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In Čerenkov and Smith-Purcell free-electron lasers (FELs), a resonant interaction between the electron
beam and the copropagating surface mode can produce a copious amount of coherent terahertz radiation.
We perform a three-dimensional (3D) analysis of the surface mode, taking the effect of attenuation into
account, and set up 3D Maxwell-Lorentz equations for both these systems. Based on this analysis, we
determine the requirements on the electron beam parameters, i.e., beam emittance, beam size and beam
current for the successful operation of a Čerenkov FEL.
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I. INTRODUCTION

The Čerenkov free-electron laser (CFEL) [1–18] and the
Smith-Purcell free-electron laser (SP-FEL) [19–31], which
use low-energy electron beam [9–18,21–31] are seen as
compact, and tunable sources of coherent terahertz (THz)
radiation. This radiation can be utilized for a variety of
applications in material science, biophysics and industrial
imaging [32,33].
In a CFEL, an electron beam skims over the surface of a

thin dielectric slab placed over an ideal conductor and
resonantly interacts with the copropagating electromag-
netic surface mode supported by the system, resulting in
emission of coherent radiation. The SP-FEL is similar to
the CFEL, except that the “dielectric slab placed over an
ideal conductor” is replaced with a metallic reflection
grating. Over the past few decades, several efforts have
been made to realize the generation of coherent radiation
from CFEL [4–9,12–14] and SP-FEL [21,29,30] systems.
The coherent emission of radiation with average power of
the order of tens of μW was reported from a single slab
based CFEL at ENEA Frascati Centre [5,8]. Subsequently,
Fisch and Walsh [9] used a low energy electron beam
(∼30–200 keV) to drive a sapphire based CFEL. An
efficient and compact version of the device described in
Ref. [9], which uses a very low energy (∼30 keV) electron
beam, was tested at the Dartmouth College [12] for the
generation of THz radiation. The observed output power in
the Dartmouth experiment [12] was very low (∼ picowatt),

and authors in Ref. [12] suggested that a good quality flat
electron beam can be used to enhance the output power of
the system. Recently, under the joint research of Osaka
Sangyo University and Kansai University, experimental
studies on a double slab based CFEL have been performed
[13,14]. Experimental studies on the SP-FEL system have
been performed at Dartmouth College [21] and Vanderbilt
University [29] in the USA, and CEA/Cesta [30] in France.
The power level attained in all these experiments have been
low. In order to obtain a copious coherent radiation from
the Čerenkov and Smith-Purcell FELs, an enhanced under-
standing of these systems is required, which includes
analyzing the realistic effects due to diffraction and
attenuation of the surface mode supported by these sys-
tems, and then working out the requirement on electron
beam parameters, which is very critical for the performance
of the system. Although for the case of the SP-FEL, the
requirements on electron beam parameters taking the effect
of diffraction and attenuation [24] have been worked out in
Refs. [26–28], a similar analysis has not been presented for
the case of the CFEL. In this paper, we perform such an
analysis to work out the electron beam requirements for the
case of the CFEL, taking the effect due to diffraction and
attenuation into account. While doing so, we also highlight
important differences in the analyses of the CFEL and the
SP-FEL.
A schematic of Čerenkov FEL is shown in Fig. 1, where

a flat electron beam is skimming at a height h over a
thin dielectric slab placed over an ideal conductor. The
surface mode supported in this system is evanescent in the
x-direction. Most of the earlier analyses [3,10,11,17,18] of
the CFEL have been performed under two-dimensional (2D)
approximation, where the surface mode is assumed to have
translational invariance along the y-direction, and it is there-
fore nonlocalized. In Ref. [18], we have performed a rigorous
2D analysis of CFELs by setting up the Maxwell-Lorentz
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equations in both the linear and the nonlinear regime. It was
shown that for the generation of THz radiation in a CFEL, the
required beamprofile is thin in thevertical direction, andwide
in the horizontal direction. Hence, we used a flat electron
beam with vanishing thickness in the vertical direction and
infinite width in the horizontal direction, in our analysis. The
analytical expressions for the small-signal gain and growth
rate of the CFEL were derived for this case. In a realistic
situation, the electron beam size as well as the radiation beam
sizewill be finite. Size of the radiation beamwill increase due
to diffraction. This will affect the overlap of the radiation
beam with the electron beam, resulting in reduction of the
small-signal gain, as well as the saturated power obtained in
the device. A realistic estimate of diffraction effects therefore
requires a detailed three-dimensional (3D) analysis of the
electromagnetic surface mode.
One way to invoke 3D effects is to solve the electro-

magnetic Helmholtz wave equation by considering the
diffraction in the surface mode. Andrew and Brau [15]
assumed the electron beam as a plasma dielectric and
solved the wave equation with diffraction effects to evaluate
the growth rate of the CFEL. This approach works well in
the linear regime. Growth rate was found to be decreasing
on the accounts of the 3D effects as compared to the 2D
analysis. In Ref. [15], the analysis was performed for an
uniform electron beam having infinite vertical size, hence,
the derived results are not very useful to obtain the electron
beam parameters in the vertical direction.
Another way to consider the 3D effects, which we follow

in this paper, is to construct a localized surface mode by
combining the plane waves propagating at different angles
in the (y, z) plane, with a suitable weight factor. The surface
mode constructed in this way is localized in the horizontal
direction and represents a realistic situation. The technique
of localization of electromagnetic modes by using super-
position of plane waves is a standard technique in laser
optics discussions also [34–36], and has been applied for
the case of grating based FEL by Kim and Kumar [26–28].
Our paper is organized as follows. In Sec. II A, we review

the 2D analysis of Čerenkov FEL [18], and then perform the
analysis for the 3D localized surface modes in Sec. II B. In
Sec. II C, we set up the 3D coupled Maxwell-Lorentz
equations for the CFEL system. Earlier analyses of CFEL
in single slab geometry have neglected the effect of attenu-
ation due to dielectric and conductor, whichwe include in the
analysis presented in Sec. II. Next, in Sec. III A, we review

the 2D analysis of the Smith-Purcell FEL [25,26]. We then
set up the 3D coupled Maxwell-Lorentz equations for the
SP-FEL system in Sec. III B and highlight the differences
compared to the case of CFEL. Considering the effect of
diffraction, the requirements on the quality of electron beam
for the successful operation of such devices become very
stringent, which is discussed in Sec. IVA for the case of the
Čerenkov FEL.We also discuss the techniques to relax these
stringent requirements, and also the methods for production
of electron beam of required quality. In Sec. IV B, we take a
specific example to show that with achievable beam quality,
it should be possible to generate a copious amount of
terahertz radiation in a Čerenkov FEL, even after including
the three-dimensional effects and effects due to attenuation.
Finally, we discuss the results, and present some conclusions
in Sec. V.

II. SURFACE MODE ANALYSIS IN A
ČERENKOV FEL

In this section, we first review the 2D analysis of beam-
wave interaction in a CFEL, where we have added the effect
of attenuation due to finite conductivity of the metallic
conductor and also the dielectric losses, which was not
present in the earlier analysis [18]. Details of calculation of
the attenuation coefficient are given in the Appendix. Next,
we set up a localized surface mode and discuss its important
properties in Sec. II B. Finally, in Sec. II C, we present the
derivation of the three-dimensional equation for the evo-
lution of the surface mode.

A. Review of two-dimensional analysis

The geometry of a Čerenkov FEL with the coordinate
system used in our analysis is shown in Fig. 1. An electron
beam with vanishing thickness in the x-direction is propa-
gating with a velocity v along the z-direction at a height h
above the dielectric surface. The dielectric slab has length
L, thickness d and relative dielectric constant ϵ. The
dielectric slab extends uniformly along the y-axis, and
the 2D electromagnetic surface mode supported by this
structure does not have any variation along the y-direction.
To have an effective interaction with the electron beam, we
want the electric field component in the z-direction. The
appropriate surface mode for this structure can be taken as
the TM mode, which has the magnetic field only in the
y-direction, namely Hy and the components of the electric
field can be obtained from Hy by using the Maxwell
equation. The longitudinal component of the electric field
is given by

Ezðx; z; tÞ ¼ Eeiψe−Γx; ð1Þ

where E is the amplitude of the field at the location of
the electron beam i.e., x ¼ 0, ψ ¼ k0z − ωt is the electron
phase, k0 is the propagation wave number in the

FIG. 1. Schematic of Čerenkov FEL driven by a flat
electron beam.
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z-direction, ω ¼ 2πc=λ, c is the speed of light, λ is the free-
space wavelength and Γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − ω2=c2

p
is a positive

quantity, which means that the amplitude of the surface
mode decays in the x-direction.
The electron beam interacts with the copropagating

surface mode and develops microbunching at the wave-
length of the surface mode. This results in a sinusoidal
component of electron beam current, having frequency ω
and wave number k0, the same as that of the surface mode.
This component of the beam current generates an evan-
escent electromagnetic wave, again having frequency ω
and wave number k0, and an amplitude that decays
exponentially with distance from the beam. The evanescent
wave is incident on the dielectric surface and gets reflected
with a reflectivity R ¼ iχ=νþ χ1, where χ and χ1 are
constants, which depend on ω, k0, and intrinsic parameters
of the system. Here, ν is the growth rate of the incident
evanescent wave, which is physically understood as result-
ing due to exponential enhancement in the microbunching,
as the beam propagates, due to its interaction with the
surface mode. An analytical formula for the reflectivity is
derived by satisfying the appropriate boundary conditions
at different interfaces in Fig. 1, and this gives the expres-
sions for χ and χ1, which are provided in Ref. [18]. Note
that in this approach, if ν ¼ 0, the reflectivity becomes
singular, for frequency ω and wave number k0 satisfying
the dispersion relation. In that case, the dielectric slab placed
on the metallic conductor supports the surface electromag-
netic mode in the absence of any incident wave, as expected.
The reflected wave further interacts with the copropagating
electron beam, resulting in enhancement of microbunching,
and consequently the amplitude of the incident evanescent
wave further increases. This phenomenon continues until

the amplitude of the surface mode saturates due to non-
linearity. The evolution of the amplitude E of the surface
mode discussed here is mathematically described by the
following time-dependent differential equation, which
includes attenuation of the surface mode:

∂E
∂z þ 1

βgc
∂E
∂t ¼ −Z0χ

2βγ

dI
dy

e−2Γhhe−iψ i − αE; ð2Þ

where βg ¼ vg=c is the group velocity of the surfacemode in
unit of c, which can be computed from the dispersion curve
of the surface mode. The dispersion relation is here given
by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵω2=c2 − k20

p
tanðd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵω2=c2 − k20

p
Þ ¼ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − ω2=c2

p
,

which is obtained requiring the condition that the reflectivity
R becomes singular. The first term on the right-hand side of
Eq. (2) represents the interaction of the electron beam with
the surface mode, where Z0 ¼ 1=ϵ0c ¼ 377 Ω is the char-
acteristic impedance of free space, ϵ0 is the permittivity of
free space, β ¼ v=c, γ is the relativistic Lorentz factor, I
represents the electron beam current, dI=dy is the linear
current density of flat electron beam and h� � �i indicates
averaging over the number of particles distributed over one
wavelength of the evanescent surface mode. The second
term on the right-hand side of Eq. (2) represents attenuation
of the surfacewave due to losses present in the dielectric and
metallic structures. Note that the above equation without the
attenuation term is described in Ref. [18]. The attenuation
coefficient α is the sum of the dielectric attenuation
coefficient αd and Ohmic attenuation coefficient αc due
to losses present in the metallic conductor. As derived in
detail in the Appendix, the attenuation coefficient of the
surface mode in a CFEL is given by

α ¼ γk0Z0 tan δð2 − ϵβ2Þ þ βϵ2k0ð1þ a2Þð2Rs þ βk0Z0d tan δÞ
2Z0½γð1þ ϵ2a2Þ þ ϵk0dð1þ a2Þ� : ð3Þ

Here, tan δ represents tangent loss of the dielectric medium,
a ¼ ðγ=ϵÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵβ2 − 1

p
, Rs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0ω=2Σ

p
is surface resistance

of the metal, μ0 is the permeability of free space and Σ
represents conductivity of the metal. We would like to
mention that the effect of attenuation on the performance of
the single slab CFEL system has been ignored in all the
previous analyses. In this paper, we will show that to obtain
a meaningful gain in a CFEL system, one has to minimize
the losses due to attenuation in the surface mode.
In a CFEL based on a positive refractive index dielectric,

the surface mode will have a positive group velocity vg and
will be amplified as it propagates with the electron beam in
the positive z-direction [15]. When the amplified field is fed
back at the entrance of the interaction region by using an
optical cavity, the system starts working as an oscillator.
The electron trajectories will evolve due to interaction with

the electromagnetic field of the surface mode. Here, the
electron motion is assumed to be strictly in the longitudinal
direction, and the equations for the evolution of energy and
phase of the ith electron are given by [18]

∂γi
∂z þ 1

βc
∂γi
∂t ¼ eE

m0c2
eiψ i þ c:c:; ð4Þ

∂ψ i

∂z þ 1

βc
∂ψ i

∂t ¼ ω

cβ3γ2

�
γi − γp
γp

�
: ð5Þ

Here, e is the electronic charge, m0 is the mass of electron,
and the subscript p is meant for the resonant particle, whose
velocity is equal to the phase velocity of the surface mode.
The behavior of a Čerenkov FEL is governed by the
Maxwell equation given by Eq. (2) together with
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Lorentz equations given by Eqs. (4) and (5). The set of
Eqs. (2), (4), and (5) can be solved numerically to obtain
the detailed behavior of the CFEL system in both the linear
and the nonlinear regime, as described in Ref. [18]. In the
small-signal small-gain regime, an analytical solution of
Eqs. (2), (4), and (5) has been obtained for the small-signal
gain as [18]

G ¼ 4 × 6.75 × 10−2 × 2π
χ

IA

k0L3

β3γ4
dI
dy

e−2Γh; ð6Þ

where IA ¼ 4πϵ0m0c3=e ¼ 17.04 kA is the Alfvén current.
The factor e−2Γh is a measure of the interaction between the
electron beam and the copropagating evanescent surface
mode. Taking the effect of attenuation, there will be a
round-trip loss given by ð1 − e−4αLÞ in addition to the gain
described by Eq. (6). In the small-signal high-gain regime,
growth rate of a CFEL using monoenergetic flat electron
beam is given by [18]

ν ¼
ffiffiffi
3

p

2L

�
2π

χ

IA

k0L3

β3γ4
dI
dy

e−2Γh
�

1=3

: ð7Þ

Taking the effect of attenuation, the growth rate will reduce
to ν − α.

B. Localized surface mode

Now, we consider the effect of diffraction of the surface
mode in the y-direction and construct the 3D localized
surface mode supported in a CFEL system. As the dielectric
slab is an open structure in the y-direction, the supported
electromagnetic surface mode is expected to behave like a
freely propagating optical beam and will undergo diffrac-
tion in the (y, z) plane. The diffracting electromagnetic
surface mode can be constructed by combining the plane
waves propagating at different angles in the (y, z) plane,
with suitable weight function AðkyÞ in ky as

Ezðx; y; z; tÞ ¼
1ffiffiffiffiffiffi
2π

p
Z

dkyAðkyÞeiðkzz−ωtÞeikyye−Γ0x: ð8Þ

Here, Ez is the longitudinal electric field, Γ0 is the
attenuation constant due to evanescent nature in the
x-direction, when the wave is propagating in the (y, z)
plane with wave numbers ky and kz in the y-direction and
the z-direction respectively. The surface mode constructed
in this way will have a variation along the y-direction and
will represent the generalized case of surface mode given
by Eq. (1). The electromagnetic surface mode given by
Eq. (8) is mainly propagating in the z-direction and
undergoes diffraction in the y-direction.
In the CFEL system, the dielectric slab is an isotropic

structure in the (y, z) plane. Using the property of isotropy
in the ðy; zÞ plane, the dispersion relation of the surface
mode propagating along the z-axis can be easily

generalized to the case, where the surface mode is propa-
gating along any arbitrary direction in the ðy; zÞ plane. For a
given frequency ω, if the phase velocity of the surface mode
propagating along the z-axis is v, we obtain the following
relation between ω, ky and kz for a surface wave propa-
gating in the ðy; zÞ plane:

ω ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z

q
: ð9Þ

The wave number in the longitudinal direction can be
written as kz ¼ k0 þ Δk, where k0 ¼ ω=v. By using the
paraxial approximation (ky ≪ kz), we obtained the follow-
ing expression for kz:

kz ¼ k0

�
1 −

k2y
2k20

�
: ð10Þ

Note that due to the property of isotropy in the (y, z) plane,
Γ0 ¼ Γ. We can substitute Eq. (10) for kz and Γ0 ¼ Γ in
Eq. (8) to obtain the localized surface mode in a CFEL as

Ezðx; y; z; tÞ ¼
eiψe−Γxffiffiffiffiffiffi

2π
p

Z
AðkyÞe−ik2yz=2k0|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}eikyydky: ð11Þ

The above expression for the longitudinal field appears as a
Fourier transform in ky of the underbraced term. If we

choose AðkyÞ ¼ e−k
2
y=2σ2ky , the integration in Eq. (11) is a

Fourier transform of a Gaussian function. Gaussian func-
tions belong to the distinct family of functions which are
self-Fourier functions [37]. Hence, the resultant of inte-
gration in Eq. (11) is also a Gaussian function, and
we obtain the intensity for the localized Gaussian mode
at x ¼ 0 as

Intensity∶ Ez × E�
z ∝ e

−
y2

2

2σ2ky
1þ σ4kyz

2=k20 : ð12Þ

We want to emphasize that this approach can be easily
generalized for higher order modes by taking Gauss-
Hermite functions for AðkyÞ, which are also self-Fourier
functions and will give higher order Gauss-Hermite modes.
Next, we analyze the transverse properties of the

localized surface mode. Using Eq. (12), we obtain an
expression for the variation of rms optical beam size σy
with z as

σ2yðzÞ ¼ σ2yð0Þ
�
1þ z2

Z2
R

�
: ð13Þ

Here, σyð0Þ is the rms optical beam waist at z ¼ 0 and ZR is
the Rayleigh range which is obtained as
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ZR ¼ 4πσ2yð0Þ
βλ

: ð14Þ

Another quantity of interest is the product of rms beam
waist size and rms angular divergence σθ, which is given as

σyð0Þ × σθ ¼
βλ

4π
: ð15Þ

Note that the above expressions are similar to the standard
expressions for the case of a Gaussian mode propagating in
free space except that λ is replaced with βλ. It is well known
in optics that for a Gaussian mode propagating in a
uniform, isotropic medium, λ gets replaced with λ=n in
the above formulas, where n is the refractive index of the
medium. Using n ¼ c=vp, where vp is phase velocity of
light in the medium, λ=n is the same as ðvp=cÞλ. This is
thus similar to the result we obtained for the surface
mode here.
The present analysis for the localized surface mode will

be used to estimate the required parameters of the electron
beam for efficient working of the Čerenkov FEL in Sec. IV.

C. Three-dimensional Maxwell-Lorentz equations

Next, we will derive the three-dimensional Maxwell-
Lorentz equations for the CFEL system. We start with the
generalized expression for the sinusoidal component of the
beam current density: J ¼ Jðx; yÞeiðk0z−ωtÞhe−iψi þ c:c:,
where Jðx; yÞ is the dc current density, he−iψ i indicates
bunching of the electron beam due to interaction with the
surface mode and c.c. represents complex conjugate. We
can decompose the beam current density into Fourier
components as

J ¼ 1ffiffiffiffiffiffi
2π

p
Z

~Jðx;kyÞeik2yz=2k0he−iψi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}eiψe−ik2yz=2k0eikyydkyþc:c:

ð16Þ
Note that we have cast the integral in a form such that the
Fourier component of the electromagnetic field can be
understood to be evolving with the Fourier component of
the electron beam current density. For further calculations,
we consider the flat electron beam for which Jðx; yÞ ¼
jðyÞδðxÞ and its Fourier transform is written as ~Jðx; kyÞ ¼
~jðkyÞδðxÞ. The electromagnetic fields due to this current
density can be obtained by using Maxwell equations under
appropriate boundary conditions, and we obtain the longi-
tudinal component of electric field as

Ezðx;y;z;tÞ¼
eiψe−Γxffiffiffiffiffiffi

2π
p

Z
Aðky;z;tÞ|fflfflfflfflffl{zfflfflfflfflffl}e−ik2yz=2k0eikyydkyþ c:c:

ð17Þ

The amplitude Aðky; z; tÞ of the surface mode will evolve
due to interaction with the copropagating electron beam

and we have assumed it to be a slowly varying function of z
and t. The beam-wave interaction in a CFEL system for the
2D case is discussed earlier in Sec. II A. Now, by following
the same approach and realizing that the underbraced term
in Eq. (17), which is the amplitude of Fourier component of
the electromagnetic field, is evolving due to interaction
with the amplitude of corresponding Fourier component of
the current density, denoted by the underbraced terms in
Eq. (16), we obtain the following time dependent differ-
ential equation for the evolution of Aðky; z; tÞ:

∂A
∂z þ

1

βgc
∂A
∂t ¼

−Z0χ

2βγ
~jðkyÞeik2yz=2k0e−2Γhhe−iψi−αA: ð18Þ

By taking the Fourier transform with respect to ky in

Eq. (18) and using the fact that Ae−ik
2
yz=2k0 is the Fourier

transform of the longitudinal surface field, we obtain the
following differential equation for the 3D surface mode:

∂E
∂z −

i
2k0

∂2E
∂y2 þ

1

βgc
∂E
∂t ¼ −Z0χ

2βγ

dI
dy

e−2Γhhe−iψ i − αE:

ð19Þ

Here, E is the amplitude of longitudinal field Ez and dI=dy
is the linear current density of the flat beam. The second
term on the left-hand side of the above equation represents
diffraction of the surface mode and allows us to study the
transverse profile of the optical beam. In an approximate
way, the effect of partial overlap between the electron beam
and optical mode can be considered in the numerical
solutions of 2D Maxwell-Lorentz equations by writing
the linear current density dI=dy as I=Δy, where Δy is the
electron beam width, and is replaced with the effective
optical beam width determined using Eq. (14).

III. SURFACE MODE ANALYSIS IN A
SMITH-PURCELL FEL

The essential features of the analysis of surface mode
supported in a SP-FEL system have been worked out earlier
in Refs. [25–28]. Here, we further elaborate to highlight the
interesting difference in the analyses of CFEL and SP-FEL
systems. We first review the 2D analysis, which is followed
by the 3D analysis of the surface mode, where we provide
derivations of some important results and present a com-
parison with the case of CFELs.

A. Review of two-dimensional analysis

As shown in Fig. 2, a metallic reflection grating is used
as the slow wave structure in an SP-FEL. Here, the
supported surface mode is a combination of Floquet space
harmonics, since the grating is a periodic structure. The
zeroth-order component will show the strongest interaction
with the electron beam and has a similar structure as given
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by Eq. (1) [25]. Similar to the case of the CFEL described
in the previous section, the electron beam interacts with the
copropagating surface mode and the dynamical equation
for the evolution of the amplitude of surface mode is given
by [25,26]

∂E
∂z −

1

βgc
∂E
∂t ¼ Z0χ

2βγ

dI
dy

e−2Γhhe−iψi þ αE: ð20Þ

Here, the calculation of χ requires numerical evaluation of
R as a function of growth rate for a given value of (ω, k0) of
the surface mode, and details regarding the procedure for
this calculation are described in Ref. [25]. Evaluation of the
attenuation coefficient α requires calculation of heat dis-
sipation at metallic surfaces for the given surface mode,
which has been discussed for the case of the SP-FEL in
Ref. [24]. Note the difference in sign of terms containing
βg, χ and α in the above equation as compared to Eq. (2) for
the CFEL. This is due to the fact that the SP-FEL has
negative group velocity for the surface mode, as described
in Ref. [25], whereas the group velocity is positive in case
of the CFEL system. The negative group velocity for the
SP-FEL makes it a backward-wave oscillator (BWO) and
oscillations build up when the linear current density dI=dy
exceeds a threshold value dIs=dy [25,26]:

dI
dy

>
dIs
dy

¼ J ðηÞ IAβ4γ4

2πχkL3
e2Γh: ð21Þ

Here, J ðηÞ represents dimensionless start current as a
function of the loss parameter η ¼ αL and k ¼ ω=c, and is
evaluated in Ref. [38].
After having briefly discussed the 2D analysis, we next

discuss the localized surfacemode and set up the 3D coupled
Maxwell-Lorentz equations for the SP-FEL system.

B. Localized surface mode and three-dimensional
Maxwell-Lorentz equations

In order to construct the localized surface mode, we
need to combine the plane waves propagating at different
angles in the (y, z) plane with suitable weight function.
In order to perform this calculation, we need to know the
3D dispersion relation, i.e., the dependence of ω on kz, for
different values of ky. As discussed in Sec. II A, the
dispersion relation is obtained by deriving the condition

for singularity in R. In an SP-FEL system, the calculation of
R of the grating for growing evanescent waves for the 2D
case was carried out by Kumar and Kim [39] and the
dispersion relation of the surface mode was obtained.
This analysis was then extended by including the
expðikyyÞ-type variation in the electromagnetic (em) field
and reflectivity was evaluated [28] for the 3D case. A
remarkable observation in their analysis is that if we replace

ω by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − c2k2y

q
in the expression for the reflectivity for

the case ky ¼ 0, we obtain the reflectivity for the 3D case,
where a finite value of ky is considered [28,31]. This is
because here we have electromagnetic field present only in
one medium, i.e., the space above the surface of the
reflection grating (including the grooves of the grating),
which is in vacuum. Due to this feature, the expression for
reflectivity has terms like (ω2 − c2k2z) in the 2D case, which
can be simply replaced with (ω2 − c2k2y − c2k2z) for the 3D
case. This amounts to replacing ω in the 2D case byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − c2k2y

q
, to determine the dispersion relation for the

3D case with finite ky.
It is important here to note the difference between the

dispersion relation of the SP-FEL and the CFEL system. A
careful observation of the 2D dispersion relation of the
CFEL,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵω2=c2−k20

p
tanðd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵω2=c2−k20

p
Þ¼ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20−ω2=c2

p
[18], indicates that the simple “replacement rule” as in the
case of the SP-FEL system, i.e., replacing ω in 2D

dispersion relation with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − c2k2y

q
, will not give us

the 3D dispersion relation. This is because here, the
electromagnetic field in CFEL is present in vacuum as
well as in the dielectric medium, unlike the SP-FEL case;
therefore terms like (ω2 − c2k2o) as well as (ω2 − c2k2o=ϵ)
appear in the 2D dispersion relation. In the case of
the CFEL, the “isotropic nature” of the dielectric slab in
the ðy; zÞ plane facilitates us to analyze the diffraction in the
surface mode as described in the previous section. The
grating structure used in the SP-FEL system has grooves
along the surface in the transverse direction and lacks
isotropic behavior in the ðy; zÞ plane. Due to this difference,
the optical properties of the surface mode in the SP-FEL
system are different as compared to the CFEL system, as
elaborated below.
We now discuss the construction of the localized surface

mode in the SP-FEL. Due to the replacement rule,

ω3DðkyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
2D þ ðckyÞ2

q
, we write the longitudinal

wave number kz as

kz ¼ k0 þ
∂k
∂ω

����
ky¼0

Δω; ð22Þ

where Δω ¼ ω2D − ω3D and the term ∂k=∂ω at ky ¼ 0 is
identified as ð−1=βgcÞ. Using these results along with the
paraxial approximation in Eq. (22), we obtain

FIG. 2. Schematic of a Smith-Purcell FEL, using a flat
electron beam.
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kz ¼ k0

�
1þ k2y

2ββgk20

�
: ð23Þ

Here, we note the difference between the above equation
and the corresponding equation [Eq. (10)] for the case of
the CFEL. On account of 3D effects, the magnitude of
change in the longitudinal wave number (jkz − k0j) is given
by βλk2y=4π for the CFEL and λk2y=4πβg for the SP-FEL
case. It can be seen that in this term, βλ in the case of the
CFEL is replaced with λ=βg for the case of the SP-FEL.
Next, by satisfying the wave equation for the electro-

magnetic field, we obtain the expression for Γ0 as

Γ0 ¼ Γ
�
1þ k2yð1þ ββgÞ

2ββgΓ2

�
: ð24Þ

By following an approach similar to the one described in
Sec. II B, the analysis for the localized surface mode
supported by the grating structure is performed. The
Rayleigh range for the optical surface mode is obtained
as [26]

ZR ¼ 4πβgσ
2
yð0Þ

λ
; ð25Þ

where σyð0Þ is the rms beam size at the waist. Under
paraxial approximation, the product of rms beam waist size
and rms divergence is given by [26]

σyð0Þ × σθ ¼
λ

4πβg
: ð26Þ

Note that Eqs. (25) and (26) have dependence on the group
velocity, while equivalent quantities in the CFEL system
[Eqs. (14) and (15)] have dependence on the phase velocity
of the surface mode. In these expressions, the term βλ in
the case of the CFEL is replaced with λ=βg in the case of the
SP-FEL, as expected. We emphasize that this difference
arises due to a fundamental difference in the way the
dispersion relation for the two systems gets modified for the
3D case, which we have explained. Due to this nature, it
can be seen that the diffraction effects are more prominent
in the case of the SP-FEL as compared to the CFEL. The
length L of the grating in the case of the SP-FEL has to be
kept small to maintain sufficient interaction of the surface
mode with the copropagating electron beam.
Next, the expression for kz and Γ0 can be used in Eq. (8)

to set up the three-dimensional electromagnetic surface
mode for the SP-FEL. By following the procedure
described in Sec. II C, the following time dependent
three-dimensional differential equation for the evolution
of the surface mode in a SP-FEL is obtained [28]:

∂E
∂z þ i

2ββgk0

∂2E
∂y2 −

1

βgc
∂E
∂t ¼ Z0χ

2βγ

dI
dy

e−2Γhhe−iψi þ αE:

ð27Þ

Note the difference in the second term of the above
equation as compared to the corresponding term in
Eq. (19) for the CFEL. Here, a factor ββg is appearing,
which shows large diffraction in the surface mode in an
SP-FEL, as compared to the CFEL. Note that although the
diffraction term in the above equation has the same form as
in the case of the undulator based FEL [40], the free-space
wavelength λ appearing in this term for the undulator based
FEL is replaced with βλ in the CFEL and λ=βg in the
SP-FEL, and this is an important finding of our analysis.
We would like to mention here that although Ref. [28]
describes Eq. (27), it does not elaborate on the procedure to
derive this equation, which is provided in this paper.

IV. ELECTRON BEAM REQUIREMENTS AND ITS
PRODUCTION FOR THE ČERENKOV FEL

In this section, based of the analysis of the surface mode
presented in Sec. II B, we will work out the electron beam
requirements for successful operation of a CFEL. Similar
analysis for the SP-FEL has already been worked out in
Refs. [26,27], which we extend to the case of the CFEL in
this section.

A. Theoretical analysis

The electron beam distribution in the four-dimensional
phase space (x, ψ , y, ϕ) is assumed to be Kapchinskij-
Vladimirskij (KV) distribution [41], where x and y are the
vertical and horizontal coordinates respectively, and ψ and
ϕ represent vertical and horizontal angles, respectively. The
electron beam distribution is assumed to have half-widths
(Δx, Δψ , Δy, Δϕ) at the middle of the dielectric slab and
the half-widths are 2 times the rms values (σx, σψ , σy, σϕ).
Thus, Δx ¼ 2σx, Δψ ¼ 2σψ , Δy ¼ 2σy and Δϕ ¼ 2σϕ.
The geometric rms emittance in the y-direction is therefore
given by ε0y ¼ ð1=4ÞΔyΔϕ. The Courant-Snyder envelope
βy, also known as the beta function in the y-direction, is
defined as βy ¼ σ2y=ε0y. Similar quantities are defined with
the subscript x in the x-direction.
Let us first look for the requirements on the electron

beam in the y-direction. The product of rms beam size
σyðoÞ and divergence σθ for the surface mode supported in
the CFEL is given by βλ=4π. Now to ensure that electron
beam envelope is within the envelope of optical beam, the
rms unnormalized emittance is required to be less than this
product. Applying this for the case of the CFEL, we get

εy ≤
β2γλ

4π
; ð28Þ

where εy ¼ βγε0y is the normalized beam emittance in the
y-direction. Next, the half-width Δy of the electron beam,
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which is taken the same as the half-width 2σy of the optical
beam, is chosen by requiring that the Rayleigh range ZR is
equal to the interaction length L. This choice of ZR ensures
that the variation in the rms optical beam size over the
interaction length is within 10%, as can be seen by putting
z ¼ L=2 (z ¼ 0 corresponds to middle of the dielectric
slab and z ¼ �L=2 corresponds to the end points), and
ZR ¼ L in Eq. (13). Now, by using Eq. (14), we find σy ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βλZR=4π

p
and by inserting it in the above-mentioned

condition, we obtain

Δy ¼
ffiffiffiffiffiffiffiffi
βλL
π

r
: ð29Þ

Let us now discuss the required electron beam param-
eters in the x-direction. In the view of the exponential
factor e−2Γh in Eq. (6), it is desirable that the height h of the
electrons should satisfy h ≤ 1=2Γ for the sufficient inter-
action between the electron beam and the copropagating
surface mode. Here, Γ ¼ 2π=βγλ. Assuming that the
electron beam is propagating over the dielectric slab such
that its centroid is at height h and its lower edge just touches
the dielectric surface, we can take the half-width Δx of the
electron beam the same as h ¼ 1=2Γ, and obtain

Δx ¼ βγλ

4π
: ð30Þ

This implies that rms electron beam size σx ¼ Δx=2 ¼
βγλ=8π at the middle of the dielectric slab. In order to
ensure that the variation in σx over the interaction length is
less than ∼10%, we require βx ≥ L. Using these two
conditions and the relation that ε0x ¼ σ2x=βx, we obtain

εx ≤
β3γ3λ2

64π2L
; ð31Þ

where εx ¼ βγε0x is the normalized beam emittance in the
x-direction. The condition on the normalized beam emit-
tance εx comes out to be very stringent. As discussed in
detail in the next subsection, a flat electron beam with
transverse emittance ratio, εy=εx ≃ 1000 is required for
the operation of a practical CFEL. This value is roughly
10 times higher than the value achieved in a recent
experiment [42].
The stringent requirement on the emittance of a flat

electron beam can be relaxed by introducing an external
focusing by either using a wiggler field [43,44] or by using
a solenoid field [45,46]. Details of the two schemes are
described in Ref. [27] for the case of the SP-FEL. Both
schemes are applicable for the case of the CFEL also. We
briefly discuss these schemes for the CFEL case and give
the relevant mathematical formulas here.

1. Focusing of flat beam by using a wiggler field

In the first scheme, where a wiggler magnetic field is
used for external focusing, the flat electron beam is

generated by a novel phase space technique [26,47]. In
this technique, a cathode is placed in an axial magnetic field
to produce a round beam and then the angular momentum
of beam is removed by using a set of quadrupoles. Finally, a
flat electron beam is obtained with transverse emittance
ratio [26]:

εy
εx

¼
�
eB
m0c

r2t
4εI

�
2

; ð32Þ

where B represents the magnetic field at the cathode, rt is
the radius of the thermionic cathode, and εI ¼ ffiffiffiffiffiffiffiffiffi

εxεy
p is the

initial beam emittance of the round beam. The radius rt is
related to the initial emittance as rt ¼ 2εI=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m0c2

p
[26], where kB is Boltzmann’s constant and T is the
absolute temperature of the thermionic cathode. The
magnetic field required to produce an electron beam with
the desired transverse emittance ratio is evaluated by using
Eq. (32) as B ¼ kBT=eεxc. Note that B is independent of
εy. The current density Jt at the cathode for a given beam
current I is Jt ¼ I=πr2t [26].
In Fig. 3, we have shown the schematic for focusing of

the above-mentioned flat beam in a CFEL by using a
wiggler with a parabolic pole shape. In the presence of a
wiggler magnetic field, the electron beam will be focused in
both x- and y-directions. By neglecting the space charge
effect in the envelope equation, the matched rms beam size
in the x- and y-directions is obtained as [27]

σx;y ¼ 21=4

ffiffiffiffiffiffiffiffiffiffiffiffi
εx;y

aukx;y

s
: ð33Þ

Here, au ¼ eBu=kum0c, Bu represents the peak value of the
magnetic field in the x-direction, along the z-axis,
ku ¼ 2π=λu, λu is the wiggler period, and kx and ky
represent spatial frequency of the wiggler field in the x-
and the y-direction, respectively. We require k2u ¼ k2x þ k2y
to satisfy the Maxwell equations. In Eq. (33), we choose
σy ¼ 1=2Δy and σx ¼ 1=2Δx, where Δy and Δx are given
by Eqs. (29) and (30) respectively, and find the appropriate
value of au, kx and ky for a given values of emittances
(εx, εy), such that the beam sizes are matched inside a
wiggler and thus maintain a constant size throughout the
wiggler. For a typical set of parameters of a CFEL, the

Upper jaw of wiggler

Lower jaw of wiggler

Dielectric slab

Electron beam

FIG. 3. Schematic of external focusing in a Čerenkov FEL
using a wiggler.
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focusing requirement in the vertical direction is very strong
as compared to the horizontal direction; we can therefore
choose ky ¼ 0 and kx ¼ ku. It is clear from Eq. (33) that for
a matched beam size, one can tolerate relaxed vertical
emittance by choosing the higher value of the peak
undulator magnetic field Bu. Note that in the case of
external focusing in the vertical direction, we do not require
to satisfy Eq. (31).

2. Focusing of flat beam by using solenoid field

In the second scheme, a solenoid magnetic field is
used to focus a low energy flat electron beam. The
required flat beam is generated using an elliptically
shaped, planar thermionic cathode with major axis Δyc¼
Δy and minor axis Δxc ¼ Δx. The normalized thermal
emittances for the thermionic cathode are given by
ðεx; εyÞ ¼ 0.5ðΔxc;ΔycÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m0c2

p
, and current den-

sity at the cathode, corresponding to current I is given
by Jc ¼ I=πΔxcΔyc [26]. For generating a flat beam, the
vertical dimension of the cathode is very small compared
to the horizontal dimension, and such a cathode is called
a line cathode. The dielectric slab together with the line
cathode is placed inside the solenoid and, in order to
ensure that the beam does not rotate, the electron beam
is generated in the uniform field region of the solenoid,
and it remains inside the solenoid while propagating
over the surface of the dielectric slab. The solenoid field
strength required to focus a flat beam can be evaluated
with the condition that the Larmor radius should be
much smaller than the vertical rms beam size σx [27],
which gives us the following expression for the axial
magnetic field Bð0Þ near the cathode [27]:

Bð0Þ ≫ m0cεx
eσ2x

: ð34Þ

The nonuniformity in the longitudinal on-axis magnetic
field gives rise to rotation θ to the flat beam given
by [27]

θðzÞ ¼ zωL

3βc
ΔBðzÞ
Bð0Þ ; ð35Þ

where ΔBðzÞ ¼ BðzÞ − Bð0Þ and ωL is the Larmor fre-
quency. Here, it is assumed that the cathode is placed at the
center of the solenoid (z ¼ 0), where the field is maximum,
and the variation of the quantities in the radial direction is
assumed to be very slow. We have to ensure that the
electron beam does not rotate significantly such that the
flat beam nature is preserved. Also, there could be
problems with the transmission of a flat beam by using
a uniform solenoid magnetic field at higher beam currents
as discussed earlier in Refs. [48,49], where it is pointed out
that due to Es × Bð0Þ drift, where Es is the electric field
from space charge, the flat beam gets vertical kick in the
opposite direction at its two edges, which results in the

edge curling phenomenon. Beyond a certain threshold,
this leads to an instability known as diocotron, and/or
filamentation instabilities [48], which can disrupt the flat
nature of the electron beam, resulting in significant
interception of the beam. An analytic estimate for the
threshold length LD, after which the diocotron instability
grows exponentially, can be given by LD ðcmÞ≃
800β2γ3Bð0Þ ðkGÞ=Jc ðA=cm2Þ [48]. It can be seen that
for a given beam energy and focusing field strength, the
diocotron instability is suppressed at low beam current
densities Jc or equivalently at reduced effective space
charge, which is actually the case for the parameters
considered in our analysis as discussed in detail in the
next subsection.
Clearly, both external focusing techniques allow us to

tolerate larger emittance of the electron beam, but these also
increase the deleterious effects of the velocity spread. Due
to external focusing, the spread in the longitudinal velocity
is given by [27]

Δβ
β

∼
ε2x

2β2γ2σ2x
: ð36Þ

Focusing in the y-direction will also give a similar con-
tribution to the velocity spread. Spread in the longitudinal
velocity is equivalent to the spread in the energy. The
maximum energy spread that can be tolerated in a CFEL
corresponds to the phase mismatch of π between the
electrons and the copropagating surface mode at the exit
of the interaction region, or equivalently ΔβL=β ¼ βλ=2.
This condition gives us the maximum value of emittance
which can be tolerated by the system as

εx < σx

ffiffiffiffiffiffiffiffiffiffiffi
β3γ2λ

L

r
: ð37Þ

With the external focusing, we can increase the length L of
the dielectric slab to obtain themaximumgain.However, the
increment in Lwill restrict the maximum emittance that can
be tolerated, a conditiongiven inEq. (37).Weneed to choose
an optimum length of the system for which the deleterious
effect due to resulting energy spread is significantly less.
Finally, we summarize the procedure for the optimization

of the focusing strength and the emittance as follows: We
first choose the vertical beam size fromEq. (30) for the given
parameters of a CFEL, and then we choose the maximum
focusing strength by using Eq. (33) (in the case of wiggler
focusing) or using Eq. (34) (in the case of solenoid focusing)
to attain the maximum tolerance on the vertical emittance,
keeping in mind that the constraint is given by Eq. (37).

B. An example case

For an example case of a practical CFEL, we take
parameters of the Dartmouth experiment [12], and optimize
them in accordance with the analysis given in the earlier
sections. In the Dartmouth experiment [12], an electron
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beam with 1 mA current and with energy range 30–40 keV
was allowed to pass over the dielectric slab of thickness
350 μm. Two different materials, GaAs (ϵ ¼ 13.1) and
sapphire (ϵ ¼ 9.6), were used for the dielectric slab, and a
silver polished copper metal was used to support the
dielectric slabs. We choose sapphire as the dielectric
material, which has very low tangent loss (tan δ ≤ 10−4)
as compared to GaAs (tan δ≃ 10−3) [50]. We take the
electron beam energy as 46.5 keV, corresponding to β ¼
0.4 (βγ ¼ 0.44), which is well above the threshold con-
dition (βt ¼ 1=

ffiffiffi
ϵ

p ¼ 0.32) for the generation of Čerenkov
radiation in sapphire. For these parameters, we find
λ ¼ 2.7 mm, βg ¼ 0.27 and χ ¼ 317 per m by using the
analysis given in Ref. [18]. The conductivity of silver metal
at 300 K is given by 6.3 × 107=Ω-m [51], for which the
attenuation coefficient, α ¼ 2.2 per m, as calculated by
using Eq. (3). Note that the dielectric losses in sapphire are
negligible for the chosen parameters. In the context of 3D
analysis, the linear current density dI=dy, which is needed
to evaluate the gain and the growth rate of the system by
using Eqs. (6) and (7) respectively, can be interpreted as the
peak value at the middle of the electron beam distribution,
which is given by [26]

dI
dy

¼ I
πΔy=2

; ð38Þ

for KV distribution discussed in Sec. IVA. The effective
electron beam width in the y-direction is thus taken as π
times the rms optical beam waist size σyð0Þ and can be
evaluated by using Eq. (29). The electron beam height, h is
taken as half beam width Δx in the x-direction. The length
of the dielectric slab was taken as 1 cm in the Dartmouth
experiment. For L ¼ 1 cm, we find a small signal gain of
around 0.03%, which is too low to overcome losses present
in the system, as the round-trip loss (1 − e−4αL) is around
8.4%. To get an appreciable gain, we take L ¼ 5 cm and
increase the electron beam current from 1 mA to 35 mA. By
using the modified parameters in Eqs. (6) and (7), we find
gain as 50% and growth rate as 21.2 per m respectively.
With the increased length, power loss due to attenuation
also increases. To reduce the attenuation, we propose that
the silver metal, which supports the dielectric slab, should
be kept at very low temperature i.e., at 77 K, which is the
boiling point temperature of liquid nitrogen. The conduc-
tivity of silver at 77 K is about 3.3 × 108=Ω-m [51], which
gives us α ¼ 0.97 per m and round-trip loss of 17.6% over
an interaction length of 5 cm. In order to attain saturation,
the system is operated in the oscillator configuration, where
a set of mirrors is used to provide an external feedback. One
mirror is assumed to be ideal with 100% reflectivity of
the field amplitude and other has reflectivity of 98%. The
Maxwell-Lorentz equations have been solved numerically
by using the leapfrog scheme [18] to obtain the power in the
surface mode. The power builds up slowly and saturates

after 100 number of passes, as shown by the solid curve in
Fig 4. At saturation, we obtain the output power as 7.2 W.
The input electron beam power is 1.6 kW, which gives us
efficiency of 0.44%. Figure 4 also shows the output power
(dashed curve) of a CFEL, where Ohmic losses are
assumed to be zero. In this case, the CFEL system gives
41.3 W output power on saturation, with an efficiency of
2.5%. Note that the presence of Ohmic losses on the
metallic surface severely affects the output power and
efficiency of a CFEL system, and one has to optimize
the system for minimum losses.
The requirements on electron beam sizes are evaluated

by using Eqs. (29) and (30), as Δy ¼ 4.2 mm in the y-
direction and Δx ¼ 94 μm in the x-direction respectively.
By using Eq. (31), we find that an electron beam with
normalized vertical emittance εx ≤ 1.9 × 10−8 m-rad is
needed in the absence of any external focusing, which is
a very stringent requirement. In the horizontal direction, the
condition on beam emittance is quite relaxed as an electron
beam with εy ≤ 3.8 × 10−5 m-rad is required, which is
calculated from Eq. (28). If we take εy ¼ 1.9 × 10−5 m-rad,
which is 2 times less than the maximum allowed value, then
a flat electron beam with transverse emittance ratio εy=εx ¼
1000 is required for the operation of the CFEL. In the
Dartmouth experiment [12], these conditions have been
clearly violated, where a round electron beam having large
vertical emittance was used to drive the Čerenkov FEL. As
discussed in the previous subsection, the transverse emit-
tance ratio of 100 has been achieved experimentally [42]
and it is feasible to extend this ratio to 400 [52].
To relax the stringent requirement on the electron beam

emittance, external focusing can be provided by using a
wiggler field as described in Sec. IVA 1. Here, we will take
an explicit example to perform the calculations for the
analytical results discussed in Sec. IVA 1. We assume a
round electron beam with initial normalized emittance
εI ¼ 1 × 10−6 m-rad, which is easily achievable. The flat
electron beam can be produced by using round to flat
beam transformation as discussed earlier and under this
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FIG. 4. Plot of output power as a function of pass number for
the optimized parameters of a Čerenkov FEL discussed in the
text. The dashed curve represents the case, where Ohmic losses
are assumed to be zero, and the solid curve shows the output
power with finite Ohmic losses in the system at 77 K temperature.
The linear current density (dI=dy) of the electron beam is taken as
5.4 A=m.
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transformation εI ¼ ffiffiffiffiffiffiffiffiffi
εxεy

p . We choose the ratio of hori-
zontal and vertical emittances as 100∶1, i.e., εy ¼
10−5 m-rad and εx ¼ 10−7 m-rad. This scheme requires
an axial magnetic field B ¼ 37.4 Gauss at the position of
the cathode at T ¼ 1300 K, which can be generated by
using either a permanent magnet or an electromagnet [26].
The current density at the cathode, which is required to
produce an electron beam of desired emittances discussed
above, is obtained by using the prescription given in
Sec. IVA 1 as JT ¼ 0.06 A=cm2 at T ¼ 1300K. This
value of current density can be easily achieved in therm-
ionic cathodes e.g., oxide, dispenser and M-type cathodes
[53,54], which can be operated for tens of thousands of
hours at around 1300 K. Next, we discuss the requirements
of the wiggler parameters to focus the flat beam described
above. For a matched beam size σx ¼ 47 μm and vertical
emittance εx ¼ 10−7 m-rad, we require Bu ¼ 1.1 kG. This
value of magnetic field can be obtained by using an array of
regular pure permanent magnets in Halbach configuration,
which gives a peak field strength of 1.7Brem expð−πg=λuÞ
[55], where Brem is the remnant field of the magnetic
material and g is the gap between the jaws of the wiggler.
We have considered NdFeB as the magnetic material for
which Brem ¼ 1.2 T [55]. We have taken two cases for the
wiggler gap, i.e., g ¼ 1 mm and g ¼ 2 mm, such that the
beam transport is feasible. For g ¼ 1 mm, we need a mini-
wiggler with 1.1 mm period and for g ¼ 2 mm, we need a
wiggler period of 2.2 mm, to obtain the required magnetic
field of 1.1 kG. This type of mm or sub mm period wiggler
can be fabricated by using the laser micromachining of bulk
permanent magnets as discussed in Ref. [56]. We have
checked that for the proposed wiggler field and wiggler
period, the condition for the Mathieu stability of the
wiggler focusing, i.e., ðeλuBu=2

ffiffiffi
2

p
πm0cβγÞ2 < 0.5 [57],

is satisfied. It has also been checked that the criteria for the
maximum tolerance on beam emittance as given by
Eq. (37) is easily met for the above discussed case.
Next, we discuss another possibility to relax the stringent

requirement on the vertical beam emittance, where we can
use a line cathode immersed in the solenoid field to produce
a flat electron beam. This method has been discussed in
detail in Sec. IVA 2. To produce a flat electron beam with
beam half-widths Δx¼ 94 μm and Δy ¼ 4.2 mm, we need
a line cathode with Δxc ¼ 94 μm, and Δyc ¼ 4.2 mm. At
T¼ 1300K, we obtain εx ¼ 2.2×10−8 m-rad and εy¼9.7×
10−7m-rad, which are quite acceptable. For beam current
of 35 mA, the current density at the line cathode is obtained
as Jc ¼ 2.86 A=cm2. Again, these cathode loadings (cur-
rent density up to 10 A=cm2) are trivial for the modern
thermionic cathodes [53,54,58]. By using Eq. (34), we find
that the solenoid magnetic field Bð0Þ is required to be
greater than 0.17 kG to focus such a flat electron beam. We
choose Bð0Þ ¼ 1.0 kG. The Larmor radius is obtained as
7.3 μm for these parameters, which is significantly smaller

than the rms beam size σx ¼ 47 μm. To keep the flat
beam rotation less than 10 mrad over a length L ¼ 5 cm,
we require the field uniformity ΔB=B to be better
than 0.4%, as calculated by using Eq. (35). We would
like to mention that the considered electron beam is not
space charge dominated as the space charge term is
small compared to the emittance term in the envelope
equation [41], i.e., IΔx3=4βγIAε2xðΔxþΔyÞ< 1 for the
x-direction. We have evaluated the left-hand side in this
inequality and obtain 0.62. The condition in the y-direction
is less restrictive for our case. For the beam current density
of 2.86 A=cm2 and axial magnetic field of 1.0 kG, we find
the lower bound estimate for the diocotron instability
growth length LD as 58.0 cm. The proposed length of
the CFEL system (5 cm) is about 12 times less than the
threshold growth length, hence, the diocotron instability
due to Es × Bð0Þ effect is not of concern in our system.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we have presented a three-dimensional
analysis of the surfacemode inČerenkov FELs. Expressions
have been derived for the electromagnetic field in a localized
surface mode by suitably combining the plane wave sol-
utions of Maxwell equations, propagating at different
angles. A crucial input for this calculation was to have
the information about the change in kz, after we include
eikyy-type dependence in the electromagnetic field, keeping
the value of ω fixed. For the case of the CFEL, this was
simplified due to the “isotropic nature” of the system in the
ðy; zÞ plane, and in the case of the SP-FEL, this was
simplified due to the “replacement rule” for the evaluation
of reflectivity of the incident evanescent wave. Interestingly,
the isotropic nature is not applicable for the SP-FEL case and
the replacement rule is not applicable for the CFEL case.
Three-dimensional analysis of the surface mode allows

us to include the effect of diffraction, which plays an
important role in the performance of a CFEL. We have
explained in the paper that for an isotropic system, as in the
case of the CFEL, in the diffraction term in the wave
equation, λ gets replaced with βλ. On the other hand if the
system is not isotropic, but the em field is present only in
vacuum, as in the case of the SP-FEL, λ gets replaced with
λ=βg. Diffraction results in partial overlapping between
the electron beam and the copropagating optical mode.
Consequently, the gain and the growth rate of a CFEL
system reduce. To incorporate the 3D effects in the
formulas for the gain and the growth rate calculations,
we have taken the electron beam size to be the same as the
effective optical beam size, which has been evaluated by
taking the 3D variations in the surface mode.
We also derived expressions for dielectric losses and

losses due to finite conductivity of the metal, which play an
important role when we increase the interaction length in
order to increase the gain in a CFEL. Although all earlier

THREE-DIMENSIONAL ANALYSIS OF THE … PHYS. REV. ACCEL. BEAMS 19, 060702 (2016)

060702-11



analyses on the single slab CFEL have ignored this effect, it
is important to take such realistic effects into account in a
practical device, as is the case in any device using guided
waves at high frequency. It is interesting to point out that
even in the case of SP-FELs, the effect of attenuation was
neglected in earlier studies, and its importance was realized
in later studies [24,38]. In order to reduce the loss due to
finite conductivity of metal in a CFEL, we have proposed
that the metallic base can be kept at low temperature. We
have optimized the parameters for a CFEL designed to
operate at 0.1 THz and shown that using a 46.5 keV
electron beam with a current of 35 mA, an optimized CFEL
oscillator can deliver output power of 7.2 W at saturation
with an efficiency of 0.44%.
Our overall approach is built on the earlier analyses

given in Refs. [26,27], where the diffraction properties of
the surface mode have been studied to determine the
requirements on electron beam parameters for the success-
ful operation of an SP-FEL. Here, our aim has been to
perform the analysis for the CFEL case and find out the
electron beam parameters for a practical CFEL system.
Like the SP-FEL [27], the requirements on the vertical
beam emittance in a CFEL come out to be stringent and we
have discussed two ways to relax the stringent require-
ments. In the first scheme, a wiggler magnetic field is used
to focus a flat electron beam, which is produced by a
novel phase-space technique discussed in Ref. [26]. This
scheme requires a peak wiggler field of about 1.1 kG to
focus a flat electron beam having transverse emittance ratio
εy=εx ¼ 100. This value of transverse emittance ratio has
been achieved recently at Fermi National Accelerator
Laboratory [42] and well below the recently proposed
value of 400 [52]. In the second scheme, we used a solenoid
field to focus the flat electron beam, which is produced by a
line shaped tungsten cathode placed at the center of the
solenoid. The solenoid field is taken as 1 kG with field
uniformity ΔB=B required to be better than 0.4% over a
length of 5 cm. Although the suggested schemes may add
to the complexity of the system, these are implementable
and are needed to satisfy the stringent requirements for
optimum performance of the system.
It is important to mention here that for the thermionic

cathode, we have taken only the thermal emittance into
consideration. In reality, the beam emittance could be larger
than this [59]. We have checked that with suitable change in
the parameters, our schemes would still work. For the case
of wiggler focusing, this would require us to choose a
smaller cathode size and hence, the beam current density at
cathode would increase and also the magnetic field required
at cathode for the flat beam production would increase. We
have checked that even if the total emittance is twice the
thermal emittance, the required current density and mag-
netic field required at cathode are increased by 4 times, and
these values are still easily achievable. For the case of
solenoid focussing, if we take the total emittance as twice

the thermal emittance, the required minimum solenoid
focusing field Bð0Þ increases by a factor of 2 and therefore
becomes 0.34 kG. In our calculation, we have considered a
solenoid focusing field of 1 kG, which is still higher
than 0.34 kG.
We would like to mention that our analysis can be

extended to understand the implications of 3D effects on
working of a CFEL based on the other schemes such as
using double slab [14,16] and negative refractive index
material [17]. In the negative index material, the group
velocity of the surface mode is negative. Due to the
negative group velocity of the surface mode, the CFEL
system works like a BWO [17]. The Čerenkov FEL in the
BWO configuration can be studied by following an
approach given in Refs. [25–27], where the working of
Smith-Purcell FELs in BWO configuration is discussed.
To summarize, we have performed 3D analysis of the

surface mode and set up 3D Maxwell-Lorentz equations
for a CFEL and a SP-FEL system. We notice that the
diffraction term appearing in Eqs. (19) and (27) is similar to
the corresponding term for the case of the undulator based
FEL [40,60]. Hence, the numerical techniques that are
applied for the solution of such equations in typical 3D FEL
codes such as GENESIS [61] can be extended for 3D
simulation of CFEL and SP-FEL, which may be taken up in
the future. The realistic effects such as the effect due to
energy spread, and finite beam emittance can also be
included in the computer code. We have optimized the
parameters of a Čerenkov FEL by including the 3D effects,
and attenuation due to dielectric and Ohmic losses, and find
that the device can produce copious THz radiation, even
after including these effects. Our analysis can be used for
the detailed optimization of both the CFEL and the SP-FEL
system.
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APPENDIX: CALCULATIONS FOR THE
ATTENUATION COEFFICIENT OF THE
ELECTROMAGNETIC SURFACE MODE

IN A ČERENKOV FEL

In this Appendix, we calculate the attenuation coefficient
of the electromagnetic surface mode due to loss inside the
dielectric slab and loss due to finite conductivity of the
metal, which supports the dielectric slab. The schematic of
the device is shown in Fig. 1, where free space is assigned
as region I, dielectric slab as region II and the metallic base
as region III. The electromagnetic fields in region I are
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obtained by solving Maxwell equations with appropriate
boundary conditions as [18]

HI
yðx; z; tÞ ¼ H exp½iψ − Γðxþ hÞ� þ c:c:; ðA1Þ

EI
xðx; z; tÞ ¼ ðHZ0=βÞ exp½iψ − Γðxþ hÞ� þ c:c:; ðA2Þ

EI
zðx;z;tÞ¼ ð−iHZ0=βγÞexp½iψ −ΓðxþhÞ�þ c:c: ðA3Þ

Here, H represents the magnetic field strength at the
dielectric surface at x ¼ −h. Electromagnetic fields in
region II are given by [18]

HII
y ðx; z; tÞ ¼

ϵΓ
k1

cos½k1ðxþ hþ dÞ�
sinðk1dÞ

H expðiψÞ þ c:c:;

ðA4Þ

EII
x ðx; z; tÞ ¼

k0Γ
ωϵ0k1

cos½k1ðxþ hþ dÞ�
sinðk1dÞ

H expðiψÞ þ c:c:;

ðA5Þ

EII
z ðx; z; tÞ ¼

−iΓ
ωϵ0

sin½k1ðxþ hþ dÞ�
sinðk1dÞ

H expðiψÞ þ c:c:;

ðA6Þ

where k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵω2=c2 − k20

p
. Total power transmitted by the

electromagnetic fields is the sum of power flow in region I
and region II, which can be obtained by integrating the
Poynting vector over the area transverse to the direction of
beam propagation. The expression for total transmitted
power is obtained as [18]

Pt

Δy
¼ Z0H2

βk0ϵ2a2
½γð1þ ϵ2a2Þ þ ϵk0dð1þ a2Þ�: ðA7Þ

The attenuation coefficient of the surface wave is given
by [62]

αd;c ¼ Pd;c
l

2Pt
; ðA8Þ

where, Pl is power loss per unit length along the
z-direction, and the superscripts d and c are meant for
the dielectric and metallic conductor respectively. In region
II, namely the dielectric medium, losses are described with
a complex relative permittivity ~ϵ ¼ ϵ − iϵ0, where tan δ ¼
ϵ0=ϵ is identified as tangent loss of the dielectric medium
[63]. Power loss per unit length in the dielectric medium
can be written as Pd

l ¼ ϵ0ϵω tan δ
R ðjEII

x j2 þ jEII
z j2Þdxdy,

where the integration is carried out from −ðhþ dÞ to −h in
the x-direction and over length Δy in the y-direction. By
using Eqs. (A5) and (A6), we obtain the expression for the
power loss in the dielectric medium as

Pd
l

Δy
¼ k0H2 tan δ

ϵ0ωϵ
2a2

½γð2 − ϵβ2Þ þ ϵ2β2k0dð1þ a2Þ�: ðA9Þ

Now, Eqs. (A7) and (A9) are used in Eq. (A8) to obtain the
dielectric attenuation coefficient as

αd ¼ k0 tan δ
2

½γð2 − ϵβ2Þ þ ϵ2β2k0dð1þ a2Þ�
½γð1þ ϵ2a2Þ þ ϵk0dð1þ a2Þ� : ðA10Þ

In region III, which consists of metal, the dissipation of
power occurs as Ohmic losses due to finite conductivity of
the metal. Here, we have assumed that the dissipation
occurs in a very small region near the metallic surface. The
power loss per unit length along the metallic surface is
given by Pc

l ¼ ðRs=2Þ
R jHyj2dy [64], where the integra-

tion is carried out over length Δy in the y-direction. The
magnitude of electromagnetic field Hy at the metallic
surface as given in Eq. (A4) is used to evaluate Pc

l . By
performing the required algebra for Pc

l , and using it along
with Eq. (A7) for Pt in Eq. (A8), the following expression
for Ohmic attenuation coefficient is obtained:

αc ¼ Rs

Z0

βϵ2k0ð1þ a2Þ
½γð1þ ϵ2a2Þ þ ϵk0dð1þ a2Þ� : ðA11Þ

The sum of dielectric losses and losses due to finite
conductivity of the metal gives total losses present in the
system and we write the total attenuation coefficient α of
the surface mode as α ¼ αd þ αc.
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