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Feedback control of the longitudinal and transverse electron beam profiles are considered to be critical
for beam control in accelerators. In the feedback scheme, the longitudinal or transverse beam profile is
measured and compared to a desired profile to give an error estimate. The error is then used to act on the
appropriate actuators to correct the profile. The role of the transverse feedback is to steer the beam in a
particular trajectory, known as the “orbit.” The common approach for orbit correction is based on
approximately inverting the response matrix, and in the best case, involves regulating or filtering the
singular values. In the current contribution, a more systematic and structured way of handling orbit
correction is introduced giving robustness against uncertainties in the response matrix. Moreover, the input
bounds are treated to avoid violating the limits of the corrector currents. The concept of the robust orbit
correction has been successfully tested at the SwissFEL injector test facility. In the SwissFEL machine, a
photo-injector laser system extracts electrons from a cathode and a similar robust control method is
developed for the longitudinal feedback control of the current profile of the electron bunch. The method
manipulates the angles of the crystals in the laser system to produce a desired charge distribution over the
electron bunch length. This approach paves the way towards automation of laser pulse stacking.
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I. INTRODUCTION

Many orbit correction algorithms have been devised
for synchrotron light sources. The task of orbit correction
is to determine a suitable set of currents in the corrector
magnets in order to keep the beam on a specified
trajectory. The beam position is measured at several
locations of the trajectory through “beam position mon-
itors” (BPMs). A static response matrix maps the changes
in corrector currents to the changes in the equilibrium
position of the beam at each BPM. In principle, orbit
correction attempts to invert the response matrix to
translate the beam positions into the actuation on each
of the corrector magnets. This procedure is usually based
on the singular value decomposition (SVD) method
which is already in use at many accelerator laboratories
over the world [1–8]. In some cases, an adaptive
approach was proposed to estimate the response matrix
[9], and some also took the corrector’s limits into account
in the SVD algorithm [10].

Both in theory and experiment one can think of two
types of orbit correction algorithms: static orbit correction
and dynamic orbit correction [11]. The objective of the
static orbit correction is to minimize the steady-state orbit
deviation from the desired trajectory. The process runs
slowly and the feedback rate is normally approximately
1 Hz. In dynamic orbit correction the objective is to
minimize the beam motion on some frequency range.
The process rate is of the order of several kHz which
may take the corrector magnets’ dynamics into account.
In this work, we concentrate only on the global steady-state
orbit correction with a static response matrix.
The current contribution develops an adaptive robust

control scheme that captures uncertainties of the response
matrix, and treats the input limits of the system, appropri-
ately. In addition, the system response matrix is estimated
on-the-fly, and therefore it can be applied to time-varying
systems ([12], Chap. 6). This approach has been success-
fully tested at the SwissFEL [13] injector test facility on 10
sets of BPM and corrector magnets. This method may be
applied to different systems and in this paper, we develop
an automated procedure for the laser pulse stacking system,
using the same mathematical approach, to achieve a desired
charge distribution over the bunch length. The proposed
automation facilitates the laser tuning during the operation.
The paper is organized as follows. Section II defines the

problem formulation. In Sec. III, an adaptive robust control
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scheme is introduced for a multiple-input multiple-output
(MIMO) system with a static response matrix. Sections IV
and V demonstrate two illustrative applications of the
proposed method: The orbit correction (transverse feed-
back) and the laser pulse stacking system (longitudinal
feedback).

II. PROBLEM FORMULATION

In this section and the section that follows, we derive an
optimal control algorithm for a general static system with
multiple inputs and multiple outputs. The algorithm is then
applied on two different systems, namely, the orbit cor-
rection and the laser pulse stacking systems. For the orbit
correction configuration, the inputs and outputs are,
respectively, the input currents to the corrector magnets
and the beam position measured at the BPMs. For the laser
system, the crystals’ angles and the current profile are
considered as the system inputs and outputs, respectively.
The two systems are described in more detail in the
corresponding sections. The control method is iterative;
the measured output in one run is used to update the input
for the next run.
Consider the following nonlinear MIMO system with

u ∈ Rm and y ∈ Rn denoting the input and output,
respectively.

y ¼ fðuÞ; u ∈ Rm; y ∈ Rn; ð1Þ

where f is a static nonlinear function, uniquely mapping u
to y. We assume at least as many measurements as
actuators (n ≥ m).
The system can be linearized around the operating point,

y0, with the associated input, u0:

y − y0 ≈ ~Rðu − u0Þ; ð2Þ

where ~R ∈ Rn×m is the first order approximation of f. The
matrix ~R is commonly referred to as the system response
matrix. We model the linear term with matrix R which
might differ from the actual response matrix, ~R. The
difference between the two response matrices can be
expressed in a multiplicative manner. That is,

~R ¼ RðI þ ΔÞ; ð3Þ

where Δ ∈ Rm×m is an initially unknown perturbation
matrix capturing the uncertainty in our model of the system.
Even though the perturbation matrix, Δ, is not fully known,
we can restrict the problem to uncertainties up to a certain
size. In other words, we assume that Δ is an unknown
matrix with the following norm upper-bound,

‖Δ‖2 ≤ γ < 1; Δ ∈ Rm×m: ð4Þ

For the sake of generality, we do not make any additional
assumptions on the structure of Δ at this stage.
Let us define yd as the desired output vector which is

assumed constant in time. This can indicate the desired
beam position at the BPMs, or the desired current profile in
the laser problem. The objective is to find the appropriate
actuation, u, to generate the desired output and, as it was
already pointed out, this is done in an iterative manner.
Since the perturbation, Δ, is initially not known, we

model the initial output response as,

ŷkþ1 ¼ yk þ Rðukþ1 − ukÞ; ð5Þ

where ŷkþ1 is the expected output at the next iteration, and
where subscript k is the iteration counter.
Calculating the least-square solution for yd ¼ ŷkþ1

in (5), gives us:

δuk ≔ ukþ1 − uk ¼ ðRTRÞ−1RTðyd − ykÞ; ð6Þ

under the assumption that ðRTRÞ−1 exists.
Therefore, the first order approximation of output vector

at the next iteration would be,

ykþ1 ≈ yk þ ~RðRTRÞ−1RTðyd − ykÞ; ð7Þ

where ~R represents the actual system response matrix
which might be different from R.
The error is considered as the discrepancy between the

measured output and the desired output. From (7) and (3)
the linearized error transmission matrix can be readily
calculated:

ekþ1 ≔ yd − ykþ1 ≈ ðI − RðI þ ΔÞðRTRÞ−1RTÞek
≕ MðΔÞek:

Note that if ‖MðΔÞ‖ < 1 (for any induced norm), the
error asymptotically decays to zero as the iteration pro-
ceeds, i.e., ek → 0 as k → ∞. We now show that, with the
modeled uncertainty, the spectral norm of MðΔÞ can
potentially exceed one. For simplicity in the analysis, we
assume that R is an invertible (and thus square) matrix.
Therefore, the MðΔÞ simplifies to

MðΔÞ ¼ −RΔR−1: ð8Þ

To observe the stability of MðΔÞ, we calculate the spectral
radius (largest absolute eigenvalue):

ρðMðΔÞÞ ≔ maxfjλ1j;…; jλnjg: ð9Þ

In general, the spectral radius provides a lower bound on
the 2-norm, and we have

ρðRΔR−1Þ ≤ ‖RΔR−1‖2 ≤ ‖R‖2‖Δ‖2‖R−1‖2; ð10Þ
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where the second inequality in (10) follows from
‖AB‖2 ≤ ‖A‖2‖B‖2. Now, taking the largest spectral
radius over all allowed Δ’s (i.e., ‖Δ‖2 ≤ γ), leads us to

max
Δ

ρðRΔR−1Þ ≤ max
Δ

‖RΔR−1‖2 ≤ γκ; ð11Þ

where κ ≔ ‖R‖2‖R−1‖2 denotes the condition number of
the response matrix, R. The condition number of a matrix is
the ratio of its largest to smallest singular value which gives
an indication how spread out its singular values are.
Inequality (11) gives an upper-bound for the worst-case

spectral radius of MðΔÞ. Now, we show that the equality
can actually happen if Δ is a full matrix without any
structure [14]. To show this, define Z ≔ 1

γ‖R−1‖2
ΔR−1.

Hence, we have

max
Δ

ρðRΔR−1Þ ¼ max
Z

γ‖R−1‖2ρðRZÞ: ð12Þ

Note that ‖Z‖2 ≤ 1. Select Z ¼ VUT , where U and V are,
respectively, the left and right matrices of the singular value
decomposition of R ¼ UΣVT . Then we have ‖Z‖2 ¼ 1

and ρðRZÞ¼ρðUΣVTVUTÞ¼ρðUΣUTÞ¼ρðΣÞ¼‖R‖2,
where the one before last equality follows since
UT ¼ U−1 and eigenvalues are unchanged under similarity
transformation.
Therefore, for an invertible response matrix with full

unstructured perturbation matrix, we have

max
Δ

ρðMðΔÞÞ ¼ γκ: ð13Þ

Equation (13) implies that for a response matrix with a
large condition number, such that γκ is greater than one,
the error starts to grow. This illustrates the reason why
a robust control scheme is needed to handle the uncertain-
ties properly. This will be discussed in the following
section.

III. ROBUST OPTIMAL CONTROL SCHEME

The robust control design for systems with uncertainty in
the model, has been fully described in [15] and need not be
discussed further here. Also in [16], the authors studied the
robust optimal control for uncertain static systems, similar
to the system described by (2). In the current approach, the
optimal control is derived at each iteration and the con-
straints on the input are respected. These constraints are
mathematically expressed as:

juk þ δukj ≤ umax; ð14aÞ

‖δuk‖2 ≤ η: ð14bÞ

The constraint (14a) is an element-wise inequality, i.e.,
each actuator input must lie within a bound to avoid hitting

the actuator limit. The second quadratic constraint given in
(14b) restricts the input changes at each iteration to be less
than a constant scalar denoted by η.
The algorithm is split in three steps. In the first step,

referred to as “initialization,” the input is derived from an
optimization problem which minimizes the norm of the
error for the worst case uncertainty in the model. Once this
input is applied to the system and the measurements are
captured, another optimization is performed to given an
estimation of the uncertainty matrix,Δ. This is discussed in
the step “uncertainty estimation.” Estimating the perturba-
tion matrix, leads us to the third step to find the optimal
input for the next iteration. After the initialization, steps 2
and 3 are repeated subsequently until the convergence is
achieved. The three steps in the optimal control algorithm
are explained as follows.

A. Initialization

Let us assume that we are at iteration k ¼ 0, with the
objective to achieving the desired output vector, yd, at
the next iteration. The initial input is conservatively
determined through the following optimization problem
which minimizes the tracking error for the worst case
perturbation:

min
δu0

max
‖Δ‖<γ

‖yd − ðy0 þ RðI þ ΔÞδu0Þ‖2
subject to∶ ju0 þ δu0j ≤ umax

‖δu0‖2 ≤ η: ð15Þ

The cost function defined in (15), has an upper limit as
follows:

‖yd − y0 − RðI þ ΔÞδu0‖2 ≤ ∥yd − y0 − Rδu0‖2
þ γ‖R‖2‖δu0‖2: ð16Þ

Therefore, our task reduces to finding the robust optimal
input, δu0, through the following optimization problem
which minimizes the upper bound on the error norm:

min
δu0

‖yd − ðy0 þ Rδu0Þ‖2 þ γ‖R‖2‖δu0‖2

subject to∶ ju0 þ δu0j ≤ umax

‖δu0‖2 ≤ η: ð17Þ

B. Perturbation estimation

Solving (17) gives the initial input to the system, i.e.,
u1 ¼ u0 þ δu0, which results in y1 at the output. For
iteration k ≥ 1, the perturbation, Δ, can be estimated
iteratively using the input-output data. On this basis,
another optimization is performed to minimize the differ-
ence between the measurement and the model estimate,
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min
Δk

‖yk − y0 − RðI þ ΔkÞðuk − u0Þ‖2
subject to∶

‖Δk‖2 ≤ γ: ð18Þ

Remark.—In the uncertainty estimation given by (18),
we use only the last input-output data and the previous
measurements and inputs are not considered. This is mainly
to better estimate the system around the last operating
point. However, the solution to (18) may not be unique. To
see this, we reformulate the cost function in the following
way:

min
vecðΔÞ

‖yk − y0 − R ~uk − R ⊗ ~uTkvecðΔÞ‖2; ð19Þ

where ⊗ is the Kronecker product, and where vecðΔÞ is a
column vector obtained by stacking the columns of Δ. For
simplicity in the notation, we define ~uk ≔ uk − u0.
The matrix R ⊗ ~uTk is a matrix of size n ×m2, which is

made up of m different scalings of R. This implies that,
in the best case, the rank of R ⊗ ~uTk is m whereas
vecðΔÞ ∈ Rm2

, and therefore, the optimal solution will
not be unique. However, a typical solution is given by
taking the pseudoinverse of R ⊗ ~uTk , as follows,

vecðΔ�Þ ¼ ðR ⊗ ~uTk Þ†ðyk − y0 − R ~ukÞ; ð20Þ

where † denotes the pseudoinverse, and the constraint on
the matrix norm is assumed inactive.
To have a unique minimizer, several experiments should

be run to collect enough input-output data. Assume that N
experiments are performed, and the minimization in (19) is
calculated over the complete data set. We define Φk, a
regressor, to be:

Φk ≔

2
6664

R ⊗ ~uTk−Nþ1

..

.

R ⊗ ~uTk

3
7775: ð21Þ

Therefore, the original optimization problem (19) con-
verts to:

min
vecðΔkÞ

‖Yk − ΦkvecðΔkÞ‖2
subject to∶

‖Δk‖2 ≤ γ; ð22Þ

where Yk is given as follows,

Yk ≔

2
664
yk−Nþ1 − y0 − R ~uk−Nþ1

..

.

yk − y0 − R ~uk

3
775: ð23Þ

To have Φk to be of full column rank, we need to run
N ≥ m2

n experiments. On the other hand, as the iteration
proceeds, the input vectors converge, i.e., uk → u∞,
which eventually reduces the rank of Φk to m. Hence, in
this paper, the uncertainty is estimated in an optimistic
way. ▪
The perturbation matrix can be restricted to a special

form or structure such as diagonal,

Δ ¼ diagðδ1; δ2;…; δmÞ; δi ∈ R: ð24Þ

Diagonal perturbation matrices indicate that the uncertain-
ties are modeled only on the actuators. For the orbit
correction problem, we will use a diagonal Δ to assign
the uncertainty only to the currents in the corrector
magnets.
The form of the optimization given in (18) implies that

the perturbation matrix, Δ, is estimated only at each time
using the last input-output data. However, this may not give
us complete information about the uncertainty as it is an
optimistic estimation. An improved version of the uncer-
tainty estimation procedure is discussed in [12]. From the
estimated Δ, the response matrix can be updated in two
different ways: adaptive and nonadaptive. Figure 1 sche-
matically illustrates the concept of the two ways of
updating the response matrix. In the nonadaptive way
[see Fig. 1], the uncertainty is always added to the initial
response matrix, i.e.,

Rkþ1 ¼ R0 þ R0Δk: ð25Þ

And since the perturbation matrix has a norm upper
bound of γ, it lies in a ball with radius γ‖R0‖. Moreover, the
center of the ball is always fixed at R0. However, in the
adaptive manner [see Fig. 1(b)], the response matrix is
recursively updated as

Rkþ1 ¼ Rk þ RkΔk; ð26Þ

and therefore, the center of the ball moves. The maximum
radius of the ball is given by γ‖Rk‖. In the adaptive case the
norm of the perturbation matrix can shrink as iteration
proceeds, depending on the applied inputs. More details on
this matter are given in ([12], Chap. 6).

C. Finding the optimal input

Estimating the perturbation Δk from (18), leads us to the
next step, which is to determine the optimal control input
for k ≥ 1:
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min
δuk

‖yd − yk − RðI þ ΔkÞδuk‖2
subject to∶ juk þ δukj < umax

‖δuk‖2 < η: ð27Þ

The optimal solution of (27) is then used to update the
input,

ukþ1 ¼ uk þ δuk; ð28Þ

and apply it to the system. The steps defined in (III B) and
(III C) are repeated iteratively until convergence is reached.
In the following two sections, we apply the adaptive

robust method to control the transverse and the longitudinal
profiles of the electron beam in a linear accelerator.

IV. ROBUST ORBIT CORRECTION

In the global orbit correction problem, with many
sensors and actuators, the response matrix dimension can
be large. This might result in an ill-conditioned response
matrix with a very wide range of singular values. This
makes the system response very sensitive to unstructured
uncertainties, especially if an inverse-based controller is
used to correct the orbits. Figure 2 depicts a schematic of
the orbit correction system in a linear accelerator. The
focusing and defocusing quadruples are omitted to reduce
complexity of the figure. The beam position (in the

transverse plane of x and y) is measured by the beam
position monitors (BPMs) as the beam passes through. The
BPMs are distributed between several corrector magnets.
These correctors are used to influence the beam trajectory
in x and y axes through the currents, Ix and Iy in the
magnet.
The response matrix of the system is measured by

perturbing the currents in the magnets and measuring the
effects on the BPMs. For BPM ith’s x-position change the
model is of the form,

δxi ¼
XN
j¼1

rix;jxδIjx þ rix;jyδIjy; ð29Þ

where N denotes the number of correctors which we
assume is equal to the number of BPMs. Note that we
assume a general case that the model includes coupling of
the vertical correction and the horizontal orbit. From (29),
we can construct the response matrix relating the current
changes to the beam position changes for x and y direction,

0
BBBBBBBB@

δx1
δy1

..

.

δxN
δyN

1
CCCCCCCCA

¼

0
BBBBBBBB@

r1x;1x r1x;1y � � � r1x;Nx r1x;Ny

r1y;1x r1y;1y � � � r1y;Nx r1y;Ny

..

. . .
. ..

.

rNx;1x rNx;1y � � � rNx;Nx rNx;Ny

rNy;1x rNy;1y � � � rNy;Nx rNy;Ny

1
CCCCCCCCA

×

0
BBBBBBBB@

δI1x
δI1y

..

.

δINx

δINy

1
CCCCCCCCA
: ð30Þ

Figure 3 depicts the measured response matrix, R, in the
SwissFEL injector test facility, with its singular values

FIG. 2. A schematic of the orbit correction system in a linear
accelerator, showing the beam position monitors (BPMs) as the
sensors, and the corrector magnets as the actuators to influence
the beam trajectory.

FIG. 1. The concept of updating the response matrix in two different ways: (a) nonadaptive, and (b) adaptive. In the nonadaptive case,
the estimated response matrix remains within a range from the initial model, R0. In the adaptive case, the center of the ball moves
iteratively and the radius shrinks as the norm of the perturbation matrix, Δk, decreases at every iteration.
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plotted in Fig. 4. For this experiment, 10 BPMs were used.
As we can see, the matrix is close to lower triangular which
comes from the fact that the downstream correctors have no
impact on the upstream BPMs in a linear accelerator. The
matrix has a checkered pattern which indicates that x and y
directions are decoupled.

A. Experimental results at the SwissFEL
Injector Test Facility

This experiment demonstrates robust orbit correction
using the algorithm introduced in the previous section. In
the robust approach, the control inputs are determined in a
structured way, along with the handling of the actuator
limits. In this experiment the optimization schemes, defined
in (18) and (27), are used to generate the optimal currents
into the corrector magnets. For the optimal control input

determination, the cost function is slightly modified to
avoid getting close to the actuators limits. The optimization
problems in (17) and (27) are replaced by

min
δuk

‖yd − yk − RðI þ ΔkÞδuk‖2 þ pðuk þ δukÞ

subject to∶ juþ δukj < umax

‖δuk‖2 < η: ð31Þ

where the pðuk þ δukÞ is a penalty, added to keep a safe
distance from the actuator limits. In this experiment, we
choose

pðuÞ ¼ α
Xm
i¼1

����
ui
umax

����
10

ð32Þ

where α is a constant. Similar expressions can be employed
to make pðuÞ more sensitive to values close to the limits
and less sensitive for actuation far from the limits. Since the
orbit system response is in a triangular form, any small
perturbation in the corrector currents affect all downstream
BPMs. Therefore, we model the uncertainty with pertur-
bations on the inputs, i.e., on the currents in the corrector
magnets. As a result, the perturbation matrix, Δ, is
diagonal.
The algorithms are implemented in Matlab scripts using

the CVX convex optimization solver [17,18]. The commu-
nication to the machine has a control protocol with a round-
trip communication period of approximately 1 second.
Figure 5 illustrates the experimental results of robust orbit
correction at the SwissFEL injector test facility using 10
BPMs. The beam is brought to the origin after approx-
imately 20 seconds. The beam position is initially off-axis
over the whole BPM chain. In this experiment all BPMs are
equally weighted, however one can assign different weights
on different locations of the beam line. Figure 6 plots the
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FIG. 3. The response matrix entries of the orbit system in the
SwissFEL injector test facility.
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FIG. 4. The singular values of the response matrix R. The
condition number is approximately 15 000.
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FIG. 5. The beam position in x and y axes, measured at 10
BPMs. The sampling time is 1 sec.
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RMS error of the beam position over the machine as the
iteration proceeds. After approximately 20 iterations
(20 seconds) the algorithm converges. The final beam
position RMS error is approximately 0.025 mm which is 25
times less than the initial error.
The saturating limit of the corrector magnets is

umax ¼ 10A. The penalty function pðuÞ, introduced in
the objective function in (31), prevents the inputs to get
close to the saturation. Correctors 9 and 10 (close to the
downstream end of the beamline) came close to the
saturation limit.

V. LASER PULSE STACKING AUTOMATION

This section demonstrates another application of the
proposed adaptive robust algorithm in accelerator physics.
In this section, the focus is on the longitudinal profile of the
beam. The system to be investigated is the “laser pulse
stacker” used in the SwissFEL test machine. The produc-
tion of high-brightness electron beams is challenging as it
introduces high demands such as a flat-topped pulse shape
on the driving laser pulse applied to a copper photocathode.
The following section describes the pulse stacking system
in more detail.

A. Laser pulse stacking

A technique for flat-topped pulse generation relies on
stacking several laser pulses in time [19]. In this scheme, up
to six crystals are used in sequence, which produce up to 64
individual pulses, each with a different delay, depending on
the thickness and the group birefringence of the crystals.
The combination of those pulses leads to a long quasi flat-
topped pulse in the temporal domain [20]. This laser pulse
is then used to extract the electrons from the cathode.
In particular, a laser pulse stacker is composed of N

birefringent crystals that transform a single Gaussian pulse

into a stack of 2N Gaussian pulses that overlap and produce
a long flat-topped pulse [19]. Figure 7 illustrates the
concept of laser pulse stacking for 2 crystals. The initial
single pulse, which is linearly polarized in vertical direc-
tion, is passed through the first crystal with the optic axis
tilted by some degrees relative to the vertical axis. The
crystal splits the input pulse into two pulses separated in
time by Δt1. The delay between the two pulses is constant
and depends on the characteristics of the crystal such as
length and refractive indices. The relative intensity of the
two laser pulses can be adjusted by rotating the optic axis.
The two resulting pulses from crystal 1 are oriented at
different angles to the vertical. The two intermediate pulses
then pass through the second crystal to be each divided into
2 pulses separated byΔt2. The whole process is repeated by
adding more crystals so that with N crystals the initial
single pulse is divided into 2N overlapped pulses.

B. Longitudinal feedback on the current profile

The objective of this section is to generate a desired
beam current profile. To measure the current pulse, the
beam is deflected by a transverse deflecting cavity and a
camera takes an image of the longitudinal profile which is
then processed to extract the charge distribution over the
bunch length [21]. Figure 8 illustrates an example of the
beam current profile. The pulse shape is influenced mainly
by the radio frequency (rf) accelerating cavities and the
laser stacker system. In this control scheme, we modify the
pulse shape by manipulating the crystals’ angles which, in
turn, changes the relative intensities of the stacked pulses in
the laser profile. In order to generate a flat-topped current
pulse, the flat-topped region of the profile is divided into
several cells. The beam current is averaged at each cell to
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FIG. 6. The rms value of all BPMs vs time. After approximately
20 iterations, the algorithm converges. The rms value of the beam
position is improved by a factor of 25.

FIG. 7. The schematic diagram of laser pulse stacking concept.
The arrows represent the polarization axis. The initial single pulse
is passed through 2 birefringent crystals to produce 4 stacked
pulses. The first crystal with length L1 splits the input pulse into
two intermediate pulses, separated by Δt1. The resulting pulses
are then passed through the second crystal with length L2 to be
further split and delayed by Δt2. The process is repeated to finally
produce 2N overlapped pulses by passing the initial pulse through
N crystals.
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give an estimate of flatness error which is then used to steer
the crystals (see Fig. 8). In the SwissFEL test injector
machine, four crystals in the laser stacker system are
motorized so the angles can be set remotely. We can define
a response matrix that relates the changes in crystal angles
to the changes in the beam intensity at each cell. Dividing
the flat-topped region into more cells gives more informa-
tion about the pulse shape, however since the number of
actuators is limited (in this case 4 crystals), this may lead to
an under actuation situation. Therefore, the number of cells
in the flat-topped region is determined empirically.

C. Experimental results at the SwissFEL
injector test facility

The same algorithm described in Sec. III is applied to the
laser stacker system to tune the crystal angles by directly
measuring the current profile of the beam. In this experi-
ment, the flat-topped region is split into 16 cells and 4
crystals are used to modify the pulse shape. Therefore, the
response matrix is a tall matrix of size 16 by 4, which is
initially estimated by perturbing the angles and measuring
all 16 cells. This response matrix is used to correct the pulse
shape based on the adaptive robust algorithm introduced in
Sec. III. In this case, no special form is assumed for the
perturbation matrix, i.e.,Δ is a full (or unstructured) matrix.
Figure 8 illustrates the final pulse shape after 50 iterations
compared to the initial one. The processing time of each
iteration is approximately 2 seconds which is determined
by the computation time and speed of the crystal motors.
Figure 9 shows the standard deviation of the flat-topped
region as a criterion of flatness. The relative standard
deviation is improved by a factor of 3, starting from an
arbitrary beam current profile.
The response matrix, R, is updated iteratively in an

adaptive manner as previously described in (26):

Rkþ1 ¼ Rk þ RkΔk; ð33Þ

where Δk is the perturbation matrix estimated in (18).
Figure 9 also plots the 2-norm of Δk vs iteration index.

The norm, ‖Δk‖2, decreases to the level of the residual
noise. In this experiment, γ is set to 0.3.
The concept of cell-splitting of the current profile is

illustrated more clearly in Fig. 10. The current at each cell is
averaged and subtracted from the mean of the flat-topped
region. This gives an output vector of length 16 which
represents the error in the flatness. The error vector is then
used to steer the 4 crystals through the optimization defined
in Sec. III. Figure 11 compares the longitudinal profile of
the electron beam, captured on the transverse profile
monitor of the deflecting cavity, before and after applying
the algorithm. The final image is taken after 50 iterations
which shows that the charge is more uniformly distributed
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FIG. 8. The beam current profile measured using the transverse
deflecting cavities (TDC). The flat-topped region of the pulse is
divided into several cells. Each cell is then averaged to estimate
the pulse shape.
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FIG. 10. The error of flatness: each cell is averaged and
compared to the mean of the flat-topped region.
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over the bunch length. The maximum rotation angle of
crystals (with respect to their initial state) is approximately
4 degrees.

VI. CONCLUSION

This research demonstrates two applications of an
adaptive robust control method that can be beneficial for
both transverse and longitudinal profile correction of the
electron beam. Each of the two systems studied in this work
can be modeled as a static response matrix which relates the
actuation changes to the output changes. The control
objective is to generate a desired output vector or profile
by manipulating the input actuators without violating the
input limits. The control approach is based on an adaptive
robust method which seeks to minimize the 2-norm of the
error under the assumption that the model is not exact and
may include some bounded uncertainty. The algorithm
estimates the uncertainty iteratively and finds the optimal
control input to achieve the desired trajectory at the output
such that the actuator constraints are respected. In the first
system, i.e., orbit correction, the objective is to have the
beam at zero (or any other desired) position in all BPMs.
The corrector magnets are used as the actuators with
predefined limits on the input currents. The experimental
results at the SwissFEL injector test facility show that the
beam position is brought to the origin after about 20
iterations without violating the input constraints. A similar
method was applied to the laser pulse stacker system to
produce a flat-topped beam current profile. This application
facilitates the laser pulse tuning in a sense that it gives the
possibility to the operators to automatically adjust the

crystal angles within a limited amount of time. The
proposed control approach can be extended to other
systems that deal with response matrices with a high
condition number.

ACKNOWLEDGMENTS

This work was supported by Paul Scherrer Institut. The
authors would like to thank Thomas Schietinger, the beam
time coordinator of the SwissFEL injector test facility, and
also the SwissFEL laser team for setting up the motorized
laser pulse stacking system. Special thanks goes to Roger
Kalt for his help and support.

[1] Y. Chung et al., in Proceedings of the 15th Particle
Accelerator Conference, PAC-1993, Washington, DC,
1993 (ACM Press, 1993), pp. 41–50.

[2] V. Ptitsyn et al., in Proceedings of the 14th Beam
Instrumentation Workshop, Santa Fe, NM (LANL,
Los Alamos, New Mexico, USA, 2010).

[3] C. Kuo et al., in Proceedings of 12th International
Conference on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS, Kobe, Japan,
2009).

[4] P. Hartmann et al., in Proceedings of 12th International
Conference on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS, Kobe, Japan,
2009).

[5] M. Minty et al., in Proceedings of the International
Particle Accelerator Conference, Kyoto, Japan (ICR,
Kyoto, 2010).

[6] T. Schilcher et al., in Proceedings of the 20th Particle
Accelerator Conference, PAC-2003, Portland, OR, 2003
(IEEE, New York, 2003).

[7] D. J. Kelliher, S. Machida, C. S. Edmonds, I. W. Kirkman,
J. K. Jones, B. D. Muratori, J. M. Garland, and J. S. Berg,
Orbit correction in a linear nonscaling fixed field alternat-
ing gradient accelerator, Phys. Rev. ST Accel. Beams 17,
112806 (2014).

[8] Y. Funakoshi, M. Masuzawa, K. Oide, J. Flanagan, M.
Tawada, T. Ieiri, M. Tejima, M. Tobiyama, K. Ohmi, and
H. Koiso, Orbit feedback system for maintaining an
optimum beam collision, Phys. Rev. ST Accel. Beams
10, 101001 (2007).

[9] Y. Cheng and C.-S. Hsue, in Proceedings of the 1991
Particle Accelerator Conference, San Francisco, CA, 1991
(IEEE, New York, 1991).

[10] M. Grewe et al., in Proceedings of the 9th European
Particle Accelerator Conference, Lucerne, 2004 (EPS-AG,
Lucerne, 2004) [http://accelconf.web.cern.ch/AccelConf/
e04/].

[11] A. W. Chao and M. Tigner, Handbook of Accelerator
Physics and Engineering (World Scientific, Singapore,
1999), Chap. 4.

[12] A. Rezaeizadeh, Ph.D. thesis, ETH Zurich, 2016.
[13] R. Ganter et al., PSI Report No. 10-04, 2012.

x [mm]

y 
[m

m
]

6 7 8 9 10 11 12 13 14

1

2

3

4

y 
[m

m
]

6 7 8 9 10 11 12 13 14

1

2

3

4

Final image

Initial image

FIG. 11. The longitudinal profile of the deflected beam,
measured at the transverse profile monitor. The automatic laser
pulse stacking procedure, generates more uniform charge dis-
tribution by controlling the beam current pulse shape.

ADAPTIVE ROBUST CONTROL OF … PHYS. REV. ACCEL. BEAMS 19, 052802 (2016)

052802-9

http://dx.doi.org/10.1103/PhysRevSTAB.17.112806
http://dx.doi.org/10.1103/PhysRevSTAB.17.112806
http://dx.doi.org/10.1103/PhysRevSTAB.10.101001
http://dx.doi.org/10.1103/PhysRevSTAB.10.101001
http://accelconf.web.cern.ch/AccelConf/e04/
http://accelconf.web.cern.ch/AccelConf/e04/
http://accelconf.web.cern.ch/AccelConf/e04/
http://accelconf.web.cern.ch/AccelConf/e04/
http://accelconf.web.cern.ch/AccelConf/e04/


[14] S. Skogestad and I. Postlethwaite, Multivariable Feedback
Control Analysis and Design (John Wiley and Sons,
New York, 1996), Chap. 8.

[15] A. Packard and J. Doyle, The complex structured singular
value, Automatica 29, 71 (1993).

[16] R. S. Smith and A. K. Packard, Optimal control of per-
turbed linear static systems, IEEE Trans. Autom. Control
41, 579 (1996).

[17] M. Grant and S. Boyd, CVX: Matlab software for
disciplined convex programming, version 2.1, http://cvxr
.com/cvx (2014).

[18] M. Grant and S. Boyd, in Recent Advances in
Learning and Control, Lecture Notes in Control and

Information Sciences, edited by V. Blondel, S. Boyd,
and H. Kimura (Springer-Verlag Limited, New York,
2008), p. 95, http://stanford.edu/~boyd/papers/graph_dcp
.html.

[19] J. Power et al., in Proceedings of the 23rd Particle
Accelerator Conference, Vancouver, Canada, 2009 (IEEE,
Piscataway, NJ, 2009).

[20] A. Trisorio et al., in Proceedings of International
Conference on Free Electron Laser (JACoW, New York,
NY, USA, 2013).

[21] R. Akre et al., in Proceedings of the 8th European Particle
Accelerator Conference, Paris, 2002 (EPS-IGA and
CERN, Geneva, 2002).

REZAEIZADEH, SCHILCHER, and SMITH PHYS. REV. ACCEL. BEAMS 19, 052802 (2016)

052802-10

http://dx.doi.org/10.1016/0005-1098(93)90175-S
http://dx.doi.org/10.1109/9.489279
http://dx.doi.org/10.1109/9.489279
http://cvxr.com/cvx
http://cvxr.com/cvx
http://stanford.edu/%7Eboyd/papers/graph_dcp.html
http://stanford.edu/%7Eboyd/papers/graph_dcp.html
http://stanford.edu/%7Eboyd/papers/graph_dcp.html

