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A new method for calculating the Cherenkov wakefield acting on a point charged particle passing
through a longitudinally homogeneous structure lined with layer(s) of an arbitrary retarding (dielectric,
resistive, or corrugated) material has been developed. In this paper we present a rigorous derivation of the
expressions for the fields that are valid at the cross section of the particle on the basis of a conformal
mapping method. This new formalism allows reduction of the loss factor calculation to a simple derivation
of a conformal mapping function from the arbitrary cross section onto a circular disc. We generalize these
results to the case of a bunch with an arbitrary transverse distribution by deriving a two-dimensional Green
function at the cross section of the particle. Consequently, for the first time analytical expressions for the
transverse distributions of the electric field Ez for the most commonly used cylindrical, planar and elliptical
cross section geometries are found. The proposed approach significantly decreases simulation time and
opens new possibilities in optimizing wakefield effects resulting from short charged particle bunches for
FEL and Linear Collider applications.
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I. INTRODUCTION

Wakefields excited when very short bunches pass
through accelerating structures or other longitudinally
extended components of a beam line (pipes, collimators,
bellows), are of major concern for linear colliders (ILC [1],
CLIC [2]), and FEL (LCLS-II, X-FEL, etc.) [3,4] and other
accelerator projects. A particular example is the need to
quantitatively understand the wakefields generated by short
bunches while passing through the small apertures of
undulator vacuum chambers in X-ray FELs. These accel-
erators are currently being developed to achieve high
brightness X-ray photon beams with extremely narrow
bandwidth. The parameters require precise control of
energy spread, emittance and transverse stability of electron
bunches that are affected by the wakefields generated by
these bunches in the beamline components. Therefore,
analysis of the short-range wakefields in the longitudinally
extended components, especially in undulator vacuum
chambers, is needed to control the energy spread and
emittance of the short bunches [5,6].
Theoretical analysis of Cherenkov radiation commonly

considers a “short bunch” approach [7–10]. This can be
applied for various Cherenkov generation parameters,
where the moving bunch size is much less than the

fundamental wavelength if the high frequency spectral
range is not under investigation. Wakefields generated by
short bunches at commonly used (and other) shapes of the
accelerator component cross sections have been considered
in many publications. Circular, planar and more compli-
cated elliptical and rectangular cross sections are currently
of special interest. For example, a possible choice for a
small-gap vacuum chamber is one with an elliptical cross
section, often approximated by a planar or circular geom-
etry depending on the elliptical aspect ratio.
The loss factor for a cylindrical geometry for a bunch

with arbitrary displacement from the structure axis can be
found elsewhere [11]. The Ez field component of a planar
waveguide has been studied in many publications, for
instance Ref. [7]. A rectangular structure with two retar-
dation layers was initially considered in [12,13] and later
in [14], where it was analyzed using the transverse operator
to develop a rigorous full solution for the wakefields.
Elliptical geometries were also analyzed; see [15] and
references therein.
The basic analytic solution technique used the references

listed above was the mode decomposition method, where
electromagnetic fields for a vacuum channel and surround-
ing polarizable materials were found separately in the
frequency domain, and then matched using boundary
conditions on the interface between them. Finally, the
inverse Fourier transformation is applied and the problem
is solved. The main limitation of this method is that each
solution is obtained for a particular class of geometries. In
addition, the final solution is represented in terms of infinite
series that need to be truncated for practical calculations. In
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case of very short bunches, this series reduction has to be
done taking in account a large number of terms to achieve
reasonable accuracy for the wakefield amplitude inside
the bunch. These two limitations bound the application
range of the previously obtained analytical solutions and
reduce the opportunity for geometry optimization. In
addition, the large number of modes enormously increases
the simulation time required for beam break up (BBU)
computations.
A new theoretical approach that can be used for

obtaining direct analytical formulas for electromagnetic
field components at the position of a point particle was
recently developed [16]. It was demonstrated that the
longitudinal part of the Lorentz force acting on the point
particle does not depend on the polarizing layer geometry
(corrugation) or material properties (dielectric, resistive
wall) of the waveguide, and that it is a constant for any
given transverse dimensions or cross-sectional shape of
the structure. The equivalence and exact matching of the
longitudinal electric fields Ez of beams passing through
various waveguide configurations was also analyzed. The
approach uses an integral relation based on the cylindrical
slow-wave structure model. It was shown that for the
planar, square, and other cross section geometries, one can
obtain a corresponding form factor coefficient by using a
conformal mapping of these shapes onto the disk, Fig. 1(a)
[16,17]. This approach was later extended to the case of
surface impedance (Leontovich) boundary conditions [18].
However, the question of how to calculate the transverse

distribution of the fields and Lorentz force in the cross
section of the structure where the particle is located was not
examined in detail. The method described in [16] allows us
to calculate the longitudinal electric field Ez and longi-
tudinal derivative of the transverse part of the Lorentz force
at the point of the particle, which is also assumed to be
pointlike. In this paper we extend the idea of [16] to a bunch
which is a pointlike only in the longitudinal coordinate
but has some arbitrary distribution in the transverse
coordinates. We will obtain analytical expressions giving
the dependence of the longitudinal fields Ez, Hz and the

transverse part of the Lorentz force in the cross section of a
particle on the transverse coordinates. Analytical formulas
obtained here are actually the Green functions and therefore
can be applied to the field calculations of bunches distrib-
uted along the transverse coordinates. We especially con-
sider here the most important cases of commonly used
cross section geometries and verify the results numerically
using previously developed methods. The proposed
approach allows deriving simple analytical expressions
that significantly reduce simulation time and generalize
to arbitrary cross section shapes that, in turn, open new
possibilities for high accuracy analysis of wakefields
resulting from short charged particle bunches for FEL
and Linear Collider applications.
A few words about the terminology used here. All fields

considered in this paper are calculated in the plane where
the point charge is positioned at the time t but not behind
the bunch. At the same time these fields cannot be called
“self-fields” that are usually defined as the fields associated
with the moving charge but not the radiation fields [19].
The longitudinal field components we consider in this
paper are radiation fields. It is also important that the
longitudinal components of the self-fields are equal to zero
for ultrarelativistic particle, while the radiation components
are caused by the presence of boundaries (waveguide walls
in our case) that terminate the fields of the moving bunch.
By commonly accepted terminology these radiation fields
are called wakefields. Therefore, even if these fields are
located strictly in the plane of the moving point charge the
“wakefields” terminology is correct and needs to be used.
The paper is organized as follows. In Sec. II we derive

the main formula for the transverse coordinate dependence
of the longitudinal field components Ez andHz on the cross
section of a point particle. This expands the method
previously introduced [16] based only on the assumption
that the electromagnetic field in the cross section of a
particle is equal to zero outside the vacuum channel. In
Sec. III the transverse part of the Lorentz force is consid-
ered acting on a particle moving along a vacuum channel of
arbitrary cross-sectional shape. The expression obtained is

ω

χ(ω)

χ

(a) (b)

FIG. 1. (a) Definition of the conformal map from the ω plane to the χ plane. (b) Schematic of the shock wave formation process.
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the two-dimensional Green function. The relativistic Gauss
theorem [16] is presented in Sec. IV derived with the use
of the formalism demonstrated in Sec. II. In Sec. V, we
consider case studies of transverse distribution of the Ez
field component for the most commonly used cross section
geometries: cylindrical, planar, and rectangular wave-
guides. The latter is considered with the polarizing material
layers on the top and bottom, and with perfectly conducting
side walls. Finally, special attention is paid to the elliptical
cross section shape, Sec. V D, as an important geometry for
the wakefield analysis of FEL undulators. Short range
longitudinal and transverse wakefunctions estimations are
presented in Appendices A and B correspondingly.

II. GENERAL APPROACH

In this section, we derive the main formula for the
transverse distribution of the longitudinal fields Ez and
Hz at the cross section of a structure normal to its axis
and containing the point particle. The particle is assumed to
be moving parallel to the structure axis and to be two
dimensional. The method is based only on the assumption
that the complete electromagnetic field in the cross section of
a waveguide containing the particle is equal to zero outside
the vacuum channel, which is a simple consequence of the
fact that the phase velocity of the Cherenkov radiation in the
waveguide retarding layers (defined by dielectric, corruga-
tion or resistive properties) is less than the speed of light; the
particle is assumed to be relativistic, Fig. 1(b).
Let us consider the Maxwell system in cgs units inside

the vacuum channel:

∇ × E ¼ −
1

c
∂H
∂t ;

∇ ×H ¼ 4π

c
jþ 1

c
∂E
∂t ;

∇ · E ¼ 4πρ;

∇ ·H ¼ 0: ð1Þ
We assume that the particle is moving along the z-axis of the
structure and that the structure is longitudinally homo-
geneous. In the ultrarelativistic limit the current that pro-
duces the particle and its charge density can be written as:

j ¼ jz ¼ cρ;

ρ ¼ Qδðx − x0Þδðy − y0Þδðz − ctÞ: ð2Þ

Let us introduce a new coordinate ζ ¼ ct − z and split the
Maxwell system into two parts:

½∇ × E�⊥ ¼ −
∂H⊥
∂ζ ;

½∇ ×H�⊥ ¼ ∂E⊥
∂ζ ; ð3Þ

and

∇⊥ ×E⊥ ¼ −
∂Hz

∂ζ ;

∇⊥ ×H⊥ ¼ 4πρþ ∂Ez

∂ζ ;

∇⊥ ·E⊥ ¼ 4πρþ ∂Ez

∂ζ ;

∇⊥ ·H⊥ ¼ ∂Hz

∂ζ : ð4Þ

Here the⊥ symbol indicates field components orthogonal to
the z-axis and ∇⊥ is the nabla operator in the plane
orthogonal to the z-axis. The equations (3) can be reduced
to:

∂Hz

∂x ¼ ∂Ez

∂y ;

∂Hz

∂y ¼ −
∂Ez

∂x : ð5Þ

Equation (5) could be considered as the Cauchy-Riemann
equations for some function defined in the complex plane.
Taking the waveguide vacuum channel cross section which
includes the particle, as the complex plane, (4) can be
rewritten as

∇⊥ ·E⊥ þ i∇⊥ ×E⊥ ¼ 4πρþ ∂Ez

∂ζ − i
∂Hz

∂ζ ;

∇⊥ ·H⊥ þ i∇⊥ ×H⊥ ¼ i

�
4πρþ ∂Ez

∂ζ − i
∂Hz

∂ζ
�
: ð6Þ

We introduce the complex functions

e ¼ Ex þ iEy;

h ¼ Hx þ iHy: ð7Þ

We introduce the operator [20]

∇c ¼
∂
∂xþ i

∂
∂y : ð8Þ

One can see that

∇�
ce ¼ ∇⊥ · E⊥ þ i∇⊥ ×E⊥;

∇�
ch ¼ ∇⊥ ·H⊥ þ i∇⊥ ×H⊥: ð9Þ

Here the �—symbol means complex conjugation. On the
other hand one can rewrite (8) as
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∇c ¼ 2
∂
∂χ� ;

∇�
c ¼ 2

∂
∂χ ; ð10Þ

where χ ¼ xþ iy. From (5) one can then treat the function
L ¼ ∂Ez∂ζ − i ∂Hz∂ζ as a plane vector field. According to [21],
since this field has no sources and vortices, it could be
considered as a derivative of a complex potential

∂gZ
∂χ ¼ ∂Ez

∂ζ − i
∂Hz

∂ζ : ð11Þ

We define the Fourier transformation as:

~fðkÞ ¼ 1

2π

Z
∞

−∞
fðζÞ expð−ikζÞdζ;

fðζÞ ¼
Z

∞

−∞
~fðkÞ expðikζÞdζ: ð12Þ

Fourier transform of a derivative is given by

1

2π

Z
dfðζÞ
dζ

expð−ikζÞdζ ¼ ik
2π

~fðkÞ: ð13Þ

Performing a Fourier transformation on Eq. (11),

∂ ~gZ
∂χ ¼ ikð ~Ez − i ~HzÞ; ð14Þ

and by combining (6), (10), (7), and (14), we obtain

2
∂ ~e
∂χ ¼ 4π ~ρþ ∂ ~gZ

∂χ : ð15Þ

Since h ¼ ie, we need to consider only the equation for e.
Let us consider a simply connected region D with an

arbitrary smooth boundary and corresponding complex
plane ω; with (2), Eq. (15) can be written as [Fig. 1(a)]

2
∂ ~e
∂ω ¼ 2Qδðx − x0Þδðy − y0Þ þ

∂ ~gZ
∂ω : ð16Þ

According to Riemann’s theorem [21] there exists a
conformal mapping from the region D to a circle in the
corresponding χ—plane: χ ¼ χðωÞ with χðω0Þ ¼ 0
(ω0 ¼ x0 þ iy0), Fig. 1(a). By introducing the change of
variables in (16), we arrive at

2
∂ ~e
∂χ

dχ
dω

¼ 2Q

���� dχdω
����
2

δðx0Þδðy0Þ þ ∂ ~gZ
∂χ

dχ
dω

: ð17Þ

Here x0 and y0 are defined as χ ¼ x0 þ iy0. Simplification
of (17) gives:

2
∂ ~e
∂χ ¼ 2Q

�
dχ
dω

��
δðx0Þδðy0Þ þ ∂ ~gZ

∂χ : ð18Þ

From (18) one can see that the task of the deriving the
field e in the D region could be reduced to the task of the
deriving e in a circle with the source with intensity
2QðdχdωÞ�jω¼ω0

placed in its center. Let us consider a circular
contour Γ in the χ—plane such that jχj ¼ r < a (a is the
radius of the circle). According to [21] along with Eq. (18),
the contour integral over Γ can be written as

I
Γ

�
~e� −

~g�Z
2

�
dχ ¼ 2iQ

dχ
dω

����
ω¼ω0

: ð19Þ

Now let us rely on the fact that in case of a cylindrical
structure with the particle traveling along the axis of the
cylinder the longitudinal components (and also their ζ
derivatives) of the electric and magnetic field Ez,Hz do not
depend on the transverse coordinates. In this case, in the χ
plane from Eq. (14) we have

~gZ ¼ Cχ; ð20Þ

where C is a constant. Because of the rotation symmetry in
the χ-plane the transverse field e can be expressed as

~e ¼ RðjχjÞ χ

jχj : ð21Þ

Substituting (20) and (21) into (19) and taking into account
that R is a constant on Γ one can write

R
I
jχj¼r

χ�

jχj dχ −
C�

2

I
jχj¼r

χ�dχ ¼ 2iQ
dχ
dω

����
ω¼ω0

: ð22Þ

Evaluation of the integrals on the left side of (22) gives

R ¼ Q
πr

dχ
dω

����
ω¼ω0

þ C�

2
r: ð23Þ

Multiplication of R by χ
jχj and taking into account that

jχj ¼ r gives

~e ¼ Q
πχ�

dχ
dω

����
ω¼ω0

þ C�χ
2

: ð24Þ

Let us focus on the cross section that includes a particle.
The idea of [16,17] could be used to formulate a boundary
condition at the point ζ ¼ 0.
The electric and magnetic fields of the moving charge are

nonzero inside the channel, but the field on the plane
outside the channel for z ¼ ct vanishes [see Fig. 1(b)]. The
field of the point particle on the plane vanishes because
(1) the presence of retarding walls or layers outside the
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channel tenforce Vph < c, and (2) the particle is ultra-
relativistic, γ → ∞. The combination of these two factors
inevitably delays the electromagnetic field in the retarding
media in the plane ζ ¼ 0 (z ¼ ct), moving with the particle.
This allows the formulation of a boundary condition in the
form

lim
ζ→0

eðjχj ¼ a; ζÞ ¼ 0: ð25Þ

Using this condition in Eq. (24) we find

C ¼ −
2Q
πa2

�
dχ
dω

������
ω¼ω0

: ð26Þ

and thus

~e ¼ Q
π

dχ
dω

����
ω¼ω0

�
1

χ�
−

χ

a2

�
: ð27Þ

At the point ζ ¼ 0 application of the inverse Fourier
transform yields

eðζ ¼ 0Þ ¼ lim
ζ→0

Z
∞

−∞
expðikζÞ~edk

¼ 2Qδð0Þdχ
dω

����
ω¼ω0

�
1

χ�
−

χ

a2

�
: ð28Þ

From (14), (18), and (26) we have

~Ez − i ~Hz ¼ −
2Q

πika2
dχ
dω

�
dχ
dω

������
ω¼ω0

: ð29Þ

Finally at the point ζ ¼ 0 (the cross section that includes
the particle) we have

E0
z − iH0

z ¼ −
2Q
a2

dχ
dω

�
dχ
dω

������
ω¼ω0

lim
ζ→0

Z
∞

−∞

expðikζÞ
πik

dk

¼ −
2Q
a2

dχ
dω

�
dχ
dω

������
ω¼ω0

: ð30Þ

If χðωÞ ¼ fðω;ω0Þ is the function that gives the mapping
of the D region onto a circle such that the point ω0

corresponds to the center of a circle we can write the result
in a more compact form:

E0
z ¼ −

2Q
a2

Re½f0ðω;ω0Þ�f0ðω0;ω0Þ�;

H0
z ¼ −

2Q
a2

Im½f0ðω;ω0Þ�f0ðω0;ω0Þ�: ð31Þ

Formula (31) gives the values of the longitudinal field
components Ez and Hz in the cross section of a particle
which is moving along a vacuum channel of arbitrary

shape. The formula is the two-dimensional Green function
in the transverse coordinates. By integrating (31) over ω0

with the transverse distribution of a bunch ρ⊥ðω0Þ, one can
achieve fields for the bunch distributed in transverse
coordinates.
According to the fundamental theorem of beam loading

(see for example [22]) amplitude of the wake potential
could be found though the longitudinal electric field E0

z .
Using this fact one can estimate the upper limit of a short
bunch wakefunction. Formula for the longitudinal wake
potential estimation is given in the Appendix A.

III. TRANSVERSE PART OF THE
LORENTZ FORCE

We consider a part of the Maxwell system (3) and write it
down in the expanded form:

∂Ez

∂y þ ∂Ey

∂ζ ¼ −
∂Hx

∂ζ ; ð32Þ

−
∂Ex

∂ζ −
∂Ez

∂x ¼ −
∂Hy

∂ζ ; ð33Þ

∂Hz

∂y þ ∂Hy

∂ζ ¼ ∂Ex

∂ζ ; ð34Þ

−
∂Hx

∂ζ −
∂Hz

∂x ¼ ∂Ey

∂ζ : ð35Þ

By combining (32),(33) and (34),(35) we have:

2
∂
∂ζ ðEx −HyÞ ¼

∂Hz

∂y −
∂Ez

∂x ;

2
∂
∂ζ ðEy þHxÞ ¼ −

∂Hz

∂x −
∂Ez

∂y : ð36Þ

Using the definition of the Lorentz force acting on a particle
we introduce a complex function F⊥,

F⊥ ¼ q½Ex −Hy þ iðEy þHxÞ�; ð37Þ

where q is the charge of the test particle. From (36) and (37)
we obtain

2
∂
∂ζ ðFx þ iFyÞ ¼ q

�∂Hz

∂y −
∂Ez

∂x − i

�∂Hz

∂x þ ∂Ez

∂y
��

:

ð38Þ

In terms of the derivative (10) with respect to ω ¼ xþ iy
(8) the equation above simplifies to:

∂F�⊥
∂ζ ¼ −q

∂
∂ω ðEz − iHzÞ: ð39Þ
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In the vicinity of ζ ¼ 0 with Eq. (29) we have

F⊥ ¼ 4qQθðζÞζ
a2

�
d2χ
dω2

��dχ
dω

����
ω¼ω0

: ð40Þ

Here θðζÞ is the Heaviside step-function. If χðωÞ ¼
fðω;ω0Þ is the function that gives the mapping of the D
region onto a circle such that the point ω0 corresponds to
the center of a circle we can write down the result in a more
compact form

F⊥ ¼ 4qQθðζÞζ
a2

f00ðω;ω0Þ�f0ðω0;ω0Þ: ð41Þ

Formula (41) gives the values of the transverse part of
the Lorentz force acting on a particle which is moving
along a vacuum channel of arbitrary cross section. The
formula is valid at and away from the particle and is the
two-dimensional Green function. In the longitudinal
coordinate, the formula is valid in the vicinity of the point
ζ ¼ 0. By integrating (41) over ω0 with the transverse
distribution of the bunch ρ⊥ðω0Þ one can obtain the
Lorentz force for the bunch distributed in the transverse
coordinates.

IV. RELATIVISTIC GAUSS THEOREM

In this section we will show how one can derive the
relativistic Gauss theorem introduced in [16,17] with the
use of the formalism presented in Sec. II.
Consider Eq. (16) and integrate it over the vacuum gap

cross section

2

Z
Svac

∂ ~e
∂ω dxdy ¼ 2Qþ

Z
Svac

∂ ~gZ
∂ω dxdy; ð42Þ

and then evaluate the integral on the left-hand side
according to Green’s theorem

Z
Svac

∂ ~e
∂ω dxdy ¼ i

2

I
Γ0
~edω�; ð43Þ

where Γ0 is the boundary of the vacuum channel
region Svac.
Taking into account the boundary condition (25) (e ¼ 0

on Γ0) with (14) we immediately obtain

Z
Svac

EzdS − i
Z
Svac

HzdS ¼ −2Q lim
ζ→0þ

Z
∞

−∞

expðikζÞ
ik

dk:

ð44Þ

In the vicinity of the point ζ ¼ 0 we have

Z
Svac

EzdS − i
Z
Svac

HzdS ¼ −4πQθðζÞ; ð45Þ

where θðζÞ is the Heaviside step function.
Expression (45) is a slightly generalized form of the

relativistic Gauss theorem formulated in [16,17]. However,
Eq. (45) states that an integral over the vacuum channel
from the magnetic fieldHz is zero in the cross section of the
particle and in a vicinity of the point ζ ¼ 0. This result was
not mentioned in [16].
Now, if one takes the point of the particle [which

corresponds to ω ¼ ω0 in (31)], we arrive at the main
result of the paper [16]

Ezð0Þ ¼ −
2Q
a2

jf0ðω0;ω0Þj2 ¼ −
2Q
a2

jJj; ð46Þ

where jJj is the determinant of the Jacobi matrix at the point
of the particle.

V. SIMULATIONS AND RESULTS

In this section we present results of calculations of the
longitudinal electric field Ez in the cross section of wave-
guides with the most common cross section shapes:
cylindrical, planar, rectangular, and elliptical. The results
were obtained by using formula (31) and found to be in full
agreement with those obtained using the mode decom-
position method [14,23,24], where dielectric was consid-
ered as a retarding layer. For the case of the cylindrical
structure we derived the two-dimensional Green function in
explicit form. In Sec. V C we show how the suggested
method can be combined with the image charge technique
to derive the field in a cross section of a rectangular
waveguide with retarding layers (up and down) and metal
side walls. A rectangular waveguide with side metal walls
is considered as an example, and a formula for the
longitudinal electric field Ez at the point of a particle
(symmetrical case) is obtained. We also provide formulas
for the loss factor and transverse Ez field distribution for the
case of an elliptical cross section (Sec. V D).

A. Transverse distribution of the Ez field
in a cylindrical waveguide

Conformal mapping of a circle with the radius a onto a
circle with radius a such that the point ω0 ¼ r0 expðiϕ0Þ
corresponds to the center of the second circle is given by

fðωÞ ¼ a2
ω − r0 expðiϕ0Þ

a2 − ωr0 expð−iϕ0Þ
; ð47Þ

and its derivative by

f0ðωÞ ¼ a2ða2 − r20Þ
½a2 − r0 expð−iϕ0Þω�2

: ð48Þ
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Assuming ω ¼ r exp½iϕ�,

f0ðω0Þ ¼
a2

a2 − r20
; ð49Þ

and

Re½f0ðωÞ�� ¼ a2ða2 − r20Þfa4 − 2a2rr0 cosðϕ − ϕ0Þ þ r2r20 cos½2ðϕ − ϕ0Þ�g
½a4 þ r2r20 − 2a2rr0 cosðϕ − ϕ0Þ�2

: ð50Þ

From (31) we have

Ez ¼ −
2Q
a2

a8 − 2a6rr0 cosðϕ − ϕ0Þ þ r2r20a
4 cos½2ðϕ − ϕ0Þ�

½a4 þ r2r20 − 2a2rr0 cosðϕ − ϕ0Þ�2
: ð51Þ

For the comparison of present results with mode decom-
position approach the method published in the paper [24]
was used, where a circular dielectric loaded waveguide was
considered. Comparison with [24] was made letting ζ ¼ 0
in formulas published in [24] and particle energy 1 GeV.
Table I contains a list of parameters for the cylindrical
structure. Parameter b corresponds to the outer radius of the
waveguide and ε is the dielectric constant of the layer.
Figure 2 shows the angular dependence of the normalized
longitudinal electric field Ez=ð−2Q=a2Þ for three different
values of the test charge radial coordinate. We obtain
full agreement with the mode decomposition method [24].
We should mention here that formula (51) is the two-
dimensional Green function for the cylindrical structure.

B. Transverse distribution of the Ez field
in a planar waveguide

Conformal mapping of a strip with the half-width a onto
a circle with the radius a such that the point ω0 ¼ 0
corresponds to the center of the circle is given by

fðωÞ ¼ a tan

�
πω

4a

�
; ð52Þ

and its derivative by

f0ðωÞ ¼ π

4

�
sec

�
πω

4a

��
2

: ð53Þ

Assuming ω ¼ xþ iy,

f0ðω0Þ ¼
π

4
: ð54Þ

and

Re½f0ðωÞ�� ¼ π

2

1þ cos½πx
2a� cosh½πy2a�

ðcos½πx
2a� þ cosh½πy

2a�Þ2
: ð55Þ

From (31) we then have

Ez ¼ −
2Q
a2

π2

8

1þ cos½πx
2a� cosh½πy2a�

ðcos½πx
2a� þ cosh½πy

2a�Þ2
: ð56Þ

angle (rad)

FIG. 2. Dependence of Ez on azimuthal angle ϕ − ϕ0 normal-
ized by a factor of −2Q=a2 for the case of an off axis displaced
particle. Orange line: r ¼ r0; Green line: r ¼ a=10; Blue line:
r ¼ a. Points are results for the direct simulation using the mode
decomposition method [23,24] (1000 radial and 15 azimuthal
modes were taken in to account) and the solid lines are calculated
using the formula (51).

TABLE I. Parameters for the cylindrical structure.

a b ε r0 Q

0.3 cm 0.32 cm 5.7 0.15 cm 1 nC
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For the comparison of present results with mode decom-
position approach the method published in [14] was used,
where a rectangular waveguide with two parallel dielectric
layers was considered. Comparison with [14] was made
letting ζ ¼ 0 in formulas published in [14] and particle
energy 1 GeV. Table II contains the parameters for the
planar structure. Parameter b corresponds to the distance
from the center of the structure to the metal wall and ε is the
dielectric constant of the layer; height of the waveguide
(parameter w in [14]) was take 10 cm; parameter r0 is the
displacement of the particle from the center of the structure.
Figure 3 shows the coordinate dependence of the longi-
tudinal electric field Ez normalized by −2Q=a2 × π2=8 on
the x and y coordinates. We see full agreement with the
mode decomposition method [14]. Note that originally
formula (56) was obtained in [25] and later in [26], where it
was derived using field matching methods and assuming
the impedance can be characterized as a surface impedance.
We should mention that equation (56) could not be treated
as a Green function as it does not depend on the coordinates
of the source particle.

C. Longitudinal electric field Ez of a particle in a
rectangular structure with metal side walls

We consider a rectangular structure which differs from
the planar structure by the presence of two parallel perfect
conducting walls in the y-z plane. In the case where the
field distribution in the vacuum gap is known for the planar
case (56), the contribution of the metal walls can be
included by introducing image charges. If the field for
the planar case is Epl

z ðx; yÞ and metal walls are placed at

y ¼ �w=2, the full field can be found as a superposition of
the field of real charge field and imaginary charges. In the
case where the charge is placed in the center of the
structure, the full field is given by

Erec
z ðx; yÞ ¼ Epl

z ðx; yÞ þ
X∞
n¼1

ð−1ÞnEpl
z ðx; y − nwÞ

þ
X∞
n¼1

ð−1ÞnEpl
z ðx; yþ nwÞ: ð57Þ

The longitudinal electric field Ez at the particle is then

Erec
z ð0; 0Þ ¼ Epl

z ð0; 0Þ þ 2
X∞
n¼1

ð−1ÞnEpl
z ð0; nwÞ: ð58Þ

By substituting (56) into (58), we obtain

Erec
z ð0; 0Þ ¼ −

2Q
a2

π2

16

�
1þ 4

X∞
n¼1

ð−1Þn
1þ coshðπnw

2a Þ
�
: ð59Þ

Figure 4 shows the dependence of the normalized longi-
tudinal electric field Ez=ð−2Qπ2=16a2Þ at the particle on
the relative width of the waveguide a=w. Full agreement
with the mode decomposition method [14] is obtained.
Comparison with [14] was made letting ζ ¼ 0 in formulas
published in [14] and particle energy 1 GeV. Waveguide
parameters are listed in Table II.

D. Transverse distribution of the Ez field
in an elliptical waveguide

Consider an elliptic cross section with semimajor axis b
and semiminor axis a and the particle located in the center
of this ellipse. Then according to [27] the conformal
mapping of an ellipse with these semiaxes onto a circle
of a radius a with the center of the ellipse corresponding to
the center of a circle is given by

y (cm) x (cm)

FIG. 3. Y-dependence (left) and X-dependence (right) of Ez normalized by −2Q=a2 × π2=8 in the case where the test charge is located
at x ¼ 0.4 cm from the center for the y-plot (left) and y ¼ 3.8 cm for the x-plot (right). Points are computed using the mode
decomposition method [14] (array of 5 by 500 modes were taken into account) and solid lines are obtained from formula (56).

TABLE II. Parameters for the planar structure.

a b ε r0 Q

0.5 cm 0.502 cm 5.7 0 cm 1 nC
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fðωÞ ¼ a
ffiffiffi
k

p
sn

�
2K
π

arcsin

�
ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 − a2
p

�
; k2

�
; ð60Þ

where

k ¼ 4
ffiffiffi
q

p �Y∞
n¼0

1þ q2n

1þ q2nþ1

�
4

;

and

q ¼
�
b − a
bþ a

�
2

:

Here snðz; k2Þ is the Jacobi elliptic sine function with
elliptic modulus k, and K is the complete elliptic integral of
the first kind

Kðk2Þ ¼
Z

1

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − t2Þð1 − k2t2Þ

p : ð61Þ

Using (31) one can write the formula for the longitudinal
component of the electric field Ez as

Ez¼−
2Q
a2

4a2kK2

π2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2−a2

p

×Re

�cn½2Kπ acrsinð xþiyffiffiffiffiffiffiffiffiffi
b2−a2

p Þ;k2�dn½2Kπ acrsinð xþiyffiffiffiffiffiffiffiffiffi
b2−a2

p Þ;k2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2−a2−ðxþiyÞ2

p
	
:

ð62Þ

At the particle location x ¼ 0, y ¼ 0 we have

Ez ¼ −
2Q
a2

4a2kK2

π2ðb2 − a2Þ : ð63Þ

Figure 5 shows the dependence of the fields Ez (63) on
the ellipse flattering factor g ¼ 1 − a=b. As expected, if
g → 1 the form factor approaches that of the planar
waveguide π2=16 and in the case g → 0 the from factor
approaches unity.
The Ez field distribution results presented above corre-

spond to the central position of the particle, x ¼ 0, y ¼ 0
and could not be treated as a Green function. If the particle
passes through the structure with some offset, the same type
of formula can be obtained following the procedure
described in Sec. VA for the circular waveguide with
the help of a formula (31).
The elliptical shape considered in many publications

previously using the mode decomposition approach
required numerical modeling, and a significant number
of modes need to be taken in account, especially for an
observation point close to the structure surface. As a result,
the usual approach for this type of geometry is approxi-
mation of a circular waveguide for the aspect ratio a=b ∼ 1
and a planar structure for a=b ∼ 0 accordingly. In many
cases, however, aspect ratios in the range of a=b ∼ 0.1–0.83
need to be considered. For example, the FERMI@Elettra
FEL undulator designs use [15] aspect ratios of 0.17–0.83
corresponding to flatness factors g ∼ 0.83–0.17.
Formula (62) (Fig. 5) gives rigorous analytical solutions
for the Ez field for this range of parameters. It should be
noticed that if a circular geometry approximation is used
the relative error for the a=b < 0.83 aspect ratio (g > 0.17)
exceeds 15% for the fixed chamber gap (r ¼ a) while the
planar geometry approximation error is above 1% for a
flatness factor g < 0.83ða=b > 0.17Þ. The corresponding
circular waveguide approximation does not look like a
solution for any noticeable elliptical deformation because
of the sharp increase in the form-factor relative error

a/w

FIG. 4. Dependence on the waveguide relative width a=w of the
normalized longitudinal electric field Ez at the particle in a
rectangular waveguide. Solid curve: dependence of formula (59)
on a=w normalized by − 2Q

a2
π2

16
; points: results using the mode

decomposition method [14] and also normalized by − 2Q
a2

π2

16
.

g

1

π
16

2

FIG. 5. Longitudinal electric field Ez at the particle in the
elliptical structure normalized by − 2Q

a2 , showing its dependence
on the ellipse flattering factor g ¼ 1 − a=b.
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(Fig. 5). Note that the Ez field for the displaced beam can be
also obtained with analytical expressions following the
same procedure as presented in Sec. VA for circular cross
sections and formula (31). Finally, formula (63) is a simple
analytical expression for Ez components of the wakefield
generated by a point particle passing arbitrary elliptical
shape waveguide. This allows a simple method to be used
to calculate the relative error of using a circular or planar
approximation for elliptical undulators like LCLS-II [28]
(planar approximation), NSLS-II [29,30] (aspect ratio
a=b ∼ 0.3), SXFEL [31] (a=b ¼ 0.4), CLARA FEL [32]
(a=b ¼ 0.3), European X-FEL [33] (a=b ∼ 0.5), and CLIO
FEL [34] (a=b ∼ 0.4).

VI. CONCLUSION

In this paper we have derived a general formula for the
longitudinal electromagnetic field components of a point
charged particle passing the arbitrary shape waveguide.
The derived expressions for the fields are valid at the cross
section of the particle. The waveguides are considered
to be longitudinally homogeneous with arbitrary retarding
layers. The obtained results can be used for the exact
calculations of the upper limit (peak amplitude) of the loss
factors and wake potentials. The formula expresses the field
though the derivative of the function that conformally maps
the channel of the form one is interested in onto a circle. It
is worth mentioning that the mapping function itself does
not appear in the formula and one needs to know only its
derivative. We also obtained a formula for the transverse
(deflecting) Lorentz force, which can be used for the
transverse wake potential calculations for the bunches with
extended transverse distributions. As an example of the
application of this formalism we have derived the explicit
form of the two-dimensional Green function for the Ez field
for the case of a cylindrical structure. We have also derived
the Ez field at the point of and away from a particle driving
along the axis of a planar structure, of a rectangular
structure with metal side walls and of an elliptical structure.
The developed formalism represents a new powerful
analytical approach in wakefield calculations for short
bunches in FELs and Linear Collider.
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APPENDIX A: SHORT RANGE LONGITUDINAL
WAKEFUNCTION ESTIMATION

In this appendix we show how the developed formalism
can be applied to estimate longitudinal short range
wakefunction.

According to the fundamental theorem of beam loading
(see for example [22]) longitudinal wake potential right
after the point particle equals twice the value of the wake
potential at the point particle

w∥ð0þÞ ¼ 2w∥ð0Þ: ðA1Þ

For the longitudinally homogeneous structure longitudinal
wake potential could be expressed through the longitudinal
component of the electric field Ez as

w∥ðζÞ ¼ −
EzðζÞ
Q

L; ðA2Þ

where L is the length of the structure. Combining (31),
(A1), and (A2) we get

w∥ð0þÞ ¼
4L
a2

Re½f0ðω; ω0Þ�f0ðω0;ω0Þ�: ðA3Þ

Wakefunction decays over the distance. For the most cases
the condition

w∥ð0þÞ ≥ w∥ðζÞ ðA4Þ

holds. This leads to an estimation of the short range wake
potential of a bunch with longitudinal distribution ρzðζÞ in
the form

W∥ðζÞ ≤ w∥ð0þÞ
Z

ζ

−∞
ρzðζ0Þdζ0: ðA5Þ

Substitution of (A3) into (A5) gives the longitudinal wake
potential estimation for the short bunch

W∥ðζÞ ≤
4L
a2

Re½f0ðω;ω0Þ�f0ðω0;ω0Þ�
Z

ζ

−∞
ρzðζ0Þdζ0:

ðA6Þ

Formula (A6) should be treated as the upper limit of
the wakefunction, direct application may lead to the
overestimation of the wake. For example in [26]
application of such approximation to the calculation
of the loss factor of a 30 μm uniform bunch in a planar
corrugated RadiaBeam/LCLS dechirper showed 20–30%
overestimation in comparison with numerical simulation
results.

APPENDIX B: SHORT RANGE TRANSVERSE
WAKEFUNCTION ESTIMATION

In contrast to longitudinal wake potential inequality

w⊥ð0þÞ ≥ w⊥ðζÞ ðB1Þ
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yet to be proved. However we believe that for the case of a
short bunch one can still estimate upper boundary of the
transverse wake potential as

W⊥ðζÞ ≤ w⊥ð0þÞ
Z

ζ

−∞
ðζ − ζ0Þρzðζ0Þdζ0: ðB2Þ

In [26] it was shown for the case of a planar structure that
numerically obtained transverse wake potential was found
to be 20–30% less than its estimated value.
With (41) taking into account

w⊥ðζÞ ¼ L
F⊥ðζÞ
qQ

; ðB3Þ

we get

W⊥ðζÞ ≤
4L
a2

f00ðω;ω0Þ�f0ðω0;ω0Þ
Z

ζ

−∞
ðζ − ζ0Þρzðζ0Þdζ0:

ðB4Þ
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