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In particle accelerators the process of beam absorption is vital. At CERN particle beams are accelerated at
energies of the order of TeV. In the event of a system failure or following collisions, the beamneeds to be safely
absorbed by dedicated protecting blocks. The thermal shock caused by the rapid energy deposition within the
absorbing block causes thermal stresses that may rise above critical levels. The present paper provides a
convenient expression of such stresses under hypotheses described hereafter. The temperature field caused by
the beam energy deposition is assumed to be Gaussian. Such a field models a non-diffusive heat deposition.
These effects are described as thermoelastic as long as the stresses remain below the proportional limit and can
be analyticallymodeled by the coupled equations of thermoelasticity. The analytical solution to the uncoupled
thermoelastic problem in an infinite domain is presented herein and matched with a finite unit radius sphere.
The assumption of zero diffusion as well as the validity of the match with a finite geometry is quantified such
that the obtained solutions can be rigorously applied to real problems. Furthermore, truncated series solutions,
which are not novel, are used for comparison purposes. All quantities are nondimensional and the problem
reduces to a dependence of five dimensionless parameters. The equations of elasticity are presented in the
potential formulation where the shear potential is assumed to be nil due to the source being a gradient and
the absence of boundaries. Nevertheless equivalent three-dimensional stresses are computed using the
compressive potential and optimized using standard analytical optimization methods. An alternative
algorithm for finding the critical points of the three-dimensional stress function is presented. Finally, a
case study concerning the proton synchrotron booster dump is presentedwhere the aforementioned analytical
solutions are used and the preceding assumptions verified.
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I. INTRODUCTION

Beam dumps and beam stoppers are blocks of material
dedicated to absorbing charged particles and consequently
removing them from circulating beams. Typical issues
arising from with the design of a beam dump include:
heat dissipation, radioactivation, radiation damages and
thermal stresses on which we focus herein. For beam
energies in GeVor TeV range as in the proton synchrotron
booster (PSB) and LHC respectively, the physics involved
in the energy deposited is governed by the electromagnetic
shower development initiated by nuclear reactions of beam
particles impacting the material lattice [1]. FLUKA [2,3], a
Monte-Carlo based software, is currently the standard tool
used at CERN for this important application.
In the context of the proton synchrotron booster used to

inject the beam from the linear accelerators to the proton
synchrotron (PS) [4,5], it is essential to ensure the inter-
ception of high energy proton beams. This is accomplished
by using beam intercepting devices (BIDs) where the

particle beam loses and deposits energy mostly in the
form of heat in the intercepting device or it is scattered
away from the nominal orbit.
At CERN, energies of the accelerated particle beams

range from a few KeV to 7 TeV and within time
intervals ranging from ns to ms resulting in high tempe-
rature gradients which in turn give rise to severe quasistatic
or dynamic stresses [6–8]. Temperatures may rise to the
point of phase change [8] although in many cases where
phase change is not present, temperatures can still rise
enough to cause structural failure [9]. Stresses are a direct
consequence of the induced temperature field that can also
result in failure.
Analytical studies for rapid heating and the associated

thermoelastic problem using lasers or welding processes
have been extensively studied in [10–13] for Gaussian
distribution sources where even nonlinearities are taken
into account. An analytical solution for a moving laser
pulse modeled as a moving Gaussian is given by [14].
Dynamic thermoelasticity in a finite space using a uni-
formly distributed source is well explained in [15] and is
simple to obtain from Sturm-Liouville theory. In the finite
space problem one must be careful when truncating the
infinite series solutions as convergence maybe dependent
on the parameters of the problem, for example velocity of
sound or size of the Gaussian source.
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The need for three dimensional solutions for the infinite
space thermoelastic problem has grown with the develop-
ment of accelerator technology. Analytical solutions of the
nondimensionalized problem in infinite space are very
useful for the initial stages of the design of a BID. Such
analytical solutions, which are absent from the literature,
offer a physical insight into phenomena not revealed by
numerical simulations.
In the process of designing a BID one needs to know

whether or not dynamic effects should be taken into
account. Dynamic effects are often dominant in the time
frame of a repetition, that is for time intervals of the order of
one to several pulse lengths. Solving for dynamic elasticity
is usually achieved by finite elements software as the
geometries and boundary conditions can be complex [16].
In order to capture the dynamic effects and with such small
particle beam widths and high velocities of sound, CFL
conditions render these computations very lengthy [6,17].
In many cases the size of the BID is large enough so that
any reflections from the boundaries can be neglected for
time intervals of the order of a pulse. The assumption of
infinite geometries comes naturally and its extent and
limitations are shown herein.
The purpose of this article is to shed light on the specific

mechanisms of thermal stresses when a solid undergoes a
thermal shock with Gaussian profile in space during the
time interval of a pulse length. Stress fields are given
analytically using well-known functions. Parametric stud-
ies which can dramatically reduce the design process time
with respect to beam parameters and material properties are
therefore foreseeable. The expressions developed herein
can also be used to compare the dynamic effects versus the
quasistatic approximation and allow us to decide whether a
dynamic computation is necessary.
This analysis is applicable not only for the design of

BID’s but also for proton beam cancer therapy [18–20].
In the latter proton beams are used to kill cancer cells in
while minimizing radiation in healthy areas around the
cancer cells. However it appears that the issue of possible
collateral damages due to the stress field in the brain has not
yet been studied in the literature. Linear thermoelasticity
represents a rather bold assumption for such viscoelastic
materials but it gives an idea of the order of magnitude of
the expected stresses.
The article is structured in the following way. The basic

equations of uncoupled thermoelasticity, also called theory
of thermal stresses, are laid down and all necessary
assumptions are presented. The problem is then nondimen-
sionalized and solutions to the potential equations are sought
using Green’s functions, Eqs. (14) and (17). Von Mises
stresses are derived from the elastic potential for both the
quasistatic and general solutions, Eqs. (22) and (24). The
validity of matching the infinite medium with a finite
geometry is sought and a parametric analysis on the error
of the results is given. Furthermore under a valid infinite

medium assumption, the quasistatic solution is compared to
its dynamic counterpart with respect to nondimensional
parameters. Finally a case study is presented where all the
analytical results are applied and compared to bounded
medium solutions. The boundedmedium solutions are in the
form of infinite series for which a convergence evaluation is
given in order to control the truncated series error.

Nomenclature
α thermal expansion coefficient
λ Lamé first parameter
μ Lamé second parameter
θ temperature
ρ density
k thermal conductivity
c specific heat
c0 longitudinal wave velocity
A peak of power density function
tp pulselength
σ standard deviation of Gaussian power density
Π1 non-dimensional thermal diffusivity
Π2 non-dimensional standard deviation of Gaussian power

density
Π3 non-dimensional thermal expansion
Π4 non-dimensional longitudinal wave velocity
Π5 non-dimensional parameter
Π6 non-dimensional shear wave velocity
Πc peak of non-dimensional power density function
Eerr relative error between dynamic and static displacement

averages
ϵrms relative error of the partial sums

II. PROBLEM DESCRIPTION

Particle beam intercepting devices are dedicated to
absorb large amounts of energy in relatively short time
intervals. Thermally induced stresses pose a major threat to
the BID’s and their computation is somewhat cumbersome.
The equations of linear thermoelasticity presented in [21]
are usually solved by means of lengthy numerical methods
(finite elements) and can cripple the time constraint of a
design process when considering such thermal stresses.
We will confine ourselves to the study of thermoelastic

displacements in infinite media. This simplifies the prob-
lem such that the shear potential of the uncoupled equations
of thermoelasticity is automatically reduced to zero. The
beam as well as the heat deposition profile near the Bragg
peak are assumed to be Gaussian. By consequence the heat
source in the heat diffusion equation is assumed to be a
spherically perfect Gaussian. In addition, no heat diffusion
is assumed within the time interval of a pulse. The non-
diffusive assumption can be easily verified by using the
solutions developed in [22]. The case study herein is treated
with the adiabatic assumption and the error of the real
temperature fields is given. The temperature field is there-
fore directly proportional to the Gaussian heat source.
Solutions to the longitudinal wave potential equation with a
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Gaussian source term are sought. The influence of the
inertia terms is analyzed by comparing solutions of the
quasistatic problem to the ones obtained from the longi-
tudinal wave equation. Finally the proposed solution for the
assumed infinite medium is compared to the series expan-
sion solution for a finite medium.

III. ANALYTICAL SOLUTIONS OF THE ELASTIC
POTENTIAL FOR INFINITE MEDIA

The classical uncoupled equations of thermoelasticity
with no displacement dependent term in the heat equation
are [21],

ðλþ μÞ∇ð∇ · uÞ þ μ∇2u − αð3λþ 2μÞ∇ðT − T0Þ

¼ ρ
∂2u
∂t2 ð1Þ

k∇2T ¼ ρcv
∂T
∂t − g ð2Þ

where the constants λ, μ, ρ, α, cv, and k are respectively the
Lamé parameters, density, coefficient of thermal expansion,
specific heat and coefficient of thermal conductivity. The
vector u and the scalar T are respectively the displacement
field and the temperature field and are both functions of
space and time. T0 represents the initial temperature field in
spherical coordinates Tðr; 0Þ which will be assumed to be
constant. Finally gðrÞ ¼ A expð−r2=2σ2Þ represents the
heat source term, with σ being equal to the geometric
average of the three standard deviations of a spatial
Gaussian fit to the power deposition map.
The heat equation contains no displacement dependent

terms so that we can solve for the temperature Tðr; tÞ in an
infinite medium where a decay at infinity is assumed and a
constant initial temperature field. The difference between
the temperature and the initial temperature appears in the
temperature dependent term of the wave equation so that
we set θðr; tÞ ¼ Tðr; tÞ − T0 and solve for θðr; tÞ.
Assuming no heat diffusion during the short interval of
time the solution for θðr; tÞ becomes trivial to yield,

θðr; tÞ ¼ gðrÞ
ρcv

t: ð3Þ

The errors in the approximation of zero diffusivity are
treated in [22], where ratios between the theoretical and
zero diffusivity dimensionless peak temperatures are
given. The case study presented in this paper yields a
ratio very close to 1, which is also seen in many other
BID applications. The displacement field has homogeneous
initial conditions such that uðr; 0Þ ¼ 0 and ∂u=∂tjt¼0 ¼ 0.
Following the classical way to decouple Eq. (1) by taking
the divergence and the curl we end up with two potential
equations, one for the longitudinal displacement and one
for the shear in terms of their respective potentials Φðr; tÞ
and Ψðr; tÞ such that uðr; tÞ ¼ ∇Φþ∇∧Ψ. The solution

for the latter is trivial due to the homogeneous initial
conditions and the source term acting only on the longi-
tudinal expansion of the material. There is only one
equation to solve for the longitudinal waves, expressed
in terms of Φðr; tÞ that reads,

ðλþ 2μÞ∇2Φ ¼ ρ
∂2Φ
∂t2 þ αð3λþ 2μÞθ; ð4Þ

with homogeneous initial conditions. After rearranging
terms and showing the source term explicitly we obtain,

∇2Φ ¼ 1

c20

∂2Φ
∂t2 þ Bt exp

�
−r2

2σ2

�
; ð5Þ

where c0 ¼
ffiffiffiffiffiffiffiffi
λþ2μ
ρ

q
stands for the speed of the longitudinal

waves and B ¼ αð3λþ2μÞ
ðλþ2μÞ

A
ρcv
.

A. Nondimensionalization of the problem

Let σ be the characteristic length scale of the domain and
tp be the reference time representing the time of the pulse.
The following new variables are obtained,

r� ¼ r
σ
; t� ¼ t

tp
; and Φ� ¼ Φ

σ2
: ð6Þ

Inserting the above variables into Eq. (5) and dropping the
star notation from now on, the following dimensionless
equation is obtained,

∇2Φ ¼ 1

Π2
4

∂2Φ
∂t2 þ Πct exp

�
−r2

2

�
; ð7Þ

where Πc ¼ Π3Π5 and Π2, Π3, Π4, Π5, and Π6 are five
independent dimensionless parameters that read,

Π2 ¼
L
σ
; ð8Þ

Π3 ¼
αAtp
ρc

; ð9Þ

Π4 ¼
c0tp
σ

; ð10Þ

Π5 ¼
ð3λþ 2μÞ
λþ 2μ

; ð11Þ

Π6 ¼
ffiffiffi
λ

ρ

s
tp
σ
; ð12Þ

where the quantity defined as
ffiffiffiffiffiffiffi
λ=ρ

p
is used instead of the

shear velocity due to simplifications that arise in the stress
calculations. The same dimensionless numbers can be
obtained using the Π-Buckingham theorem. The character-
istic length L is used to provide comparison of the infinite
medium solutions with their finite medium counterparts by
comparing their behavior in the normalized sphere r ≤ Π2.

UNCOUPLED THERMOELASTICITY SOLUTIONS … PHYS. REV. ACCEL. BEAMS 19, 063501 (2016)

063501-3



B. Quasistatic solutions of the elastic potential

When displacements change slowly with time, inertia
terms can be assumed negligible to yield a quasistatic
ordinary differential equation which is,

1

r
d2ðrΦQÞ

dr2
¼ Πct exp

�
−r2

2

�
ð13Þ

where time only appears in the source term and the
subscript Q stands for quasistatic. We will refer to this
problem in the forthcoming sections as the “quasistatic
assumption.” The solution is given by,

ΦQðr; tÞ ¼ −
ffiffiffiffiffiffi
2π

p
Πc

2

t
r
erf

�
rffiffiffi
2

p
�
: ð14Þ

C. General solutions of the elastic potential

In the spherical problem where the source is a spherical
Gaussian function we expect the solution to be independent
of the polar and azimuthal angles. By setting Ψðr; tÞ ¼
rΦðr; tÞ in Eq. (5) we obtain an equation for Ψ with the
Laplacian in one-dimensional Cartesian coordinates and
r ≥ 0. Using the method of images [23] we construct the
Green’s function for this problem that reads,

GðR; R̂; τÞ ¼ G1ðR; τÞ − G2ðR̂; τÞ

¼ −HðτÞΠ4

2

�
H

�
τ −

R
Π4

�
−H

�
τ −

R̂
Π4

��
;

ð15Þ
where R ¼ r − r0, R̂ ¼ rþ r0, τ ¼ t − t0 and r0, t0 being
dummy variables. The solution for Ψ is given by [23];
considering homogeneous initial conditions Ψ reads,

Ψðr; tÞ ¼
Z

t

0

Z
∞

0

G1Πct0r0 exp
�
−r02

2

�
dr0dt0

−
Z

t

0

Z
∞

0

G2Πct0r0 exp
�
−r02

2

�
dr0dt0; ð16Þ

and Φ is given by,

Φðr;tÞ¼−Πc

4Π4

1

r
·

�
2

�
exp

�
−ðr−Π4tÞ2

2

�

−exp

�
−ðrþΠ4tÞ2

2

��

þ
ffiffiffiffiffiffi
2π

p �
−ðr−Π4tÞ

�
erf

�
rffiffiffi
2

p
�
−erf

�
r−Π4tffiffiffi

2
p

��

þðrþΠ4tÞ
�
erf

�
rffiffiffi
2

p
�
−erf

�
rþΠ4tffiffiffi

2
p

����
: ð17Þ

We will refer to this solution as the “general problem”
solution.

IV. ANALYTICAL EXPRESSION OF THE VON
MISES STRESS FOR INFINITE MEDIA

A. The Von Mises stress criterion

Different definitions of equivalent stresses apply for
different materials [24]. Given many beam dump materials
are isotropic and ductile, the Von Mises equivalent stress is
most adequate for the purpose of our study and the
spherical symmetry of the problem allows one to derive
it from the elastic potential. Since σμμ ¼ σνν, the Von Mises
stress simplifies to: σVM ¼ jσrr − σμμj where σrr and σμμ
are given in Eqs. (18) and (19) as,

σrr ¼ Π2
4

∂2Φ
∂r2 þ Π2

6

2

r
∂Φ
∂r ð18Þ

σμμ ¼ σνν ¼ Π2
6

∂2Φ
∂r2 þ Π2

4 þ Π2
6

r
∂Φ
∂r : ð19Þ

Thus the Von Mises Criteria relation to the elastic potential
reads:

σVM ¼ jΠ2
4 − Π2

6j
���� ∂

2Φ
∂r2 −

1

r
∂Φ
∂r

����: ð20Þ

Of particular interest are the localization and maximum
values of the underlying equivalent stresses attained
within 0 ≤ r ≤ Π2.

B. Localization and value of extrema
of the quasistatic solution

The solution of the quasistatic elastic potential is given in
(14) and the expressions of the Von Mises equivalent stress
for the quasistatic solution is derived by inserting Eq. (14)
in (20) to obtain the following dimensionless expression,

σQVM ¼ jΠ2
4 − Π2

6j
����

ffiffiffiffiffiffi
2π

p
Πc

2
t

����

·

����
3erfð rffiffi

2
p Þ −

ffiffi
2
π

q
rð3þ r2Þ exp ð− r2

2
Þ

r3

����: ð21Þ

From this equation it is clear that σQVM evolves linearly with
time so that the position of the peak of stresses necessarily
occurs at the end of the pulse. In addition it is also clear that
the radius rmax where the peak of stress occurs for a given
time is the same for all times. By solving this equation
numerically using MATLAB [25] we get rmax ≃ 1.775. By
inserting rmax ¼ 1.775 in Eq. (21) the maximum of the now
dimensional Von Mises equivalent stress in the quasistatic
assumption reads:

σQ
max

VM ¼ 2μ · Πc · ζq ð22Þ
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where ζq is a constant approximately equal to 0.2173 and μ
is the shear modulus of the material.

C. Localization and value of extrema
of the general solution

In the general thermoelastic problem, the elastic potential
given by Eq. (17), is inserted in Eq. (20) to obtain the
dimensionless Von Mises stress,

σVM ¼ jΠ2
4 − Π2

6jjΠcj

·

���� d
2Φ̂ðr; t;Π4Þ

dr2
−

dΦ̂ðr;t;Π4Þ
dr

r

����; ð23Þ

where Φ̂ ¼ 1
Πc
Φ. A graph of this function is presented on

Fig. 8 in the case study section. Note that the stress is zero
at the center due to the point symmetry of the problem.
Equation (23) shows that the localization of the maxi-

mum a priori depends on two variables, namely: t and Π4.
The linearity of the material parameters, the constant power
source and the absence of any reflective boundaries suggest
the peak of stresses will occur at the end of the pulse,
confirmed by the positive sign of the derivative of stress
with respect to time. The localization of the maximum
dependence reduces to Π4.
The position of the peak of stress for all Π4 in the range

½10−3; 102� is sought using MATLAB [25] and presented
on Fig. 1. Two regions stand out. The first region is at
approximately r ¼ 1.414 where dynamic effects are dom-
inant and the second near r ¼ 1.775 for Π4 sufficiently
large which correspond to the quasistatic case.
The maximum dimensional Von Mises stress in the

general problem reads,

σmax
VM ¼ 2μ · Πc · ζðΠ4Þ; ð24Þ

where ζ is a function of Π4 shown on Fig. 2 and 3.

D. Comparison of the quasistatic
and general VM stresses

The ζ function appearing in the equation of the general
Von Mises (VM) stress [Eq. (24)] admits two asymptotes.
The asymptote for sufficiently large values of Π4 corre-
sponds to the quasistatic case where ζðΠ4Þ≃ ζq. The
asymptote for sufficiently small values of Π4 has the
equation: ζðΠ4Þ≃ 0.1224 · Π2

4. In the transition region,
no approximation is available and one needs to rely on
Fig. 3 to calculate the Von Mises stress.
From Fig. 2 we conclude that the VM stress in the

quasistatic assumption is always higher than in the general
problem. Therefore Eq. (22) provides a supremum to the
maximum of the Von Mises stress in the general problem as
long as the quasistatic stress value is below the proportional
limit. The two solutions are virtually the same for values
of Π4 > 4.
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FIG. 1. Position of the peak of stress for the general problem.
ForΠ4 sufficiently large the peak position matches the quasistatic
result.
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FIG. 2. ζ function as presented in Eq. (23) and its asymptotes.
Since ζ is increasing with Π4 nearly everywhere, so is the Von
Mises stress. The asymptote for high values of Π4 matches ζq as
expected.
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FIG. 3. ζ function as presented in Eq. (23) in the region where it
cannot be approximated by one of its asymptote with less than
10% of error.
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E. Optimization algorithm for maximum
principal stresses at time t

Unless maximum values are reached on the boundaries
of the domain i.e. r ¼ Π2, they will occur within
the domain of 0 ≤ r ≤ Π2 where the first derivatives
of the optimized quantities are zero. Solving exactly
for ∂σrr=∂r ¼ 0 and ∂σνν=∂r ¼ ∂σμμ=∂r ¼ 0 or a Von
Mises criterion, can be cumbersome so we propose
an algorithm for evaluating the maximum stress location
rmax. Let

S ¼ a
∂2Φ
∂r2 þ b

r
∂Φ
∂r ; ð25Þ

with Φ ¼ Ψ=r to yield the general form of,

S ¼ NðrÞ
r3

; ð26Þ

where NðrÞ ¼ aΨ00r2 þ ð−2aþ bÞΨ0rþ ð2a − bÞΨ,
with prime denoting differentiation with respect to r.
Taking,

∂S
∂r ¼ rN0 − 3N

r4
¼ 0; ð27Þ

solves for the critical point noted rc. Now consider the class
of functions N̂ðrÞ that solves the differential equation:
rN̂0 − 3N̂ ¼ 0 on r ∈ ½0;Π2�. These functions are the
functions: N̂ðrÞ ¼ Cr3 with C an arbitrary constant.
Since C is any real constant, there is one of them, denoted
by Cc, such that:

NðrcÞ ¼ Ccr3c: ð28Þ

Let N̂cðrÞ ¼ Ccr3. It is clear that NðrÞ and N̂cðrÞ cross at
rc. Let us prove that NðrÞ and N̂cðrÞ are also tangent at rc,
i.e. let us prove that N0ðrcÞ ¼ N̂c

0ðrcÞ. From Eq. (27),
N0ðrcÞ ¼ 3NðrcÞ=rc and by definition of Cc and N̂ðrÞ:
3NðrcÞ=rc ¼ 3N̂ðrcÞ=rc ¼ 3Ccr2c. Since N̂ðrÞ is a cubic
function, 3Ccr2c ¼ N̂0

cðrcÞ.
To conclude, the peak of the S function can be found by

finding the cubic function:Cr3 that intersects and is tangent
to the N function easily derived from S. The point of
intersection is the critical radius. For the sake of illustration
we set Π2 ¼ 19.9 and Π4 ¼ 1.64 × 10−3 which are the
values used in the case study in Sec. VII. For the Von Mises
criterion a ¼ −b ¼ 1 and NðrÞ follows form the equation
stated above. In Fig. 4(b) is a plot of NðrÞ together with a
plot of N̂ðrÞ ¼ Cr3 where the tangential intersection is for
a specific value of C ¼ 2.1622 × 10−9. For a given
sweep precision of the coefficient C the intersection and
therefore the extremum point of the Von Mises stress is at

1.3874 < r < 1.4421 with a relative width of the ordinate
interval of 0.1227.

V. MATCHING THE INFINITE MEDIUM
SOLUTIONS ONTO A FINITE SPHERE

Equations (14) and (17) are exact for infinite media. If
one considers a finite medium these solutions can be used
provided the above dimensionless parameters fall within
determined intervals. As a reminder, the heat source is a
perfect spherical Gaussian which acts on the body during a
very short time tp and as a consequence heat diffusion can
be neglected. An estimate of the error for such an
assumption is given in [22], where parameters Π1 ¼
Dtp=L and Π2 need to fall within some interval for a
specified error, where D represents the thermal diffusivity.
It is therefore important to validate the assumption of
nondiffusion before using a solution presented herein.

A. Validity of the general solution—The ideal region

The relevance of our model depends on the intervals of
validity in space and time of Eq. (17). The general solution
is not always exact for all pulse lengths and length scales of
the intercepting device.
Let us consider a perfectly spherical ball of radius L with

the Gaussian source impacting at its center. We define L as
the distance separating the peak of energy deposition to the
closest surface of the BID.
At time t ¼ 0, the infinite domain solution and the finite

solution given by Eqs. (17) and (35) respectively are
identical over the whole ball. Because of propagating
waves, at time t ¼ ϵ where ϵ ≪ 1, the region where the
two solutions are identical has shrunk. The key question is
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1

2
x 10

−8

r

N
 &

 C
r3

(b)

0 1 2 3 4 5 6
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1
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3
x 10

−9

r

N
/r

3

(a)

FIG. 4. In panel (a) the Von Mises stresses (NðrÞ=r3) are in
solid where the extremum is aligned with the intersection of the
two curves in panel (b) containing the plots of NðrÞ in solid and
N̂ðrÞ ¼ Cr3 in dashed.
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thus to describe the evolution with time of the region where
the two solutions remain identical.
At time t ¼ ϵ the Gaussian source will give some amount

of energy to all points of the ball. A first wave front, created
by the reflection of the boundary of the system, will
propagate inward. This wave front, not taken into account
in the infinite solution, propagates at sound speed toward
the center of the ball. The finite and infinite solutions are
identical in the region that has not yet seen this wave front.
If the normalized domain is a sphere or radiusΠ2 ¼ L=σ,

IðtÞ is the ideal region, and Bðc; rÞ is a ball of center c and
radius r, then:

IðtpÞ ¼
�
Bð0;Π2 − Π4Þ if Π2 > Π4

0 otherwise:
ð29Þ

Therefore if the wave front has not had the time to reach
the radius at which the peak of stress occurs, i.e. if
rmax < Π2 − Π4, Eqs. (22) and (24) still hold.

B. Validity of quasistatic elasticity

Another time saving assumption is that of quasistatic
thermoelasticity. Modeling a finite medium with quasistatic
elasticity in infinite media raises an important issue, that of
quasistatic elasticity and nondiffusive heat deposition. The
error caused by the assumption of nondiffusive energy
deposition is evaluated from [22]. For a fast heat source
term to yield a slow varying stress field it is necessary to
define a new error which depends on Π4 and represents a
normalized relative error of the two displacements averages
reading,

Eerr ¼
���� σ

max
VM − σQ

max

VM

σmax
VM

����: ð30Þ

A contour plot of Eerr versus Π4 is presented in Fig. 5.
Coefficients of Eerr near zero show that dynamical effects
are indistinguishable from the quasistatic solution. Values
near one imply the opposite. By combining the information
in Fig. 5 and also verifying the near zero diffusion
assumption the infinite medium equations can be used
rigorously.

VI. SERIES SOLUTIONS

Infinite series solutions are here compared to the solution
obtained by Eq. (17). We wish to point out that they do not
represent a novelty and will be used solely for comparison
purposes. Such solutions are well known and can be
derived using Sturm-Liouville theory [26]. The geometry
consists of a sphere of normalized radius equal to Π2.
Solutions are sought for 0 ≤ r ≤ Π2. Clamped or traction
free boundary conditions and homogeneous initial con-
ditions are taken into account. Note that we do not consider
shear waves since the source term is radial and no shear
waves will emerge from the coupling of the compressive
and shear fields at the boundaries.

A. Bounded dynamic elasticity

The solution to Eq. (7) is of the form,

ΦSðr; tÞ ¼
X∞
n¼0

AnðtÞϕnðrÞ ð31Þ

where coefficients AnðtÞ are retrieved by inserting the
previous expression into Eq. (7) to obtain,

d2A0

dt2
þ
X∞
n¼1

�
d2An

dt2
þ β2nAn

�
ϕn ¼ −fðr; tÞ; ð32Þ

where β2n ¼ Π2
4λ

2
n and fðr; tÞ ¼ Π2

4Πct expð−r2=2Þ and
respective solutions,

AnðtÞ ¼ Cn cosðβntÞ þDn sinðβntÞ þ KnðtÞ
1

β2n
;

for n ∈ Zþ; and

A0ðtÞ ¼
K0ðtÞ
6

t2 þ E0tþD0; ð33Þ

where KnðtÞ¼−
R

Π2
0

fðr;tÞϕnðrÞwdrR
Π2
0

ϕnðrÞ2wdr
and K0ðtÞ¼−

R
Π2
0

fðr;tÞwdrR
Π2
0

wdr
.

w ¼ r2 is a weight function that depends on the coordinate
system and is necessary to satisfy orthogonality of the
eigenfunctions ϕn. The eigenvalues are shown as λn which
brings us to solve the eigenvalue problem in order to obtain
the ϕn. The associated eigenproblem reads,

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

FIG. 5. Plot of Eerr versus Π4 showing the value of Π4 ∼ 3.88 at
which the general solution becomes indistinguishable from the
quasistatic one.
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∇2ϕn þ λ2nϕ ¼ 0 ð34Þ

and is solved for uðΠ2; tÞ ¼ 0 where u ¼ ∇ΦS.

1. Clamped boundary conditions

The eigenfunctions of Eq. (34) are spherical
Bessel functions noted ϕnðrÞ ¼ j0ðλnrÞ and the associated
eigenvalues are derived using the Dirichlet condition
on the displacement or dϕn=drjr¼Π2

¼ 0 that implies
λnj1ðλnΠ2Þ ¼ 0. Zero is an obvious eigenvalue with
ϕ0 ¼ 1 as its associated eigenfunction. Inserting the eigen-
functions back into Eq. (31) and imposing the homo-
geneous initial conditions on the displacement [uðr; 0Þ ¼ 0
and _uðr; 0Þ ¼ 0] we obtain,

ΦSðr; tÞ ¼
K0ðtÞ
6

t2 þ
X∞
n¼1

KnðtÞ
β2n

�
1 −

sinðβntÞ
βnt

�
ϕnðrÞ;

ð35Þ

where K0 and Kn are,

K0ðtÞ ¼
3ΠcΠ2

4t
Π3

2

�
Π2 exp

�
−Π2

2

2

�
−

ffiffiffi
π

p
2

erf

�
Π2ffiffiffi
2

p
��

ð36Þ

and

KnðtÞ ¼
2λnΠcΠ2

4t
Π2 sinðλnΠ2Þ2

×

�
exp

�
−Π2

2

2

�
sinðλnΠ2Þ þ −

ffiffiffiffiffiffi
2π

p

4
λn exp

�
−λ2n
2

�

×

�
erf

�
Π2 − iλnffiffiffi

2
p

�
þ erf

�
Π2 þ iλnffiffiffi

2
p

��	
: ð37Þ

Traction free boundary conditions can also be considered
to yield a solution of the form of Eq. (35). The eigenvalues
λn’s take different values from applying traction free
boundary conditions on the surface which read,

σrrjr¼Π2
¼

�
Π2

4

∂2ΦS

∂r2 þ Π2
6

2

r
∂ΦS

∂r
�����

r¼Π2

¼ 0: ð38Þ

We do not expand the traction free solution any further as it
is not in the scope of the present study.

2. Relative error of the partial sums

The series solutions will be used for comparison pur-
poses. It is therefore necessary to know the error induced by
truncating the series at the mth term. Equation (32) is of the
form

P∞
n¼0KnðtÞϕnðrÞ ¼ −fðr; tÞ. Using the orthogonal-

ity of the eigenfunctions the relative root mean square (rms)
of the difference between dimensionless temperature fðr; tÞ
and the partial sum Sm ¼ P

m
n¼0 KnðtÞϕnðrÞ, is,

ϵrmsðΠ2; mÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
V f

2dV −
P

m
n¼0K

2
n

R
V ϕ

2
ndVR

V f
2dV

s
: ð39Þ

VII. APPLICATIONS

In order to illustrate the above models we propose a case
study which concerns the PSB dump at CERN [4]. The
proton beam is extracted from the PSB at energies of the
order of 2 GeV and is intercepted by a beam dump.
The temperature rise after one pulse is of the order of
150 K and the stresses are of the order of 100 MPa of which
60 MPa are due to dynamic effects [4]. Results in [4] will
be used to validate the analytical model.
The quasistatic study failed to give correct results which

this model predicts. The thermal and mechanical properties
of the material used for such temperature changes are of the
order of 5% and are considered constant.

A. Calculation of the dimensionless parameters

The intercepting block is made from a Copper alloy,
namely CuZrCr 18150. Its chemical composition is 98.9%
copper, 1% zirconium and 0.11% chromium. The material
properties are given in Table I and the power deposition
parameters in Table II. The stresses in the perfect sphere
will depend greatly on the width of the Gaussian which in
turn is directly related to the amplitude (A) and gradients of
the source term. Two models are considered in Table II both
allowing for spherically symmetric solutions. Namely a
geometric average model and a conservative model. The
conservative model uses the smallest σ component as the
power deposition width. The geometric average model uses
σ ¼ ðσ1σ2σ3Þ1=3. Let σVMave

, σVMasy
and σVMmin

be Von
Mises stresses of the geometric average model, the asym-
metric Gaussian beam model and the minimum width beam
model, respectively.
From the linearity of equation (1) one can construct a

fit of an asymmetric power source. This is done using a
linear combination of spherically symmetric Gaussian

TABLE I. Parameters of the beam intercepting material presented in the nomenclature. All values are in SI units
and at room temperature.

ρ λ μ c c0 α k

8.89 × 103 2.93 × 1010 5.17 × 1010 383 3.8 × 103 16.7 × 10−6 323
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distributions. Which in turn would enable a solution in the
form of a linear combination of spherically symmetric Φ’s
which can then yield a Von Mises stress at a desired
precision depending on the precision of the fit.
Back to the spherical models, the dimensionless param-

eters computed from Tables I and II are presented in
Table III for both models.
In order to use the above models for thermal stresses the

nondiffusive assumption is verified using the peak temper-
ature ratio defined in [22].

B. Results using the analytical solution

From Fig. 1, the peak of stress occurs at rmax ∼ 1.42
which is found in the ideal region since 1.414 < Π2 − Π4.
Therefore our model is valid.
For the geometric average model Π4 ¼ 0.344, Eq. (24)

can be approximated by the asymptotic solution (see Fig. 2)
and gives the value of the peak of the Von Mises stress:
σmax
VMave

¼ 2μ · Πc · 0.1224Π2
4 ≃ 5.8 MPa. This value is well

below the proportional limit strength of this alloy
(∼200 MPa).
In the case of the conservative model maximum stresses

are expected to be much higher and equate to
σmax
VMmin

≃ 80 MPa, still less than the proportional limit.
The latter Von Mises stress value is within the orders of

magnitude of full finite element method studies (60 MPa)
in [4].

C. Results using the series solution

The series solution is used to verify the analytical
solution results. The relation of the precision of the series
solution to the truncation of the series is illustrated in
Figure 6. Figure 7 shows an excellent match between the
bounded medium solution and the infinite medium

m
50 100 150 200 250 300 350

10
0

10
1

10
2

10
3

0.1

0.3

0.5

0.7

FIG. 6. Contour plot of ϵrms versus the number of terms in the
series m on the abscissa and Π2 in log-log scale on the ordinate.

TABLE III. Nondimensional parameters obtained from Tables I
and II. The first and second rows correspond to different energy
deposition width considerations, namely one that uses a geo-
metric average and one that uses the minimum width of the 3D
Gaussian distribution fit.

Assumption Π2 Π4 Π6 Πc

Average 4.48 0.344 0.165 3.75 × 10−3

Conservative 7.75 0.595 0.284 1.94 × 10−2

0 0.5 1 1.5 2 2.5 3 3.5 4
−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

−8

FIG. 7. Plot of the exact infinite medium solutions versus the
bounded medium series solutions under Dirichlet boundary
conditions. The infinite medium solutions, in solid, are using
the parameters shown in Table I. The truncated series solutions
are in cross points, with m ¼ 200 yielding an ϵrms ∼ 10−4. The
four distinct curves shown in descending order are for t ¼ 0.25,
0.5, 0.75, 1 respectively.

TABLE II. Energy deposition parameters retrieved from
FLUKA simulations [2]. A is the peak of the power density
deposition calculated as follows: if P ¼ 9.9238 × 109 is the beam
instantaneous power then it is equal to the integral of gðrÞ ¼
A expð−r2=2σ2Þ over the whole space. This is equal to
A � 2 ffiffiffi

2
p

σ3π1.5, so that A ¼ P=ð2 ffiffiffi
2

p
σ3π1.5Þ. σ is the standard

deviation of the assumed Gaussian beam. It is calculated by
fitting the energy deposition curve along x, y and z in order to get
σx,σy and σz. From this we obtain σ ¼ ðσ1σ2σ3Þ1=3 and σ ¼ σ1
for the rows 1 and 2 respectively. tp is the pulse length and L the
characteristic length of the system (the distance of the peak of
energy deposition to the closest surface of the BID). All values
are in SI units.

Assumption A σ tp L

Average 5.64 × 1014 0.0104 1 · 0.94 × 10−6 0.0465
Conservative 2.92 × 1015 0.006 1 · 0.94 × 10−6 0.0465
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solution. The truncated series solution for the finite field is
computed using m ¼ 200 terms and yields an error
of ϵrms ∼ 10−4 defined by Eq. (39). From Fig. 5 the
dynamic effects are expected to be important and the
model cannot be simplified using its quasistatic counter-
part. The position of the peak of stress is far from that of
quasistatic elasticity and the error defined in Eq. (30) is
Eerr ¼ 0.9899 ∼ 1 which makes the quasistatic solution in
this case meaningless.
Figure 8 shows the Von Mises stresses for different times

t including for t ¼ 1where maximum stress is reached. The
maximum stress position is verified using the algorithm
presented in Sec. IV E. These results match those found by
the analytical solution.

VIII. CONCLUSIONS

We obtain closed form solutions for the uncoupled
thermoelastic problem in infinite media under a
Gaussian spherical source. The spherical Gaussian is a
model of a beam impacting a material. The diffusivity of
the material is assumed negligible such that the temperature
field can easily be obtained from the energy source field.
The problem is nondimensionalized and two nondimen-
sional parameters are used to verify the necessary
assumption of negligible heat diffusion during the pulse-
length. The domain of applicability of such solutions is
well defined using intervals of the nondimensional Πi
parameters. The solutions to the elasticity equations yield
the compressive potential, the displacements and the
stresses—note that the shear potential is nil since the
source is a gradient. The elegant form of the solutions
allows one to optimize any applicable problem without the

iterative and lengthy process necessary in numerical
simulations.
An important point is raised as to the position of the

maximum occurring stress and its value with respect to the
dimensionless parameters. In the presented case study
the aforementioned solutions are compared with their finite
geometry counterparts only to obtain very similar results.
The relative errors presented in the case study are in
accordance with the figures presented in the theory section.
The present model yields excellent results in the elastic
regime.
Finally, taking advantage of the linearity of the Navier

equations, one can fit an asymmetric source with a sum of
Gaussian distributions in order to get precise quantitative
results. Assuming the validity of our models for each
Gaussian, one could bypass the use of any finite element
simulations in addition to being several order magnitude
faster than conventional finite element simulations.
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