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High gradient quadrupoles are key components for the coming generation of storage ring based light
sources. The typical specifications of these magnets are: almost 100 T=m gradient, half a meter long, and a
vertical aperture for the extraction of the x-ray beam. This paper presents the preparation work done at the
European Synchrotron Radiation Facility, from the design to the manufacture and measurements of a
prototype. It demonstrates the feasibility of such magnets. Different aspects of magnet engineering are
discussed, including the study of the main scale factors and the preliminary design, the pole shaping, the
impact of mechanical errors, and the magnetic measurements of a prototype with a stretched-wire system.
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I. INTRODUCTION

Projects of very high brightness, storage ring-based
synchrotron light sources have been launched around the
world [1–3]. In all of these projects the beam emittance is
decreased by using a large number of low field dipole
magnets, typically seven bends in each arc instead of two
or three in the storage rings of the previous generation.
These new storage rings must fit existing complexes,
including accelerator tunnel and beam lines. The gradient
of the strongest quadrupoles of the European Synchrotron
Radiation Facility–Extremely Brilliant Source (ESRF-
EBS) and of the Advanced Photon Source Upgrade will
be close to 100 T=m.
The ESRF is a 6 GeV light source located in Grenoble,

France, built in the early 1990’s. The brilliance of the ESRF
x-ray source is dominated by the horizontal emittance of
the electron beam, which is determined by the lattice of the
storage ring. The emittance of the present ESRF storage
ring is 4 nm rad in the horizontal plane and 5 pm·rad in the
vertical plane; the ESRF-EBS project aims to reduce the
horizontal emittance to 135 pm·rad. The new ESRF storage
ring should be commissioned in 2020.
A schematic view of one ESRF-EBS cell is given in

Fig. 1. The storage ring is composed of 32 cells, i.e. almost
1100 magnets will be built and installed. The ESRF-EBS
magnets, including “exotic” dipoles, are briefly described
in [4]. The present paper is dedicated to the design of the
QF6 and QF8 high gradient quadrupole magnets, with
gradients of approximately 90 T=m.

The maximum values of the gradient have been chosen
to be compatible with conventional, iron dominated,
normal conducting magnet technology. The bore radius
of the ESRF-EBS high gradient quadrupoles is
r0 ≈ 12.5 mm, which gives an equivalent pole tip field
Beq ¼ r0G ≈ 1.1 T withG ¼ 90 T=m. For comparison, the
highest equivalent pole tip field in the present ESRF ring
is 22 T=m× 33 mm ≈ 0.7 T, and the pole tip field of the
high gradient quadrupoles installed in the European XFEL
is 100 T=m× 8 mm ≈ 0.8 T.
This “moderate” pole tip field does not mean the poles

are not saturated. Indeed, they are saturated and their
magnetic polarization is above 1.9 T. One may question
the use of normal conducting magnets, instead of super-
conductors or permanent magnets. Up to now, supercon-
ductor magnets are almost absent in light source storage
rings (except for a few insertion devices), because of the
high heat load of these machines due to synchrotron

FIG. 1. Schematic view of one cell of the ESRF-EBS lattice.
The storage ring will be made of 32 cells. QF, QD: quadrupoles;
SF, SD: sextupole; OF: octupole magnets; DL: dipole with
longitudinal gradient; DQ: dipole-quadrupoles. The fast correc-
tors are not represented.
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radiation. Permanent magnets, on the other hand, are very
suitable for compact, small aperture, high field designs, but
suffer from a reduced tuning range and a decreased field
quality in the case the magnets are not iron dominated [5].
Moreover, all of the magnets should be delivered in 2018:
the time scale is short and not compatible with the
development of permanent magnet solutions.
The field quality was specified on a 7 mm radius good

field region (GFR). The maximum values of the field
harmonics are given in Table I. These values are for the
systematic multipoles coming from the magnet design.
All of the magnets in the ESRF-EBS storage ring shall

be compact: the iron-free length of each arc is 5 m and
there is only 15 cm free per magnet for fitting the coil ends,
the beam position monitors, the bellows of the vacuum
chambers, etc. The integration length of the magnets should
be shortened as much as possible by a careful design of
the coils.
The power consumption is another important design

criteria for these magnets. The overall power consumption
of the ESRF storage ring should be reduced, and the
magnet system is a major contributor to the power losses.
The reduction of the power consumption is achieved by
designing the coils for low current densities, which has an
impact on the compactness of the magnets.
The magnet design is detailed in Sec. II. The scale factors

and a preliminary design are presented first (Sec. II B),
then the pole shapes are optimized for improving the field
quality and reducing the magnetic errors vs current
(Secs. II C and II D). The impact of the mechanical errors
on the random multipole errors and on the beam dynamics
is discussed in Sec. II E. The influence of the fringe field
terms on the electron beam is briefly looked at in Sec. II F,
as a matter of curiosity. A high gradient quadrupole
prototype has been built. The results of the prototype
measurements are given in Sec. III.

II. MAGNET DESIGN

A. Simulation tools

The RADIA magnet simulation software is used for the
field computation. The RADIA software was developed in
the ESRF Insertion Device lab and has been largely used
for undulator, wiggler and multipole magnet design [6–11].
This software does not rely on a finite element method as
most of the field computation codes do, but on a boundary
integral method. The magnets are described as a set of
field sources, i.e. magnetization or currents. In the present

version of RADIA, elementary magnetized objects have a
uniform magnetization and are modeled as equivalent
magnetic charges. The magnetic field and its integral along
a straight line can be computed for each field source, at any
point, using analytical formulas.

B. Scale factors and preliminary design

Water-cooled accelerator magnets are commonly
operated at a moderate current density J ¼ 5 A=mm2; this
value results from a compromise between power consump-
tion and magnet compactness. The magnet bore radius is
determined by the vacuum chamber and the physical
aperture. Then, a rough approximation of the gradient is
given by

G ≈
2μ0NI
r02

; ð1Þ

μ0 being the magnetic permeability of the vacuum, N the
number of conductor turns, I the current and r0 the magnet
bore radius; Eq. (1) is derived from the Ampère theorem,
assuming an infinite permeability in the iron, and is
no longer valid for the high gradient, nearly saturated
quadrupole described in the next paragraphs. The gradient
can also be obtained from the conservation of the magnetic
flux in the pole (Fig. 2). Assuming the pole is saturated, one
obtains

Z
X0

0

Gxdx ≈ BSatw; ð2Þ

where the notation BSat ¼ μ0MSat is for the saturated
magnetic polarization. The so-called demagnetizing field,
which opposes the magnetization, is neglected here. If the
pole has a hyperbolic shape, the gradient is

G ≈
gffiffiffi
2

p
r04

ð2r02 − g2ÞBSat: ð3Þ

TABLE I. Maximum systematic values of the field multipoles
(defined in Appendix) expressed at 7 mm.

n bn

6 1 × 10−4
10 0.5 × 10−4

FIG. 2. Conservation of the magnetic flux across the pole.
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The gradient reaches its maximum value at g ≈
ffiffiffiffiffiffiffiffi
2=3

p
r0:

GSat ≈
4

3
ffiffiffi
3

p BSat

r0
: ð4Þ

Equations (1) and (4) give

ðNIÞSat ≈
2r0
3

ffiffiffi
3

p MSat

≈
8

27

μ0MSat
2

GSat
: ð5Þ

It is well known that increasing the gradient implies
reducing the magnet apertures. Equation (5) shows that
high gradient magnets require less current than lower
gradient, larger aperture magnets; the saturated field is
simply reached at lower current for a smaller bore radius.
The power consumption of the four quadrupole coils of

width w, height h, length L and filling factor λ is

P ≈ 8ρwhLJ2λ

≈
16r0MSat

3
ffiffiffi
3

p ρLJ

≈
64

27

μ0MSat
2

GSat
ρLJ; ð6Þ

where ρ is the resistivity of the conductor. For a given iron
length and total length of the magnet, the length of the coil
heads, i.e. the coil width, is fixed: any extra turn would lead
to longer coils. The outer radius of the magnet scales
linearly with the height h of the coils: rOUT ¼ rþ h where
r ≈ r0 þ r2 cosðπ=4 − θ2Þ þ r5 represents the bore radius,
the radial position of the coils and the thickness of the
magnet yoke (see Fig. 3). At constant saturation field the
outer radius writes

rOUT ≈ rþ 8

27

μ0MSat
2

GSatwλJ
≈ r1 þ

512

729

μ0
2MSat

4ρL
GSat

2wλP
: ð7Þ

Equations (6) and (7) shows that: (i) the power con-
sumption scales with the current density J, the radius and
the saturation magnetization, (ii) the outer radius of the
magnet scales with 1=J, (iii) the outer radius scales with
1=P. The current density results from a compromise
between the power consumption and the transverse dimen-
sions of the magnet, which has an impact on the mechanical
integration, on the mass, on the mechanical resonant
frequencies, etc.
The field quality suffers from the reduction of the magnet

aperture, leading to higher multipole content for a given
mechanical tolerance (the multipole content is defined in
the Appendix). Assuming a small geometrical error ε, the
Nth multipole field error ΔBN (expressed at the bore
radius) varies as

ΔBNðr0Þ ∝ ε=r0

∝ εG=BSat: ð8Þ

At a given GFR radius, the Nth multipole error on the
GFR boundary scales with

ΔBNðrÞ ¼
�
r
r0

�
N−1

ΔBNðr0Þ: ð9Þ

The accuracy of the pole shape and the magnet assembly
is technologically limited. Equations (8) and (9) show
that for a given production technology, high gradient,
low aperture quadrupoles are subject to higher multipole
content than moderate gradient magnets.
Let us now study the impact of the main magnet

geometrical parameters on the magnet performances.
Until the end of this section, we will present the preliminary
design of a 44 T integrated field gradient magnet, with a
12.5 mm bore radius, and a 11 mm gap between poles.
At constant integrated field gradient, a shorter magnet

shall produce a higher gradient. If the magnet saturates, the
excitation current increases much faster than the gradient
and the power consumption may become extremely high.
This effect is difficult to express with a simple analytical
equation because of the nonlinear shape of theMðHÞ curve
of the material, but can be checked easily with any
simulation software. This is shown in Fig. 4(a). The
prototype is operated at a slightly saturated working point;
it would be possible to design a shorter length, higher
gradient quadrupole at the price of an increased power
consumption. The mass of the magnet passes through a
minimum [Fig. 4(b)]. For shorter length, the Ampère turns
increase rapidly, leading to a large magnet cross section.FIG. 3. Definition of the main geometrical magnet parameters.
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It is useful to introduce the magnetic efficiency

η ¼
R
Gds
P

; ð10Þ

where s is the longitudinal coordinate. The pole taper,
defined by the angle θ2 and the radius r2, impacts on the
magnetic efficiency. Let us start by varying the taper
angle θ2, while keeping constant r2 ¼ 80 mm. Figure 5
shows the magnetic efficiency for different taper angles.
At low taper angles, θ2 < 10°, the magnetic efficiency is
degraded by the strong flux leakage between the
poles, which are close to each other all along the taper.
At large taper angles, θ2 > 30°, the saturation of the
poles is stronger due to their reduced cross section, so the

magnetic efficiency goes down. A moderate taper
angle θ2 ¼ 20° has been chosen, leading to an almost
optimized efficiency. If the angle is set to this optimum
value, the taper radius r2 has a small impact on the
efficiency.
Figure 6 shows the magnetic efficiency vs the coil

taper angle, for different values of the pole taper radius
r2. The magnetic efficiency passes through a maximum
value which depends on the pole taper radius. For large
pole taper radius, the optimum value is reached at
θ3 ¼ 45°, i.e. for a straight coil. The efficiency is reduced
by only 2 percent when the pole taper radius is increased
from 40 to 80 mm. The value of r2 has been set to 80 mm
to facilitate the insertion of the electron beam vacuum
chamber.
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FIG. 4. Magnet power consumption (a) and mass (b) vs total length (including coil heads), at 44 T integrated field gradient and
12.5 mm bore radius. The crosses are 3D simulation results and the black disk indicates the parameters of the prototype magnet. The
lines are spline interpolations between the simulated points.
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FIG. 6. Magnetic efficiency η vs coil taper angle θ3, for
different values of the pole taper length r2, at θ2 ¼ 20°. The
black square indicates the design value and the lines are spline
interpolations between the simulated points (markers).
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FIG. 5. Magnetic efficiency η as defined in Eq. (10), vs taper
angle θ2, at r0 ¼ 12.5 mm, r2 ¼ 80 mm and for a 545 mm total
length (including coil heads). The black dot indicates the design
value and the lines are spline interpolations between the simu-
lated points (markers).
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The radius r1 has a small impact on the magnetic
efficiency (Fig. 7). Increasing slightly the r1 radius facil-
itates the quality control of the magnet assembly.
The main design parameters of the high gradient quadru-

poles are given in Table II. The coil of the prototype magnet
is tapered with a 20° angle. The larger r1 radius of the serial
magnets allows the design of a straight coil. The parameters
r3 and r4 are not critical for the optimization of the
magnetic efficiency. They are a function of the number
of coil turns and coil layers. The number of coil layers is
limited by the required longitudinal compactness of the
magnet: any additional layer increases the insertion length.
The number of coil layers has been set to four, leading to a
484 mm iron length, 545 mm long magnet. The coil design
relies on basic electrical engineering and is not presented in
detail in this paper. The main coil parameters are shown in

Table III. The low power of the magnet is driven by the
reduced current density. According to Eq. (6), the same
magnet would dissipate 2.9 kW at 5 A=mm2 current
density and 5.8 kW at 10 A=mm2.
Let us compare the parameters in Table III and the

results obtained from Eqs. (1) to (7). The analytical model
leads a maximum gradient of 122 T=m and 1.9 kW at
NI ¼ ðNIÞSat ¼ 7668 A·turns, while the 3D model gives a
99 T=m gradient and a power of 2.5 kW at the same
excitation. (The parameters in Table III are given at the
nominal excitation NI ¼ 7007 A·turns. The conversion to
NI ¼ ðNIÞSat is straightforward.)
Figure 8 shows the evolution of the gradient with the gap

between poles, according to Eq. (3) and from a 3D model.
As already indicated and as expected, the gradient obtained
from the analytical expression is overestimated. The
gradient passes through a maximum, as predicted by
Eq. (3). The optimum gap is 10.2 mm for the analytical
model and 12 mm for the 3D model. It should be
mentioned here that the homogeneity of the field gradient
is expected to be better at small gaps. The correction of the
field errors induced by the severe truncation of the poles is
discussed in the next section.
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FIG. 7. Magnetic efficiency η vs r1 pole radius. The dot
indicates the design value and the line is a spline interpolation
between the simulated points (markers).
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FIG. 8. Gradient vs gap between poles obtained from Eq. (3)
and with a 3D model with Table III parameters (r1 ¼ 1 mm for
the simulations shown in this plot). ðNIÞSat ¼ 7668 A turns.
The current density is 3.7 A=mm2 at ðNIÞSat and 10 A=mm2 at
2.7 ðNIÞSat. The bore radius is 12.5 mm.

TABLE II. Design parameters of the high gradient quadrupoles.
The prototype magnet has a tapered coil, while the series magnets
will have a straight coil.

Type Proto Series

r0 12.5 mm 12.5 mm
g 11 mm 11 mm
x0 14 mm 14 mm
r1 3 mm 7 mm
r2 80 mm 80 mm
θ2 20 degrees 20 degrees
r3 132 mm 147 mm
θ3 35 degrees 45 degrees
r4 41 mm 41 mm
r5 75 mm 75 mm
Iron length 484 mm 484 mm
Magnetic length 493 mm 493 mm
Total length 545 mm 545 mm
Material AISI 1010 AISI 1006

TABLE III. Coils and electrical parameters.

Nominal current 91 A
Number of turns 77
Conductor layers 4
Conductor sections 6 × 6 mm2

Cooling pipe diameter 3 mm
Current density 3.25 A=mm2

Temperature rise 16 K
Magnet resistance 0.24 Ω
Magnet inductance 0.21 H
Magnet power 2 kW
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The magnet outer radius can be computed with Eq. (7)
and the magnet parameters, leading to a 280 mm magnet
radius at 3.25 A=mm2, a 240 mm radius at 5 A=mm2 and a
200 mm radius at 10 A=mm2, assuming a λ ¼ 0.66 coil
filling factor. The width of the prototype magnet is 606 mm,
which is close to the 2 × 280 mm estimation given
by Eq. (7).

C. Pole shaping algorithm

In the previous paragraphs, the magnet has been opti-
mized disregarding the quality of the magnetic field, i.e. the
homogeneity of the integrated gradient and the spurious
field harmonics (field harmonics and associated notations
are defined in Appendix). For practical reasons, a 11 mm
vertical gap between poles is needed for the integration of
the electron beam vacuum chamber. This vertical gap has a
strong effect on the field quality. Considering a 7 mm radius
good field region (GFR) and a ρ0 ¼ 7 mm reference radius,
the gradient inhomogeneity reaches 1.8% and the system-
atic 12-poles reaches 32 × 10−4 of the quadrupole compo-
nent without specific pole shaping. These values are 1 order
of magnitude above the specifications.
Finding a pole shape that optimizes the homogeneity of

the integrated field is a so-called inverse problem. Different
pole shapes may lead to almost the same field quality. Even
if it is possible to design simple shims by manually varying
one or two parameters on a magnet model, it is much more
efficient to use a pole shaping algorithm.
Magnet optimization algorithms have been developed

for a few decades and have been applied to optimize the
homogeneity of particle accelerator magnets, nuclear res-
onance and magnetic resonance imaging magnets [12–15].
At the ESRF, an important effort has been made to improve
the time efficiency of magnetic field computations and
shape optimization [8,16].
The pole shaping algorithm is briefly described below

(the interested reader may find more details in the
conference paper [16]). The main parts of the algorithms
are the cost function, which depends on the field quality
and other constraints (gradient strength, vertical gap
between the poles, etc.), the parameters of the magnet
models, and the optimization routine, which is based on a
regularized descent method. As the optimization procedure
starts with a fairly satisfactory magnet, it is assumed that
finding the local minimum of a cost function is sufficient.
This assumption is of prior importance because it allows us
to restrict our study to descent methods and to exclude time
consuming metaheuristics like simulated annealing or
genetic algorithms.

1. Cost function

The 2D multipoles introduced in Appendix are suitable
for the expression of the field quality. One can define a
target multipole vector C0 ¼ ð0; ρ0

R
Gds; 0;…0Þ where

ρ0 is the radius of the good field region. The multipole
errors are given by ε ¼ C −C0 ¼ MC

þB −C0:
Without any constraint on the vertical gap between poles,

the algorithm tends to use all the space available: this may
lead to a closure of the pole gap. This issue can be corrected
by implementing a barrier function with high values if the
gap is below the specifications or low values in the other
case. In practice, it was implemented by an exponential
function and stacked to the multipole errors:

ε ¼ ðMC
þB −C0; αe−βðg−g0ÞÞ; ð11Þ

where α and β are trimming parameters and g0 is the
reference gap. (A simple alternative to the use of a barrier
function would be to define geometrical limits and to
“saturate” the position of the profile points if necessary
[8,15].)

2. Parametrization of the pole shape

The pole shape can be simply parametrized by deviations
from a reference hyperbolic profile: XK ¼ xk þ ξk and
YK ¼ yk þ ψk;where 1 ≤ k ≤ K and yk ¼ r02=ð2xkÞ. Here,
the parameters ðξk;ψkÞ give the deviation of the profile to
the reference shape. This parametrization has some limi-
tations. The discretization depends on the number of points
to optimize, and a smooth shape would imply the opti-
mization of a large number of points. But if the points are
close to each other, the displacement of two neighboring
points will have almost the same signature on the cost
function: the problem is ill conditioned. This difficulty can
be solved by expressing the ðξk;ψkÞ as a sum of smooth
functions. Legendre polynomials have been used in the
present work. The pole shape parameters are expressed as

ξk ¼
XL
l¼1

αlPl

�
2
k − 1

K − 1
− 1

�

ψk ¼
XL
l¼1

βlPl

�
2
k − 1

K − 1
− 1

�
; ð12Þ

where αl and βl are the pole shape parameters and the Pl are
the Legendre polynomials. The pole smoothness is handled
by the maximum polynomial order L. This parametrization
and the trivial one described above have also both been
used for the study of the mechanical tolerances.

3. Regularized descent method

A Gauss-Newton algorithm was used. The optimization
problem is linearized by computing the Jacobi matrix,
and iterating a few times. Let ζn be a parameter of the
pole shape, with e.g. ζn≤L ¼ αn and ζn>L ¼ βn−L; and
ζ ¼ ðζ1;…; ζ2LÞ. The value of the parameters at the kth
iteration are
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ζkþ1 ¼ ζk − ðJTkJkÞ−1JTk εk
¼ ζk − Jþk εk: ð13Þ

Here, Jk is the Jacobi matrix at iteration k, JkT is the
transpose of Jk and Jkþ is its pseudoinverse. In practice, the
Jk matrix is ill conditioned and the algorithm diverges
rapidly. This issue was overcome by using a singular value
decomposition of the matrix Jk:

Jk ¼ UΣVT

¼
X
i

uiσiviT ; ð14Þ

where σ1 ≥ σ2 ≥ � � � ≥ 0 are the singular values of Jk,
ui

Tuj¼δij and viTvj¼ δij. The pseudoinverse is computed
according to Jkþ ¼ VΣþUT where Σþ is a diagonal matrix
with diagonal elements 1=σi if σi=σ1 ≥ r and zero else-
where. Good results were obtained with 10−3 ≤ r ≤ 10−2.
A regularized pseudoinverse of the matrix J can be

computed by truncation of the list of its singular values:
Jþ¼VΣþUT where Σþ is a diagonal matrix with diagonal
elements 1=σi if σi=σ1 > r and zero elsewhere. In practice,
good pole shape optimization results are obtained with
10−3 < r < 10−2.

D. Optimization results

The shape optimization routine was run on the ESRF
cluster with ten CPUs. Good results were obtained after
15 minutes (i.e. 150 minutes with one CPU) and five
iterations [16], which is pretty fast for the optimization of a
3D model.
Figure 9 and Table IV show two pole profiles obtained

with different optimization parameter settings. At nominal
current, the field quality is within the specifications and is
almost the same for both profiles (Table V).

Figure 10 shows the evolution of the 12-pole with the
excitation current. The b6 of the quadrupole with sharp
poles (Profile 1) is almost independent of the current. This
is not the case with Profile 2: this magnet has been
optimized at a given excitation, and the iron saturation
makes the gradient homogeneity unacceptable at any other
current. For current ranging from 10 to 130 A (90 A
nominal), the gradient inhomogeneity is 10−4 ≤ ΔG=G ≤
4 × 10−4 with Profile 1 and 2 10−4 ≤ ΔG=G ≤ 22 × 10−4
with Profile 2. Figure 11 shows the magnetization in the
pole. As expected, the outer parts of the pole saturate at
lower excitation than the pole shapes: this generates the
12-pole term. This 12-pole term is partially compensated
by the saturation of the spike located in the central part of
the pole.

25

20

15

10

5

0

y  
[m

m
]

2520151050
x [mm]

 Profile 1
 Profile 2

FIG. 9. Pole shapes obtained with different settings of the
optimization algorithm. The dashed arc indicates the 7 mm
radius GFR.

TABLE IV. Coordinates (Xi, Yi) of the contour of the two
profiles.

Profile 1 Profile 2

(5.611,13.781) (5.573,13.231)
(6.756,12.272) (5.708,12.706)
(7.872,11.081) (6.717,12.061)
(8.611,9.939) (7.535,11.239)
(8.910,8.910) (7.990,10.332)

(8.309,9.478)
(8.799,8.799)

TABLE V. Systematic higher order multipoles at 7 mm radius.

Profile 1 Profile 2

b6 −5 × 10−5 −5 × 10−5
b10 5 × 10−5 8 × 10−5
b14 −5 × 10−5 −8 × 10−5
b18 5 × 10−5 1 × 10−5
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FIG. 10. 12-pole term vs current, for Profile 1 and Profile 2.
Reference radius: 7 mm.
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It is a common practice to drill a hole above the pole
profile, all along the magnet [17]. The saturation of the
central part of the pole is increased by the hole and the
effect is similar to the 12-pole compensation scheme
described above. The correction presented here has the
following advantages: it is compatible with solid iron
magnets, and we add magnetic material instead of drilling
a hole—thus we can expect a higher field and gradient.
Figure 12 shows the excitation curve of the magnet. At

nominal current, the magnet is clearly saturated: the
gradient is 14% below its value interpolated from the
linear part of the curve. This is not a big issue, because
(i) the sensitivity of the field quality to the current is low
and (ii) the power consumption is low due to the small bore
radius and the rather low current density.

E. Mechanical tolerances

High gradient quadrupoles are more sensitive to
mechanical errors than lower gradient magnets due to their
reduced aperture, as shown in Eqs. (8) and (9). The
mechanical tolerances that can be achieved on a magnet
series depends on the manufacturing method, on the quality

control, on the rejection rate, etc. Considering the 0.5 m
length of ESRF-EBS high gradient magnets, it is assumed
that a tolerance of �0.040 mm (including pole shapes
and pole locations) can be reached with a reasonable effort
but �0.020 mm is much more difficult and expensive.
The impact of the mechanical tolerances on the gradient
errors, and finally on the beam dynamics, has been studied
in detail.
The impact of some mechanical errors have been studied

analytically by Halbach [18,19]. A numerical approach is
presented here. Two types of random mechanical errors
have been considered: random errors on the pole profiles,
and random errors on the positions of the poles. The effect
of the displacement of the magnetic center is neglected
here, assuming that the magnets are magnetically measured
and fiducialized.
Using the notations introduced in Sec. II C 2, the

imperfect pole i is described as (Xk þ δxki, Yk þ δyki).
The pole shape errors of a magnet are characterized by the
random vector ðδxS 11;…; δxSK4; δyS 11;…; δySK4Þ while
the pole displacements are modeled by δxDki ¼ δxD i and
δyDki ¼ δyD i, i.e. δwki ¼ δwSki þ δwDi with w ¼ fx; yg.
One may argue that independent values for the δxki
and the δyki would consist of adding a white random noise
to the pole shape, which does not represent accurately the
machining errors. Indeed, the pole shape errors can be
modeled by a sum of functions with random coefficients, as
indicated in the Sec. II C 2. For the same mechanical
tolerances, it is expected that a “smoother” error profile
would lead to an increase of the lower order multipoles and
a decrease of the higher order multipoles. Only the “white
noise” error case will be presented in this paper. In this
case, it is assumed that the errors are distributed according
to uniform distributions δWS ∼Uð−tol=2; tol=2Þ and
δWD ∼Uð−tol=2; tol=2Þ. The standard deviations σðanÞ
and σðbnÞ of the multipole coefficients are then estimated

FIG. 11. Pole field B (top) and magnetization μ0M (bottom) at
90 A, with Profile 1. All values are in [T].

FIG. 12. Excitation curve of the high gradient quadrupole. The
results obtained from the analytic model [Eqs. (1) and (4)] are
given assuming a 493 mm magnetic length.
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with a Monte Carlo method. A set of imperfect magnets is
generated assuming the above error distributions, and the
multipole content of these imperfect magnets is used to
estimate σðanÞ and σðbnÞ. The random errors expected for
the optimized pole profiles obtained in the previous para-
graph are given in Table VI.
Figure 13 shows the contribution of the pole shape and

the pole displacement errors, assuming equal tolerances of
both error types (in practice, for �0.040 mm global
tolerances, the pole shape errors are expected to be smaller
than �0.020 mm). The contributions of the two types of
errors are similar for the low order multipoles, then the
multipole content is dominated by the pole shapes errors.
It should be noted that the 10-pole and 18-pole are induced
by pole shape errors only.
The impact of these random multipole errors on the

electron beam dynamics has been studied by tracking
simulations. The dynamic aperture and the beam lifetime
has been computed for different values of tolerance
(Table VII). The effect of increasing the mechanical
tolerances from �0.020 mm to �0.040 mm is almost
negligible; this means that the aperture and the lifetime
are dominated by other errors, namely alignment errors and
main multipole strength errors [20].
Following these results, the mechanical tolerances of the

series magnets was set to �0.040 mm. Considering the

0.5 m length of the magnet, this is a standard tolerance that
can be reached with classical mechanical methods like
lamination stacking or machining. However, a prototype
with �0.020 mm tolerance was built for exploring the
technology limitations. The measurements done on this
prototype are presented in Sec. II F.

F. Longitudinal field and fringe field

Using the notations introduced in Appendix, the tangen-
tial component of the 3D field multipole terms are given by

Bθnp ¼ 2ρ0
n−1þ2pknp cos nθ ð15Þ

in the case the knp are purely imaginary numbers, i.e. there
is no skew component. Figure 14 shows the evolution of the
integral of first multipoles along the quadrupole. It indi-
cates the b6 term is mainly an extremity effect that is not
perfectly compensated by the pole shape, while the b10 and
the b14 are induced by the pole shape (or, said differently,
by the large gap between the poles). One should notice the
agreement between Table V and Fig. 14.
The profile of the poles have been optimized considering

only the integrated field multipoles. The first n ¼ 2 terms,
with quadrupole symmetry, are shown in Fig. 15. The
contribution of the terms p > 0 to the integral of the field
along a straight line is null. However, these terms generate
a small bump, which may have an impact on the beam
dynamics. In the horizontal symmetry plane, the field of a
normal quadrupole writes

TABLE VI. Random multipoles computed for tol ¼ 0.040 mm
and expressed at 7 mm, for the two profiles plotted in Fig. 9.

Profile 1 Profile 2

½σða3Þ þ σðb3Þ�=2 0.00052 0.00052
½σða4Þ þ σðb4Þ�=2 0.00026 0.00021
½σða5Þ þ σðb5Þ�=2 0.00013 0.00011
½σða6Þ þ σðb6Þ�=2 0.00007 0.00006
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FIG. 13. Standard deviation of the multipoles
σn ¼ ½σðanÞ þ σðbnÞ�=2, expressed at 7 mm. The tolerances
are �0.020 mm for the shape tolerances, �0.020 mm for the
pole displacements and �0.040 mm for the complete magnet.

TABLE VII. Impact of mechanical tolerances on beam lifetime
and dynamic aperture.

Tolerances [mm] �0.020 �0.040
Beam lifetime [h] 22.5� 1.9 22.3� 2.2
Dynamic aperture [mm] 8.6� 0.8 8.1� 0.9
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FIG. 14. Simulated integrated field
R
s−∞ Bn0dν normalized by

the integral of the quadrupole term.
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Bρ ¼ 0

Bθ ¼ 2k20ðsÞρ cosð2θÞ þ 2k21ðsÞρ3 cosð2θÞ þ � � � : ð16Þ

The amplitude of the bump generated by the third order
term in Eq. (16) is

ΔxðsÞ ¼ − 2e
mecγ

Z
s

−∞

Z
v

−∞
k21ðuÞ ρ3du dv

¼ − e
6mecγ

k20ðsÞρ3: ð17Þ

This induces an error on the integrated magnetic field:
Z

Bθds ≈ b2
ρ

ρ0
cos 2θ þ

�Z
k20Δx ds

�
ρ3 cos 2θ

≈ b2
ρ

ρ0
cos 2θ −

�
e

6mecγ

Z
k202ds

�
ρ3 cos 2θ:

ð18Þ
The effect of the fringe field depends on the longitudinal

profile k20 of the gradient. For the same integrated gradient,
the errors are 2π1=2 ≈ 3.5 times higher for a rectangular
profile, compared to a Gaussian profile.
The same arguments applied to the radial field lead to an

angular excursion Δθ and to a similar expression of the
integrated field:

Z
Bρds ≈ b2

ρ

ρ0

�
1þ eρ2

R
k20ds

3mecγ
cos 2θ

�
sin 2θ: ð19Þ

For the present design, the integrated field error induced
by the fringe field is

ΔBθ

Bθ
≈ 2 × 10−7;

ΔBρ

Bρ
≈ 1.8 × 10−5: ð20Þ

These two errors are low, but the radial component is not
far below the systematic errors induced by the pole shapes.
The approach used here is rather qualitative and should

not be used for accurate beam dynamics computations.
Hamiltonian descriptions of the fringe field effects are
available in the literature, see for instance [21]. However,
we believe the present description is quite intuitive and
easy to understand. In a relatively recent paper, Baartman
developed a quadrupole with longitudinally shaped
poles for decreasing the fringe field aberrations [22].
Equation (20) shows extruded poles are adequate for long,
high gradient quadrupoles to be used for focusing 6 GeV
electrons.

III. PROTOTYPE AND MEASUREMENTS

A 86 T=m nominal gradient magnet prototype has been
built and measured. The main parameters of this magnet are
given in Table II. Figure 16 shows the prototype installed
on a measurement bench. It was manufactured by industry
in a build-to-print approach. The mechanical tolerances
were set to �0.020 mm. The yoke was made with four
massive poles and two massive spacers on the sides; it was
foreseen to install C-shaped spacers on the final design in
order to allow space for the x-ray beam ports. The magnet
was made in AISI 1010 steel. The four poles, with the
spacers installed, were machined independently with a five
axis computed numerical control machine. Better results
would be obtained with wire erosion of the assembled
yoke, but the magnet length was not compatible with this
type of machining. It should be mentioned that the
assembled magnet was within the mechanical tolerances,
but cost and the machining time were prohibitive for series
production.
The magnet was measured with a stretched wire bench

[23]. The measurement method is simple: a wire is moved
along circular trajectories within the magnet aperture, and
the induced voltage is measured and analyzed. The main

0.6
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FIG. 15. Simulated field multipoles with quadrupole symmetry:
Bθ20 ∝ ρcosð2θÞ, Bθ21 ∝ ρ3 cosð2θÞ and Bθ22 ∝ ρ5 cosð2θÞ.

FIG. 16. High gradient quadrupole prototype installed on a
stretched wire measurement bench [4].
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difficulty in this measurement method is the accuracy of the
motion, which is improved by an interferometric measure-
ment of the linear stage scales and by a fine-tuning of their
angle. Stretched wire benches are suitable for any kind of
integral field measurement: field and gradient strength,
higher order multipoles and magnetic axis characterization.
The measurement uncertainties can be estimated sta-

tistically (i.e. the uncertainties are type A uncertainties
according to the guide to the expression of uncertainty in
measurement [24]). The repeatability of the measurements is
obtained with usual methods: the same measurements are
repeated several times, which enables the estimation of a
standard deviation. The systematic errors can also be
estimated. The range of the linear stages used for positioning
the wire is a few times larger than the magnet aperture:
measuring the same magnet with different transverse and
vertical offsets leads to different wire position errors. The
standard deviation of the systematic errors has been esti-
mated with this method, and these errors are 1 order of
magnitude higher than the repeatability errors. The error bars
shown in the graphs have been estimated with this method.
The magnet gradient is shown in Fig. 17. The 86 T=m

nominal gradient is reached at 87 A and a 96 T=m gradient
was measured at 110 A, which was the maximum current
of the power supply. (One may notice that the gradient
indicated in Fig. 1 is 91 T=m, and not 86 T=m, which was
the value at the time the prototype was designed. The
magnet has been redesigned for a higher gradient and
the measurements presented in Fig. 17 make us confident
in the simulations.)
The measured higher order multipoles of the high

gradient prototype are shown in Fig. 18. The measured
normal multipoles agree with the simulation, except for the
sextupole term, which was not allowed by the symmetry of
the model. According to Fig. 13, the 10-pole terms should
be zero in the case the poles are identical. The observation

of a non-negligible 10-pole is a signature of the pole profile
errors.

IV. CONCLUSION

High gradient quadrupoles are expected to be installed
in the next generation of light sources. The pole tip field
of these quadrupoles is higher than usual, leading to a
saturation of the yoke. However, this saturation is not so
detrimental: the power consumption is kept to reasonable
values at the price of the slight increase of transverse
dimensions, and the field quality is correct within a wide
current range thanks to the optimized shape of the poles.
Due to their small aperture, high gradient quadrupoles

have an increased sensitivity to mechanical errors.
Random multipole errors have been computed for two
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FIG. 17. Quadrupole gradient normalized by a 493 mm
magnetic length. The gradient has been measured with circular
measurements at 12.4 mm radius.
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FIG. 18. Higher order multipoles of the high gradient quadru-
pole prototype at 90 A and expressed at 7 mm radius. Circular
measurements at different radii, ranging from 5 mm up to 12 mm,
have been combined for measuring the multipoles. The standard
deviations have been computed at only one radius, which is a
pessimistic case. The dipole and quadrupole terms are not shown.
The simulations are for interpole distances with errors equal to
�0.020 mm (depending on the pole), with a symmetry that does
not allow sextupole terms.
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manufacturing methods: stacking of laminations, leading
to �0.040 mm tolerances on the magnet assembly, and
fine machining of solid iron poles, for which �0.020 mm
tolerances were assumed. Beam dynamics computations
have shown that the electron beam lifetime and the dynamic
aperture are not highly affected by the mechanical errors
(i.e. they are dominated by other errors: alignment,
strength, etc.) and the �0.040 mm mechanical tolerances
are sufficient for these magnets.
A prototype has been built and measured. The mechani-

cal tolerances of the prototype were specified to
�0.020 mm. The tolerances were reached, but the machin-
ing time was long and the cost was not suitable for mass
production. It was measured at the ESRF. A 86 T=m
gradient was obtained at nominal current, in good agree-
ment with the simulation results. The measured field
quality was compatible with the mechanical tolerances,
assuming the largest tolerable errors are reached.
This work has demonstrated the feasibility of such high

gradient quadrupoles for mass production. The scale factors
presented in Sec. I have a beneficial impact on the cost:
high gradient quadrupoles have a small aperture, so they are
compact. The poles are saturated at relatively low amp
turns, so the power consumption is reasonable. The
procurement of 135 high gradient quadrupoles has started.
The specifications allowed both standard lamination stack-
ing, lamination stacking with final machining, and machin-
ing of solid iron blocks (the mechanical tolerances is
�0.040 mm for the series). It should be noted that the
best offers were for the machining of solid iron blocks.

APPENDIX: HARMONIC FIELD EXPANSIONS
AND FIELD MULTIPOLES

It is a common practice to express the magnetic field of
accelerator magnets as a sum of harmonic functions.
Accelerator magnet designers are familiar with 2D circular
multipoles. The theory of this simple field expansion, and
the notations used in the following of this paper, are briefly
covered in the next paragraph. Cylindrical circular multi-
poles are a useful tool for the investigation of the fringe
fields. These multipoles are introduced at the end of this
section.

1. 2D circular multipoles

In accelerator magnets, the region of interest is free of
current and magnetic material: the Maxwell equations
simplify to ∇ ·B ¼ 0 and ∇ ×B ¼ 0. In 2D, the field
components in Cartesian coordinates satisfy the Cauchy-
Riemann equations. The complex field B ¼ BY þ i BX is
an analytic function of the complex variable z ¼ xþ iy,
where x (respectively y) is the horizontal (respectively
vertical) coordinate. The Taylor series of the complex field
writes, using common magnet design notations,

B ¼ ℬ
X∞
n¼1

ðbn þ ianÞ
�
z
ρ0

�
n−1

; ðA1Þ

where ρ0 is a reference radius and the bn and an are the
so-called normal and skew multipole coefficients. The
multipole coefficients are normalized to one for the quadru-
pole component. If the coordinate system is aligned on the
magnetic symmetry plane, one has ða2; b2Þ ¼ ð0; 1Þ. The
quadrupole strength is defined as G ¼ ℬ=ρ0.
The multipole coefficients are usually derived from the

Fourier transform of a set of field values sampled at equally
spaced intervals on a circle of radius ρ0. More generally,
the complex field at given arbitrary points is linked to the
first multipole coefficients by the matrix relation

B ¼ MCC; ðA2Þ

where Bi ¼ BðziÞ, Cj ¼ bj þ i aj, MCi1 ¼ ℬ and
MCij>1 ¼ ℬ ðzi=ρ0Þj−1, 1 ≤ i ≤ M and 1 ≤ j ≤ N. The
multipole coefficients are estimated from a pseudoinverse
MC

þ of MC:

C ¼ ðMC
TMCÞ−1MC

TB

¼ MC
þB: ðA3Þ

This expression of the multipole coefficients has been
introduced for magnetic measurements [20] and is also
useful for the optimization of magnets with noncircular
GFR.

2. 3D circular cylinder multipoles

The theory of circular cylinder multipoles has been
presented many times. A detailed and well written presen-
tation of this field expansion can be found in Davies’s paper
[25]. The main results are summarized in this paragraph.
The magnetic field derives from a scalar potential

because the volume of interest is free of currents and
equivalent magnetic charges. The Laplace equation is
separable in cylindrical coordinates and the solution writes

ϕ ¼ RnðκÞInðκρÞeinθeiðκsþγÞ þ Cnρ
neinθ; ðA4Þ

where In is the modified Bessel function of the first kind.
A series expansion of the Bessel function and a Fourier
transform on the s variable leads to

ϕðρ; θ; sÞ ¼
X
n≥0

X
p≥0

knpðsÞρnþ2peinθ: ðA5Þ

The knp terms in this equation can be computed from a 2D
Fourier transform of a set of field values, sampled on the
surface of a reference cylinder [25].
The knp’s have the following properties (the proofs can

be found in the above references). The only terms with
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nonzero integral over s are the terms kn0ðsÞ. Moreover, all
of the terms can be deducted from the p ¼ 0 terms:

knpþ1ðsÞ ¼
�
− 1

4

�
p n!
p!ðnþ pÞ!

d2p

ds2p
kn0ðsÞ: ðA6Þ

The radial and tangential field components are computed
using Bρ ¼ −Reð∂ϕ=∂ρÞ and Bθ ¼ −Reð1=ρ ∂ϕ=∂θÞ. The
identification of the kn0 terms with Eq. (A2) leads to

an ¼ −nρ0n−1
Z

Re½kn0ðsÞ� ds;

bn ¼ −nρ0n−1
Z

Im½kn0ðsÞ�ds: ðA7Þ
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