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Free electron lasers operating with two colors are promising devices for applications. The relevant
modelization has provided a good understanding of the underlying physics. In this paper we present an
analysis of the experimental results obtained at SPARC_LAB concerning seeded two-colors free electron
laser (FEL) operation. The use of an ad hoc developed semi-analytical model based on the small-signal
FEL integral equation reproduces most of the observed phenomenology. The paper discusses the reliability
of the proposed method, the range of validity and its possible improvement.
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I. INTRODUCTION

This paper is devoted to the analysis of some exper-
imental results obtained at the SPARC test facility at
SPARC_LAB, concerning the free electron laser (FEL)
operating with two colors. The considerable interest for
FEL devices with these performances is justified by the fact
that they appear ideal tools for a number of applications,
ranging from time resolved analysis at the atomic scale, to
surfaces and plasma dynamics, to biomedical imaging of
samples and molecules. Different concepts for the dual
frequency production have been elaborated and tested in
the recent past on FELs operating in various wavelength
ranges [1–10]. Several theoretical proposals have been
developed to explore the physics underlying the double
color FEL process [11–15].
Albeit these models contain all the features for an in-

depth analysis of the relevant physics, we have developed a
less general tool, of semi-analytical nature, suitable for the
present purposes being easily manageable and containing
mode competition and slippage.
We therefore reconsider the results obtained at

SCARP_LAB [3,9], within the framework of an ad hoc
developed heuristic description. The model includes an
appropriate rehandling of the FEL small-signal high-
gain equation and it appears suitable to reproduce most
of the two-color phenomenology observed at SPARC;
the relevant limitations and possible improvements are
discussed below.
The high-gain small-signal FEL equation for a

device operating with two colors [2,3] can be written
as [15]
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where z is the longitudinal coordinate along the undulator
axis and a is the Colson’s dimensionless amplitude [16].
The definition of the other quantities entering Eq. (1) is
given in Table I.
Equation (1) rules the evolution of a FEL, seeded by a

single field with amplitude a0. The oscillating terms at
the two frequencies ω1;2, characterizing the kernel of the
integro-differential equation, indicate that the optical field
is bichromatic, as the one produced by an electron beam
with two beamlets operating at “slightly” different energies.
We have assumed negligible the effects due to finite energy
spread and emittances, moreover the e-beam portions
determining the two frequencies are supposed identical
and therefore characterized by the same Pierce parameter ρ.
In these introductory remarks we are interested in clarify-

ing how the two “modes” grow, what is the relevant interplay
and under which conditions they can be considered inde-
pendent. We will provide afterwards a less idealized picture.
The first step toward such a goal is the solution of Eq. (1)

by means of a hybrid procedure that foresees the combined

TABLE I. Definition of variables in Eq. (1). Lg is the gain
length, ναðα ¼ 1; 2Þ a quantity related to the detuning parameter
ν ¼ 2πN ω0−ω

ω0
, ωα the resonant frequency (and therefore λα the

corresponding resonant wavelength), λu is the undulator period, ρ
the Pierce parameter, and γ the electron relativistic factor.

Lg ¼ λu
4π

ffiffi
3

p
ρ

να ¼ 1

2
ffiffi
3

p
ρ
ω−ωα
ω

ωα ¼ 2πc
λα

λα ¼ λu
2γ2α

ð1þ K2

2
Þ

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 19, 050703 (2016)

2469-9888=16=19(5)=050703(8) 050703-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevAccelBeams.19.050703
http://dx.doi.org/10.1103/PhysRevAccelBeams.19.050703
http://dx.doi.org/10.1103/PhysRevAccelBeams.19.050703
http://dx.doi.org/10.1103/PhysRevAccelBeams.19.050703
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


use of analytical and numerical methods. The integral
equation (1) cannot be reduced, as in the case of single
mode operation, to an ordinary differential equation [15],
and therefore we will find it using an expansion based on
the Volterra iteration,
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illustrated in more detail in the Appendix. The Volterra
nature of the integro-differential equation ensures the
convergence of the series in Eq. (2) without any explicit
assumption on the smallness of the χ expansion coefficient
(see Ref. [17]).
The first order (n ¼ 1) in Eq. (2) yields the low gain term

and the higher order contributions account for the high gain
effects. From the practical point of view it is sufficient to
compute the expansion up to n ¼ 4, 5. Such a task has been
achieved by computing analytically the orders n ¼ 1, 2 and
then using these terms to calculate (numerically) the third
and fourth contribution by integrating numerically Eq. (2).
Such a hybrid procedure has the practical outcome of

reducing the computer time necessary for the integration
at higher orders, furthermore, it yields the possibility of
speculating on the mechanisms allowing the mode cou-
pling. In particular, in the case of Eq. (1) relevant to a
continuous electron beam, the coupling terms occurs for
n ≥ 2 (see the Appendix for further details) and this means
that no mode interaction occurs in the low gain regime.
In Fig. 1 we have reported the gain function defined as

Gðν1; ν2Þ≡ jaðν1; ν2Þj2 − 1: ð3Þ

The gain function (3) should be understood as Gðν − ν1;
ν − ν2Þ where ν1;2 specify the positions of the resonant
frequencies. The number of periods in Eq. (3) is chosen in
such a way that, for the assumed values of ρ, the system can
be safely considered far from saturation.
Figure 1(a) accounts for two separated gain functions

with maximum gain

G1 ¼ G2 ≅ 0.85

�
g0
2

�
; ð4Þ

where g0ð≅ 0.1Þ denotes the small signal gain coefficient
given by

g0 ¼
ð4πρNÞ3

π
: ð5Þ

The gain presents the superposition of two typical anti-
symmetric shapes centered in ν1 and ν2. Figure 1(b) shows
instead a more complicated gain shape for a reduced value
of the frequency separation, where one of the two peaks is
smaller and the familiar antisymmetric gain shape is lost.
The transition towards the complete overlapping is

shown in Fig. 2. In the case when Δω
ω ≅ 0 the gain function

reduces to the ordinary antisymmetric curve centered at
zero detuning.
When the Pierce parameter increases the situation

becomes more interesting as shown in Fig. 3. For larger
gain, the gain curves can be considered independent when
the separation between the peaks is significantly larger than
the case of small-signal gain. The difference with respect
to the low-gain case is significant either in magnitude and
in shape if compared with the disentangled gain curves of
the two peaks centered around the respective frequencies.

FIG. 1. Gain function Gðν1; ν2Þ, derived from Eq. (3), versus
the detuning parameter. The function is plotted for different
values of the frequency separation in the case of an undulator
with a number of periods N ≅ 460, being ρ ≅ 10−4 the Pierce
parameter and Δω=ω the relative separation between the resonant
frequencies corresponding to the two different electron energies.
The dotted curve in (b) represents the ordinary gain function
−πg0∂ν½sincðν2Þ�2 with g0 ¼ 0.05).

FIG. 2. Gain function Gðν1; ν2Þ, derived from Eq. (1), versus
the detuning parameter, forΔω=ω ≅ 1.2 × 10−3 (continuous line)
and Δω=ω ≅ 0 (dotted line), g0 ¼ 0.1.
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In the case of high gain with well separated energies
we have checked that around the maxima the scaling
of the gain function vs the small-signal gain coefficient
is provided by [18]
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We can suppose that the mode evolution is independent
whenever the relative distance Δω=ω between the gain
peaks is sufficiently larger than the gain bandwidth δωα=ωα

of the individual peaks (α ¼ 1, 2). If ω1;2 are the frequen-
cies of the two peaks and ω the average frequency, this
condition gives

Δω
ω

¼ ω2 − ω1

ω
≫

δωα
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¼ 1

2N
ð7Þ

which, since ω ∝ γ2, leads to

γ2 − γ1
γ

≫
1

4N
: ð8Þ

A general empirical rule emerging from this analysis is that
the peak separation allowing to be considered the mode
evolution independent is ensured by the inequality

ω2 − ω1

ω
≥

15

πN
→

γ2 − γ1
γ1 þ γ2

≥
15

4πN
ð9Þ

which provides a very rough estimation valid for low-gain
and homogeneous broadened regime.
It is to be noted that the allowed number of periods

necessary to consider the device operating in the linear

regime is not an independent parameter and it decreases
with increasing values of the Pierce parameter.
We have so far illustrated how the high-gain FEL integral

equation can be treated in the case of a seeded device
operating with two colors. The equation we have adopted in
our study is rather simplified since it does not contain the
effects due to the e-beam energy spread (and/or emittance)
sufficiently large to produce gain reductions (inhomoge-
neously broadened regime) and the effect of finite electron
bunch length (pulse propagation), arising when the slip-
page length is not negligible with respect to the electron
bunch length itself.
This drawback will be corrected in the forthcoming

sections where we will perform a more careful analysis
including also comparison with recent experimental results,
obtained at the SPARC_LAB FEL facility [9].

II. TWO-COLOR FEL EQUATIONS

The free electron laser (FEL) high gain including pulse
propagation effects and the small-signal approximation,
writes (see [18] and references therein)

∂τaðζ; τÞ

¼ iπg0ðζ þ ΔτÞ
Z

τ

0

τ0e−iντ0−π
2
μ2ε τ

02
aðζ þ Δτ0; τ − τ0Þdτ0;

ð10Þ

with aðζ; τÞ being again the Colson’s dimensionless ampli-
tude, depending on the ζ coordinate frame, associated with
the electron packet distribution and τ ≅ z

Lu
the propagation

coordinate normalized to the undulator length Lu ¼ Nλu.
The variables of Eq. (10) are fully dimensionless, while
Eq. (1) has been written using the gain length as a
characteristic parameter. We use this notation for continuity
with previous treatments and because it is more suitable for
the problem under study. The electron bunch, whose
longitudinal shape has been included in the small-signal
gain coefficient, is assumed to be fixed. The quantity Δ is
the slippage length and indeed the optical field slips over
the electrons and experiences an interaction responsible
for a dispersive behavior yielding, among other effects,
a reduction of the group velocity of the radiation [19].
Finally, με accounts for the inhomogeneous broadening
contributions due to the e-beam energy spread σε since
μϵ ¼ 4Nσϵ. The FEL small-signal high-gain equation, as
discussed so far, even though including slippage and
energy spread, is not suitable to treat the case of a laser
with a linear chirp or operating with beam exhibiting an
energy phase correlation. More appropriate treatments are
available in the literature [20–22], however, if one is
interested in preserving the semi-analytical point of view
developed here, our model could be improved along the
lines discussed in Refs. [19,23].

FIG. 3. Gain function Gðν1; ν2Þ, derived from Eq. (1), versus
the detuning parameter for ρ ≅ 1.67 × 10−3, N ¼ 150, g0 ≅ 10
with (a) Δω=ω ≅ 10% (continuous line) and (b) Δω=ω ≅ 3.5%.
In both graphs the dotted line refers to the case with Δω=ω ≅ 0
and g0 ≅ 5. In (c) a comparison with the disentangled gain curves
centered around the respective peaks with ν ≅ �4 is reported
(blue dotted and green dashed lines).
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The confidence into the reliability of the procedure
we propose (at least for the case of SPARC) is also due
to our previous experience (see Ref. [9]) where the same
tool along with GENESIS has been exploited to deal with
the analysis of the experiment. The complete solution of
Eq. (10) can be obtained using the method illustrated in
Ref. [15], based on the theory of FEL approximants [19],
which leads to the following expression:

aðζ; τÞ ¼ ÛðτÞa0ðζÞ;

ÛðτÞ ¼
�
1̂þ

X∞
n¼1

ðiπg0Þngnðν̂; τÞ
�
; ð11Þ

where ÛðτÞ is the evolution operator acting on the initial
seed amplitude
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A0ffiffiffiffiffiffiffiffiffiffi
2πσ24
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with A0 and σ the seed amplitude and rms width. gnðν̂; τÞ is
the gain approximant evolution operator provided by
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The optical field can therefore be developed in terms of the
gain amplitudes anðζ; τÞ according to the expansion:
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The evolution of the optical FEL pulse seeded according
to the previous description is obained from Eq. (14) by
acting the exponential operator on the input seed amplitude
a0ðzÞ. The use of an operational relation of the type [19]
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1þ 4β
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eventually provides as with the following result:
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Each partial amplitude is interpreted as an optical packet
having a shifted centroid, with respect to the original seed
packet.
The extension to the two-color case can easily be

achieved and writes

∂τaðζ; τÞ ¼ iπ
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In the previous equation the subindices account for the
possibilities that the two different components of the bunch,
interacting with the optical seed, are characterized not only
by (slightly) different energies but also by different current
profiles (leading therefore to different small-signal gain
coefficients) and by different energy spread. Equation (17)
has been derived with the assumption that the slippage
is not affected by the difference in energies. The effect of
such an approximation can be quantified as it follows
Δ1 − Δ2 ¼ Δ × ðγ21 − γ22Þ=γ20, where γ0 is the average
beamlet energy. The effects induced by the energy differ-
ence is oðγ2Þ and do not produce any sizable consequence.
In Eq. (17) we have neglected the fact that during the
evolution the optical pulse experiences, due to the slippage,
different portions of the electron bunch with different
current densities. This approximation is based on the
assumption that Δ × τ × g0ðζÞ yields, in our conditions,
negligible contributions to the gain process.
In Fig. 4 we have reported an example concerning the

case of a two-color seeded operation characterized by an
optical pulse whose amplitude evolves as described in
Eq. (11) starting from an electron beam characterized by
different energies and by charge profiles, given by

fαðζÞ ∝ e−
ðζ�bÞ2
4σα ; ð18Þ

for the two beams (α ¼ 1, 2) at position �b from the
center of the bunch distribution along the longitudinal
coordinate ζ.
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The optical pulse is sufficiently large to cover both bunch
components whose peaks are placed at distance Δζp ¼ 2b.
In Fig. 4 we have reported the optical packet evolution

for a system operating in the SPARC-like configuration.
The field dimensionless intensity is “taken” at different
points inside the undulator, the optical pulse has been
assumed to be centered at ζ ¼ 0 and the electron bunches
are assumed to be placed symmetrically with respect to it,
with peak to peak distance 0.6σ and with identical rms
σα ¼ σ

3
, being σ the rms width of the input seed pulse. Both

electron pulses are assumed to have the same currents with
ρα ≅ 1.2 × 10−3 and the same energy spread yielding
με;α ¼ 0.33. Plots in Fig. 4 are shown for different values
of the energy separation and slippage. In Fig. 4(b) the
distance between the peaks has been increased by a factor
3. The combined effects of the pulse separation, slippage
and lethargy (yielding a reduction of the radiation velocity)
determine the larger intensity growth on the rear part of the
pulse shown in Fig. 4(c).
The inclusion of the energy spread in two-color evolu-

tion provides the effects shown in Fig. 5. Large energy
spread produces a significant reduction of the field ampli-
tude and nonuniform growth if the different portions of the
bunch exhibit different values of the spread.
The results provided by the numerical computations

based on Eq. (17) are reasonable and reproduce what we

should observe in an experiment of seeded two-color FEL,
in which either laser and electron beam have a reliable shot
to shot stability in terms of their parameters.
Unfortunately these ideal conditions are far from being

reached, shot to shot stability is not ensured and further-
more the optical bunches may undergo amplification by
overlapping portions of the electron bunches with different
characteristics in terms of current densities, energy spread
and transverse phase space distributions.
In Fig. 6(a) we have reported the case in which the

electron beam is provided by two bunches centered at ζ¼ 0
but with different rms length, energy spreads and current
density (leading to slightly different Pierce parameter
values). Under these circumstances the expected amplified
pulse shape exhibits three peaks and the dominating peak is
associated with the portion of the bunch having the best

FIG. 4. Pulse amplitude (in arbitrary units) vs ζ=σ at two
different positions inside the undulator z ¼ 0.55 · Lu (continuous
line) and z ¼ 0.65 · Lu (dotted line). The different plots are for
different values of the separation Δζ between the two peaks and
slippage Δ.

FIG. 5. Effect of the energy spread on the pulse amplitude P (in
arbitrary units), ζ=σ is the bunch coordinate. Parameters are the
same as Fig. 4(a). In this case the front part of the electron beam
exhibits an energy spread 6 times larger than the back part. It is
therefore evident that the front part of the bunch (characterized
by a larger energy spread) is more significantly depressed. The
pulse shape is shown for two positions inside the undulator at
z ¼ 0.55 · Lu (continuous line) and z ¼ 0.65 · Lu (dotted line).

FIG. 6. Pulse shape vs ζ=σ at z ¼ 0.85 · Lu for bunches
centered at ζ ¼ 0 (a). Here the used parameters for the
simulation: rms length σ1 ¼ σ=2 and σ2 ¼ σ=4; energy spread
parameter με;1 ¼ 0.1, and με;2 ¼ 0.3; the packet with lower
energy spread and shorter rms length has also slightly larger
current densities, leading to Pierce parameter ρ1 ≅ 1.2 × 10−3,
ρ2 ≅ 1.24 × 10−3; slippage length Δ ¼ 0.1 · σ and with a fre-
quency separation Δν ¼ 6. In (b) we assume that the bunch
portion with better characteristic is shifted towards positive ζ
values by a small amount δζ ≅ 0.05 · σ.
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characteristics. As shown in Fig. 6(b) even a small change
of the electron beam qualities can provide a significant
change of the output optical pulse shape.
We cannot exclude that the electron beam configuration

be less regular than the one just hypothesized in Fig. 6. An
example is shown in Fig. 7 where we have considered an
electron beam consisting of three current density regions.
We have shown that the phenomenology associated with

two-color dynamics is fairly rich and that it can be treated
with a straightforward numerical tool, exploiting a properly
modified FEL high-gain equation. In the forthcoming
section we deal with a more specific discussion involving
the analysis from SPARC two-color experiment [9]. As
already stressed, the model we have exploited should be
improved and not only by considering chirping for laser and
electrons, but also relaxing the small signal approximation,
by keeping into account nonlinear contributions in the field
intensity. The possibility of having a more comprehensive
model could be helpful to eliminate ambiguities in the
interpretation of the data. For example within the present
framework we cannot decide whether the signature of the
effects reported in Figs. 5–7 can be attributed to different
balance of the energy spread, or to the seed laser input
intensities or to the interplay with slippage, saturation and
three dimensional effects. To this aim we have considered a
more thorough analysis (involving GENESIS) of the case
reported in Fig. 7. The conclusion we have drawn is that, at
least within the range of the parameters in the SPARC
experiment, no intensity effects seem to play any role. We
must however underline that this numerical experiment has
been rather computationally heavy. The use of the simplified
approach, albeit within the quoted uncertainties, has been
able to provide fast and reliable results (at least within the
explored range of parameters).

III. CONCLUDING REMARKS

The analysis developed so far has been motivated by the
recent experimental results obtained with the seeded

SPARC FEL at the SPARC_LAB facility and reported
in Ref. [9]. We remind that in this experiment the key
parameters are those reported in Table II. Accordingly the
energy separation is sufficiently large (Δν > 20) to support
the assumptions for the spectral separation of the peaks.
The same holds for the spatial longitudinal profile of the
peaks as shown in Fig. 8, where we have reported the
optical pulse distribution obtained with the parameters of
Table II, compared with the experimental temporal profiles
measured with a frequency resolved optical gating (FROG)
device [24]. For this specific example the simulation has
been benchmarked with GENESIS and the comparison even
though limited to few points is fairly satisfactory. We have
assumed the electron bunch profiles to be Gaussian, with
the same rms width. The results obtained in this paper show

FIG. 7. Radiation pulse shape along the bunch coordinate in the
case of three current density regions in the starting electron beam.
In this example the first two bunches have the same parameters
described in Fig. 6(b) while the last added one has a distance
δζ ≅ σ from the center at ζ ¼ 0, with με;3 ¼ 0.09 and σ3 ≅ σ=8.

FIG. 8. Comparison between the simulation (dashed magenta
line) and experimental FROG data (blue continuous line) for the
shape of the radiation pulse. Also the Current distribution of
the two electron beamlets is shown as pulse 1 and 2 together with
the laser shape (not in scale). The amplitude is in arbitrary units.

TABLE II. List of parameters for the electron beam and the
seeding laser as used in the experimental configuration at the
seeded SPARC FEL.

Electron beam parameters

Beamlets energy
E1 ¼ 94.3 MeV
E2 ¼ 95.3 MeV

Relative energy spread σε ¼ 5 × 10−4

Temporal width FWHM σ1;2 ¼ 170 fs
Temporal distance σ < 1 ps

Seeding laser parameters

Central wavelength λ ¼ 800 nm
Temporal width FWHM σ ¼ 800 fs

Pierce parameter
ρ1 ≅ 2.5 × 10−3

ρ2 ≅ 2.2 × 10−3
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that the analysis of the two-color FEL behavior can be
carried out in a fairly simple way, without employing a
particularly elaborated numerical code. The use of a
semianalytical procedure offers significant advantages in
terms of physical transparency of the results and a flexible
tool for the analysis of the experimental data. We stress
once more that our analysis is suited for two-color FEL
operation in the SPARC regime, the method is potentially
general enough to be extended to other configurations, as
the multicolor case [4], which will be discussed in a
forthcoming investigation.
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APPENDIX: PERTURBATIVE SOLUTIONS
OF THE TWO-COLOR FEL HIGH-GAIN

SMALL-SIGNAL EQUATION

The high-gain FEL small-signal equation,

d
dz

a ¼ iπg0
2L3

u

Z
z

0

ðe−iν1 z
Lg þ e−iν2

z
LgÞaðz − z0Þz0dz0;

að0Þ ¼ a0; ðA1Þ

reported in Eq. (1), which accounts for an e-beam exhibit-
ing two distinct energy bands, cannot be solved exactly. In
contrast, in the case of a single delta-like energy distribu-
tion, the resulting equation can be reduced to a third order
ordinary differential equation, whose solution can be easily
obtained with ordinary means.
However, an iterative approach can be applied to deal

with Eq. (A1), conveying in practice the series (2),
conveniently rewritten below in terms of the dimensionless
variable τ ¼ z

Lu
, Lu being the undulator length: Lu ¼ Nλu,

i.e.
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Up to the second order we get
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and

a2ðτÞ ¼ −
π2g20
4

�X2
j¼1

A2ðνj; τÞ þ B2ðν1; ν2; τÞ þ B2ðν2; ν1; τÞ
�
; ðA5Þ

with, in turn,

A2ðν; τÞ ¼
1

6ν6

�
3ν2τ2 − 9ν2τ2 cosðντÞ − ν3τ3 sinðντÞ þ 36ντ sinðντÞ − 120 sin

�
ντ

2

�
2

þ i½ν3τ3 cosðντÞ − 9ν2τ2 sinðντÞ −þ36ντ cosðντÞ þ 60 sinðντÞ − 24ντ�
�

ðA6Þ

B2ðν1; ν2; τÞ ¼
1

2ν31ν
4
2ðν1 − ν2Þ3

fν1ν22ðν1 − ν2Þ3τ2 þ 41ν
4
2ðν1 − ν2Þτ sinðν1τÞ − 20ν42½1 − cosðν1τÞ�

− 12ν41½1 − cosðν2τÞ� − i½4ν2ðν1 − ν2Þ3ðν1 þ ν2Þτ þ 4ν42ðν1 − ν2Þξ cosðν1τÞ
− 20ν42 sinðν1τÞ − 12ν41 sinðν2τÞg: ðA7Þ
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It can be verified that

lim
ν1→ν2≡ν

½B2ðν1; ν2; τÞ þ B2ðν2; ν1; τÞ� ¼ 2A2ðν; τÞ; ðA8Þ

thus allowing one to recover the well-known expression of
the second-order amplitude a2ðτÞ for the ordinary case.
The calculation of the higher order terms becomes

prohibitively complicated.
The derived terms (A4) and (A5) have been exploited to

speed up the numerical computation of the higher order
terms (up to 5th), which have been exploited in the
discussion of Sec. I.
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