5Þ

where the coefficients are

g3;0;3;0;lejξ3;0;3;0;l ¼
ffiffiffi
2

p

8π

I
α2x − 1 − 2jαx

ρβ1=2x

ej½3χxðsÞ−ð3νx−lÞθ�ds

g1;0;3;0;lejξ1;0;3;0;l ¼
ffiffiffi
2

p

8π

I
3α2x þ 1 − 2jαx

ρβ1=2x

ej½χxðsÞ−ðνx−lÞθ�ds

g1;0;1;2;lejξ1;0;1;2;l ¼
ffiffiffi
2

p

4π

I ðα2z þ 1Þβ1=2x

ρβz
ej½χxðsÞ−ðνx−lÞθ�ds

g1;2;1;2;lejξ1;2;1;2;l ¼
ffiffiffi
2

p

8π

I ðα2z − 1 − 2jαzÞβ1=2x

ρβz
ej½χxðsÞþ2χzðsÞ−ðνxþ2νz−lÞθ�ds

g1;−2;1;2;lejξ1;−2;1;2;l ¼
ffiffiffi
2

p

8π

I ðα2z − 1þ 2jαzÞβ1=2x

ρβz
ej½χxðsÞ−2χzðsÞ−ðνx−2νz−lÞθ�ds: ð6Þ

C. Resonances

The nonlinear perturbing potential V̄nonlinear in Eq. (5)
shows that three kinds of resonances (νx ¼ l, 3νx ¼ l, and
νx � 2νz ¼ l, where l is an integer) can be driven by the
dipole field.
A particle’s motion is widely known to be dominated by

the specific resonance when the betatron tunes of the
particle are close to this resonance line. Therefore, when
the betatron tunes of a particle are near the resonance line
mνx þ nνz ¼ l, the Hamiltonian can be written in the
following form:

H̄ ¼ νxJx þ νzJz þ gm;n;p;q;lJ
p=2
x Jq=2z

· cosðmϕx þ nϕz − lθ þ ξm;n;p;q;lÞ; ð7Þ

where m, n, p, q, and l are all integers; (jmj þ jnj) denotes
the order of the resonance; p and q satisfy p ≥ jmj and
q ≥ jnj, respectively; ξm;n;p;q;l is the resonance phase; and
gm;n;p;q;l is the resonance strength. The subscripts of the
resonances, which can be driven by the dipole field, are
listed in Table I. The expressions of the corresponding
gm;n;p;q;l of these resonances are shown in Eq. (6), which
can be used to estimate the resonance strengths driven by
the dipole fields analytically. The resonance strengths
shown in Eq. (6) are determined by the bending radius
ρ, the Courant-Snyder parameters, and the resonance
proximity numbers δ (for a particle near the resonance
line mνx þ nνz ¼ l, δ ¼ mνx þ nνz − l). We notice that ρ
is always in the denominators, which implies that the
resonances tend to become stronger when the bending
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radius becomes smaller. If all the other terms remain the
same, the resonance strengths are inversely proportional to
the bending radius ρ.
The Hamiltonian shown in Eq. (7) is valid for describing

the particle motion close to any resonance line, regardless if
it is driven by dipole or sextupole fields. However, the
expressions of gm;n;p;q;l are different in these two cases.
Supposing P superperiods are in a ring, the positions of the
dipole fields satisfy the same periodic condition automati-
cally. Therefore, the systematic resonances driven by dipole
fields are always located at the l ¼ P × integer. However,
it is not as straightforward for the sextupole driven
resonances because the arrangement of the sextupole
magnets requires extra attention to ensure that the sextupole
fields satisfy the same periodic condition.

III. CALCULATIONS OF THE
RESONANCE STRENGTHS

The derivation of the Hamiltonian and the resonance
strengths corresponding to the dipole-driven resonances are
provided in the last section. In this section, we present the
calculations of the resonance strengths by applying the
analytical formulas shown in Eq. (6) and compare them
with the results extracted from particle tracking. Integer and
half-integer resonances should be avoided in designing a
lattice because they are extremely dangerous. Therefore,
the strength of the dipole-driven integer resonance is not
calculated here. We study the third-order resonances
3νx ¼ l and νx � 2νz ¼ l induced by dipole fields
carefully in this section.
The layout of the TTX electron storage ring, consisting

of only four dipole and two quadrupole magnets, is used as
an example here. The schematic drawing of the ring is
shown in Fig. 1. In this example, each dipole magnet
should provide a 90° bending angle to the reference
particle. In addition, the nonzero edge angles at both the
entrance and exit of the dipole magnets provide vertical
focus to the beam. Neither the nonlinear multipole magnets
nor the nonlinear fringe fields of the dipole magnets are
included in the lattice, which means that the dipole magnets
are the only possible sources of nonlinearity. Two ideal
quadrupole magnets are located at the centers of the two
opposite straight sections. A lattice using the layout
mentioned above has two superperiods. Therefore, a
resonance is systematic when l is an even integer.

Using the layout mentioned above, we are able to obtain
many lattices, which satisfy the necessary condition for
orbit stability jTraceðMÞj ≤ 2 (M denotes the one-turn
transfer matrix). The optical functions can be calculated
easily. The resonance strengths can then be calculated by
substituting the Courant-Snyder parameters, the betatron
tunes, and ρ into Eq. (6).
The resonance strengths can also be obtained by fitting

the turn-by-turn tracking data to the Hamiltonian [see
Eq. (7)] when the betatron tunes are adjusted closely to
the specific resonance line. The fitting process near a
3νx ¼ l resonance can be simplified to a 1D problem
because the particle motion can be well approximated by a
1D Hamiltonian. However, the fitting near a coupling
resonance is not as straightforward. The proper canonical
transformation needs to be carried out first to decouple the
equations of motion.
The code ELEGANT [19] is selected for the calculations

of the optical functions and tracking because ELEGANT

performs symplectic integration for hard-edge dipole mag-
nets using the exact Hamiltonian [shown in Eq. (1)] [20]
instead of the truncated Hamiltonian. In principle, all the
nonlinear perturbing potential terms we require are
included automatically in the tracking because of the usage
of the exact Hamiltonian. The fourth-order symplectic
integration method is applied in the particle tracking.
The bending radius, edge angles of the dipole magnets,

quadrupole strength, and circumference are used to adjust
the optical functions of the lattices, while maintaining two
superperiods in each lattice.

A. Third-order resonances 3νx =l

Using the layout shown in Fig. 1, we achieve the design
of a 4.8-m lattice with νx ¼ 1.2783 and νz ¼ 1.5334, where
the length of each dipole magnet is 0.4 m (corresponding to
ρ ¼ 0.2546 m), the edge angles at both the entrance and
exit of the dipole magnets are 29°, the focusing strength of
each quadrupole magnet isK1lQ ¼ 0.4 m−1, and both short
straight sections are 0.5 m. The corresponding betatron

FIG. 1. Schematic of the example ring. The lattice consists of 4
dipoles (indices from B1 to B4) and 2 quadrupoles (Q1 and Q2).
The Frenet-Serret coordinate system is represented by ðx; z; sÞ.

TABLE I. Types of resonances that can be driven by the dipole
field and the corresponding subscripts.

Resonances m n p q

3νx ¼ l 3 0 3 0
νx ¼ l 1 0 3 0
νx ¼ l 1 0 1 2
νx þ 2νz ¼ l 1 2 1 2
νx − 2νz ¼ l 1 −2 1 2
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amplitude and horizontal dispersion functions are shown
in Fig. 2.
Because the horizontal bare betatron tune νx ¼ 1.2783 is

close to the systematic third-order resonance line 3νx ¼ 4,
the particle motion is dominated by this resonance. The
resonance strength g3;0;3;0;4 ¼ 1.0179 ½πm�−1=2 can be
obtained by substituting the values of the required optics
parameters into the analytical expression of g3;0;3;0;l, where
l equals 4 in this case. The calculation can be simplified by
selecting the s ¼ 0 position properly to make sure that the
resonance phase ξ3;0;3;0;4 ¼ 0.
We track several on-momentum particles with different

horizontal amplitudes to calculate the resonance strength
through the tracking method. The coordinates of these
particles are recorded turn-by-turn. Figure 3 is the Poincaré

map showing the trajectories of the tracked particles in the
normalized horizontal phase space ðX;PxÞ, where X ¼ x
and Px ¼ βx ~px þ αxx. The triangle distortion of the phase-
space trajectories indicates clearly that the corresponding
particles are dominated by a third-order resonance.
Since the particle motion is dominated by the resonance

3νx ¼ 4, the Hamiltonian can be well-approximated by the
following 1D form

H3 ≈ νxJx þ g3;0;3;0;4J
3=2
x cos ð3ϕx − lθ þ ξ3;0;3;0;4Þ: ð8Þ

After transforming the particles’ coordinates ðx; ~pxÞ to
the action-angle variables ðJx;ϕxÞ, we can fit the tracking
data using Eq. (8) to extract the resonance strength. Both
the tracking data and the fitted Hamiltonian tori are shown
in Fig. 4, where the solid curves denote the fitted
Hamiltonian tori, and the cross marks are the tracking
data points. The fitted value of the resonance strength
is g3;0;3;0;4 ¼ 0.8685 ½πm�−1=2.
We developed four more cases with different bending

radii similar to the case described above. In all these cases,
the horizontal betatron tune is selected to be the same value
(νx ¼ 1.2783), which means that the same systematic third-
order resonance line 3νx ¼ 4 dominates. The resulting
resonance strengths g3;0;3;0;4 calculated by both analytical
and tracking methods are listed in Table II. The relative
differences between the fitted and analytical values of the
resonance strength g3;0;3;0;4 are also presented in the same
table. We notice that the absolute values of the relative
differences are always smaller than 30% in all the exam-
ples, which means that the estimation of the resonance
strength g3;0;3;0;4 by the analytical formula is reasonably
good. The discrepancy between the analytical estimations
and the values extracted from the tracking results may be
due to the fact that more than one resonance line influences
the particle motion. Even though the resonance 3νx ¼ 4
may be dominant, at least one other resonance that is not
negligible exists. However, we are still able to predict
roughly whether the third-order resonance lines 3νx ¼ l

FIG. 3. Poincaré map showing the tracking data points of the
particles in the horizontal normalized phase space ðX;PxÞ. Each
color denotes the phase-space trajectory of one particle.

FIG. 4. Tracking data points and fitted Hamiltonian tori in the
horizontal action-angle space.

FIG. 2. Layout and the corresponding betatron amplitude and
dispersion functions of a 4.8-m ring, which serves as an example
to analyze the 3νx ¼ l like third-order resonances.
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dominate and evaluate roughly how strong the resonances
are by estimating the resonance strengths g3;0;3;0;l using the
analytical formula instead of carrying out massive tracking
simulations. Tracking is only required when the influences
of the resonances need to be studied quantitatively.
The results in Table II show that the resonance strength is

higher when the bending radius is becoming smaller,
except in case 3. This phenomena is caused by the
dependence of the resonance strength not only on the
bending radius but also on the Courant-Snyder parameters.
We need to exclude the influences of the Courant-Snyder
parameters to check the dependence of the resonance
strength g3;0;3;0;4 on the bending radii. Therefore, 100 stable
lattices are randomly generated at each ρ value, which
means that the Courant-Snyder parameters are also ran-
domly generated. The random variables are the strength of
quadrupoles, edge angles of the dipole magnets, and the
length of the straight sections. All the randomly generated
lattices have the same horizontal betatron tunes to maintain
a fair comparison. The resonance strength g3;0;3;0;4 is
calculated in each case by the analytical formula. The
mean values and standard deviations of g3;0;3;0;4, calculated
at each bending radius, are represented by the cross marks
and error bars in Fig. 5, respectively. The resonance

strength is inversely proportional to ρ if the influences
of the Courant-Snyder parameters are excluded. Therefore,
we apply the hyperbolic fitting on the calculated resonance
strengths. The fitted curve is represented by the blue dashed
curve in Fig. 5. The good agreement between the calculated
resonance strengths and the fitting curve shows that the
resonance strength g3;0;3;0;4 tends to be inversely propor-
tional to the bending radius of the dipole magnets. The
larger standard deviation of resonance strength at the
smaller ρ indicates that the nonlinearity becomes more
sensitive to the lattice design.

B. Third-order coupling resonances νx − 2νz =l

When the betatron tunes are adjusted closely to the third-
order coupling resonance lines νx − 2νz ¼ l, the coupling
Hamiltonian can be expressed by

H3rd-Coupling≈νxJxþνzJzþg1;−2;1;2;lJ
1=2
x Jz

×cosðϕx−2ϕz−lθþξ1;−2;1;2;lÞ ð9Þ

which is no longer a 1D Hamiltonian. Therefore, fitting the
tracking data to this Hamiltonian is very difficult. A proper
canonical transformation needs to be carried out to decou-
ple the particle motion and determine the proper way to
extract the resonance strength g1;−2;1;2;l.
We can carry out the canonical transformation using the

second type of generating function

F2ðϕx;ϕz;J1;J2Þ¼ðϕx−2ϕz−lθþξÞJ1þϕzJ2; ð10Þ

where ϕx and ϕz denote the old phase variables, corre-
sponding to the old action variables Jx and Jz, and J1 and
J2 denote the new action variables corresponding to the
new phase variables ϕ1 and ϕ2.
The transformation between the old and the new action-

angle variables can be expressed by

Jx ¼
∂F2

∂ϕx
¼ J1

Jz ¼
∂F2

∂ϕz
¼ J2 − 2J1

ϕ1 ¼
∂F2

∂J1 ¼ ðϕx − 2ϕz − lθ þ ξÞ

ϕ2 ¼
∂F2

∂J2 ¼ ϕz:

Therefore, the new Hamiltonian in the new action-angle
variables is

Hnew¼H3rd-Couplingþ
∂F2

∂θ
¼δJ1þνzJ2þg1;−2;1;2;lJ

1=2
1 ðJ2−2J1Þcosϕ1 ð11ÞFIG. 5. Resonance strength in cases with different bending

radii ρ.

TABLE II. Comparison of the resonance strength g3;0;3;0;4
calculated by analytical method (gana) and tracking method
(gfit) in different bending radii ρ.

Bending
Radius

Analytical
Resonance
Strength

Fitted
Resonance
Strength

Relative
Difference

Index ρ [m]
gana

½πm�−1=2
gfit

½πm�−1=2 gfit−gana
gana

1 0.1082 4.0898 3.4835 −14.82%
2 0.1401 2.3308 2.1989 −5.66%
3 0.1464 0.8642 0.6543 −24.29%
4 0.2546 1.0179 0.8685 −14.67%
5 0.3501 0.6438 0.8089 25.78%
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where δ ¼ νx − 2νz − l is the resonance proximity param-
eter. Because the Hamiltonian Hnew is independent of ϕ2,
we obtain _J2 ¼ −∂Hnew=∂ϕ2 ¼ 0 by the Hamilton’s equa-
tion, which means that J2 ¼ 2Jx þ Jz is an invariant.
The equation of motion becomes

_J1 ¼
dJ1
dθ

¼ −
∂Hnew

∂ϕ1

¼ g1;−2;1;2;lJ
1=2
1 ðJ2 − 2J1Þ sinϕ1

ð12Þ

which shows that the equation of motion in the new action-
angle variables is not coupled.
We then design a 4.8-m ring using the layout shown in

Fig. 1 to study the coupling resonances νx − 2νz ¼ l. The
betatron tunes are νx ¼ 1.0889 and νz ¼ 1.5379 (close to the
resonance νx − 2νz ¼ −2) when the length of each dipole
magnet is 0.4 m (corresponding to ρ ¼ 0.2546 m), the edge

FIG. 6. Betatron amplitude and dispersion functions of a 4.8 m
ring, which is used to study the third-order coupling resonance
at νx − 2νz ¼ l.

FIG. 7. The upper two plots are the horizontal and vertical normalized phase space, respectively. The lower left plot shows the actions
Jx, Jz, and J2 vs turns. The lower right plot shows the tracking data of the test particle, the corresponding linear fit equation, and the
R-squared of the fitting.
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angles at both the entrance and exit of the dipole magnets are
26.77°, the FINT value is 0.2, and the focusing strength of
each quadrupole magnet is K1lQ ¼ −1.6 m−1. The corre-
sponding betatron amplitude and horizontal dispersion
functions are shown in Fig. 6. By substituting the necessary
optical parameters of this lattice into Eq. (6), we can obtain
the resonance strength g1;−2;1;2;−2 ¼ 1.166 ½πm�−1=2.
To study this coupling resonance by tracking, we select a

test particle with the following initial coordinates:
xini ¼ 0.1 mm, zini ¼ 1 mm, and x0ini ¼ z0ini ¼ 0. The non-
zero initial betatron amplitudes in both the horizontal and
vertical directions are necessary to study the coupled
motion.
The Poincaré maps of the test particle in the horizontal

and vertical normalized phase spaces are shown in
Figs. 7(a) and (b). Both the horizontal and vertical
phase-space trajectories are smeared because of the
coupling. Figure 7(c) shows the old and new actions
turn-by-turn. The Jx and Jz are out of phase because of
the coupling. J2 seems an invariant, which shows quali-
tatively that the particle motion is dominated by the
resonance νx − 2νz ¼ l. The turn-by-turn data points of
the particle are recorded in the ðJx; JzÞ space (shown as the
blue points in Fig. 7(d)) to calculate the value of the new
invariant J2. Furthermore, linear fitting to the tracking data
is carried out, causing the equation of the fitting curve to be
Jz þ 1.997Jx ¼ 1.898 ½μm�, which agrees perfectly with
the theoretical prediction Jz þ 2Jx ¼ J2 ¼ invariant.
The R-squared value of this fitting is 0.9667, which is
reasonably good.
To extract the resonance strength g1;−2;1;2;l from the

tracking data, we can fit the data using Eq. (12), where
_J1 ¼ dJ1=dθ is the derivative of J1 to the orbiting angle θ,
and ϕ1 ¼ ϕx − 2ϕz þ 2θ þ ξ1;−2;1;2;l. Because we record
the particle’s coordinates turn-by-turn, the derivative _J1 can
be approximated by ðJ1ðnþ1Þ − J1ðn−1ÞÞ=ð2 · 2πÞ (n ≥ 2).
We can obtain the following equation by moving the term
J1=21 ðJ2 − 2J1Þ to the left-hand side of the Eq. (12).

_J1
J1=21 ðJ2 − 2J1Þ

¼ g1;−2;1;2;l · sinϕ1 ð13Þ

which can be used directly in fitting the tracking data. Both
the resonance strength g1;−2;1;2;l and phase ξ1;−2;1;2;l can be
obtained [21].
The turn-by-turn data points and the fitted curve are

shown in Fig. 8. The two fitted values are g1;−2;1;−2;−2 ¼
1.162 ½πm�−1=2 and ξ1;−2;1;2;−2 ¼ −0.001854, respectively.
The fitted resonance strength agrees excellently with the
analytical value g1;−2;1;2;−2 ¼ 1.166 ½πm�−1=2.

IV. CONCLUSION

In this paper, we present our study of the intrinsic-
geometric nonlinearity of dipole magnets in small rings. We
derive the general form of the Hamiltonian near the dipole-
driven resonances in action-angle variables. The analysis
shows that three kinds of resonances (νx ¼ l, 3νx ¼ l, and
νx � 2νz ¼ l, where l is an integer) can be driven by the
dipole field. The analytical expressions of the strengths of
these resonances are provided.
We use the layout of the TTX storage ring as an example

to calculate the strengths of the third-order resonances
3νx ¼ l and νx � 2νz ¼ l both analytically and by sim-
ulation and examine the validity of the analytical results.
Particle tracking is carried out by the ELEGANT code when
the betatron tunes move closely to the systematic resonance
lines. The third-order resonance 3νx ¼ 4 and the third-
order coupling resonance νx − 2νz ¼ −2 are the two
resonance lines we use in this paper. The calculation results
show that the strengths of these two resonances extracted
from tracking agree reasonably well with the values
calculated analytically.

ACKNOWLEDGMENTS

This work was supported by the National Nature
Science Foundation of China (Grants No. 11475097 and
11375097) and the National Key Scientific Instrument
and Equipment Development Project of China (Grants
No. 2013YQ1203454). One of the authors (SYL) is
supported in part by grants from the U.S. Department of
Energy under Contracts No. DE-FG02-12ER41800, and
the National Science Foundation (NSF) No. PHY-1504778.

[1] Z. Huang and R. D. Ruth, Laser-Electron Storage Ring,
Phys. Rev. Lett. 80, 976 (1998).

[2] J. Abendroth et al., X-ray structure determination of the
glycine cleavage system protein H of Mycobacterium
tuberculosis using an inverse Compton synchrotron
X-ray source, J. Struct. Funct. Genomics 11, 91 (2010).

FIG. 8. Tracking data and the corresponding fitted curve.

XU, HUANG, TANG, and LEE PHYS. REV. ACCEL. BEAMS 19, 064001 (2016)

064001-8

http://dx.doi.org/10.1103/PhysRevLett.80.976
http://dx.doi.org/10.1007/s10969-010-9087-6


[3] A. Loulergue et al., in Proceedings of the International
Particle Accelerator Conference, Kyoto, Japan (ICR,
Kyoto, 2010), p. THPE060.

[4] D. L. Friesel and S. Y. Lee, in Proceedings of the Particle
Accelerator Conference, Dallas, TX, 1995 (IEEE,
New York, 1995), p. 336; X. Kang, Ph.D. Thesis, Indiana
University, 1998.

[5] K. Hiramoto et al., in Proceedings of the Particle
Accelerator Conference, Vancouver, BC, Canada, 1997
(IEEE, New York, 1997), p. 3813.

[6] A. Morita et al., in Proceedings of the 18th Particle
Accelerator Conference, New York, 1999 (IEEE,
New York, 1999), p. 2528.

[7] K. Endo et al., in Proceedings of the European Particle
Accelerator Conference, Vienna, 2000 (EPS, Geneva,
2000), p. 2515.

[8] Nader Al Harbi and S. Y. Lee, Design of a compact
synchrotron for medical applications, Rev. Sci. Instrum.
74, 2540 (2003).

[9] C. X. Tang et al., Tsinghua Thomson scattering X-ray
source, Nucl. Instrum. Methods Phys. Res., Sect. A 608,
S70 (2009).

[10] H. S. Xu, W. H. Huang, C. X. Tang, and S. Y. Lee, Design
of a 4.8-m ring for inverse Compton scattering x-ray
source, Phys. Rev. ST Accel. Beams 17, 070101 (2014).

[11] Karl L. Brown, Report No. SLAC-75, 1982.
[12] K. Makino, B. Erdléyi, and M. Berz, in Proceedings of the

Particle Accelerator Conference, Chicago, IL, 2001
(IEEE, New York, 2001), p. 451.

[13] Y. Papaphilippou, J. Wei, and R. Talman, Deflections
in magnet fringe fields, Phys. Rev. E 67, 046502
(2003).

[14] Y. Cai and Y. Nosochkov, Report No. SLAC-PUB-11181,
2005.

[15] B. D. Muratori, J. K. Jones, and A. Wolski, Analytical
expressions for fringe fields in multipole magnets, Phys.
Rev. ST Accel. Beams 18, 064001 (2015).

[16] K. Hwang and S. Y. Lee, Dipole fringe field thin map for
compact synchrotrons, Phys. Rev. ST Accel. Beams 18,
122401 (2015).

[17] S. Y. Lee, Accelerator Physics, Third ed. (World Scientific,
Singapore, 2012).

[18] H. Wiedemann, Particle Accelerator Physics, Third ed.
(Springer, New York, 2007).

[19] M. Borland, Advanced Photon Source Report No. LS-287,
2000.

[20] M. Borland, Report No. AOP-TN-2010-029, Rev. 2, 2010.
[21] M. Ellison et al., Experimental measurements of invariant

surface near a 2D nonlinear resonance, Phys. Rev. E 50,
4051 (1994).

INTRINSIC NONLINEAR EFFECTS OF DIPOLE MAGNETS …PHYS. REV. ACCEL. BEAMS 19, 064001 (2016)

064001-9

http://dx.doi.org/10.1063/1.1561598
http://dx.doi.org/10.1063/1.1561598
http://dx.doi.org/10.1016/j.nima.2009.05.088
http://dx.doi.org/10.1016/j.nima.2009.05.088
http://dx.doi.org/10.1103/PhysRevSTAB.17.070101
http://dx.doi.org/10.1103/PhysRevE.67.046502
http://dx.doi.org/10.1103/PhysRevE.67.046502
http://dx.doi.org/10.1103/PhysRevSTAB.18.064001
http://dx.doi.org/10.1103/PhysRevSTAB.18.064001
http://dx.doi.org/10.1103/PhysRevSTAB.18.122401
http://dx.doi.org/10.1103/PhysRevSTAB.18.122401
http://dx.doi.org/10.1103/PhysRevE.50.4051
http://dx.doi.org/10.1103/PhysRevE.50.4051

