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We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding
provided by two parallel conducting plates. This model allows us to easily reproduce all previously known
analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations
of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived
for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler
of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical
simulations with the CSRZ computer code.

DOI: 10.1103/PhysRevAccelBeams.19.044402

I. INTRODUCTION

Coherent synchrotron radiation (CSR) of short relativ-
istic beams and its effect on beam dynamics in modern
accelerators has been an area of active research for more
than two decades. Various methods of calculation of the
CSR wakefield were proposed in the literature. One of the
first, and the simplest, approaches [1] treats the beam as
having negligible transverse dimensions (a line charge
model) and neglects the effect of the walls of the vacuum
chamber (the free-space CSR wakefield). While the results
of this model are applicable for relatively long magnets, the
model is extremely useful for crude and quick estimates of
the CSR effects in the system. A more complicated model
[2] takes into account the shielding effect of the vacuum
chamber by approximating the metal walls by two parallel
conducting plates located on the opposite sides of the beam
circular orbit. Even more sophisticated approaches of
Refs. [3,4] solve the synchrotron radiation and find the
beam impedance in a toroidal vacuum chamber of rectan-
gular cross section.
Analyses of Refs. [1–4] are limited to a circular beam

trajectory. An important next step has been made in
Ref. [5], where the authors considered a bending magnet
of finite length and calculated the CSR wakefield for a
trajectory consisting of an arc of a circle with incoming and
exiting straight lines. This model made it possible to study
CSR effects in bunch compressors of modern x-ray free
electron lasers, where short bending magnets are separated

by long drift sections. A simplified version [6] of the CSR
wake [5] valid in the limit v ¼ c (v is the particle velocity
and c is the speed of light) is implemented in the computer
code ELEGANT [7]. In a subsequent paper [8] the authors of
[5] applied the same method to the calculation of the CSR
wake in an infinitely long undulator in free space.
Modification of the CSR wakefield derived in [8] for the
limit v ¼ c was carried out in [9].
In addition to various analytical approaches to the

problem of CSR wakefield mentioned above, there has
been a consistent effort to develop numerical algorithms
for computer codes that calculate the wake in practically
realistic situations. A good review of such codes can be
found in Ref. [10] with some latest additions to the list in
Refs. [11–13]. While these codes are indispensable in the
design of accelerators, it is our opinion, that they do not
eliminate the need for further development of new ana-
lytical tools that allow for a quick evaluation of the CSR
effects in various conditions. In addition, the analytical
approach usually provides the scalings of the strength of
the effect and a better understanding of the mechanisms that
cause the wakes. This, in turn, often allows us to find a
solution that mitigates the adverse effect of the CSR
wakefields.
In this paper we develop a general model of CSR

impedance with shielding provided by two parallel con-
ducting plates. This model reproduces all previous exam-
ples known from the literature and expands the analysis to
situations not explored before. It reduces calculations of the
impedance to taking integrals along the trajectory of the
beam. These integrals can often be easily computed
numerically with the help of MATLAB or Mathematica.
The paper is organized as follows. In Sec. II, starting

from the retarded potentials of a relativistic beam in free
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space, we derive an expression for the radiation impedance
in terms of integrals taken along the beam orbit. In Sec. III,
this expression is generalized to the case of shielding with
parallel conducting plates. In Sec. IV we give a brief
description of the computer code CSRZ that we use for
benchmarking our analytical results. In Sec. V we repro-
duce some known results: the CSR impedance of a circular
orbit in free space and with shielding, and the impedance of
infinitely long wiggler in free space. In Sec. VI we derive
the impedance of a kink, that is an orbit consisting of two
straight lines at a small angle. In Secs. VII, VIII, and IX we
derive the impedance of a bending magnet of finite length, a
finite length wiggler, and an infinite wiggler, respectively.
The results of the paper are summarized in Sec. X. The
paper has four appendices containing some details of the
derivations.
We use the Gaussian system of units throughout this

paper.

II. ENERGY CHANGE OF THE BEAM DUE
TO COHERENT RADIATION

A. Derivation of the energy change
using retarded potentials

We begin from the equation that describes the rate of
change of energy E of a point charge emoving in an electric
field Eðr; tÞ with velocity v,

dE
dt

¼ ev · E: ð1Þ

Expressing the electric field through the scalar potential
ϕðr; tÞ and the vector potential Aðr; tÞ, E ¼
−∇ϕ − c−1∂tA, it is easy to cast (1) into the following
form,

dðE þ eϕÞ
dt

¼ e
∂ϕ
∂t − eβ ·

∂A
∂t ; ð2Þ

where β ¼ v=c and c is the speed of light. In Eq. (2) the full
time derivative dϕ=dt ¼ ∂tϕþ v · ∇ϕ is taken along the
particle orbit and gives the rate of change of ϕ as seen by
the moving charge.
Equations (1) and (2) are valid for a point charge. To

apply them to a beam of charged particles, we represent the
latter as a cold fluid that is characterized by the charge
density enðr; tÞ and the fluid velocity vðr; tÞ, where nðr; tÞ is
the particle density. The current density in the beam is
jðr; tÞ ¼ enðr; tÞvðr; tÞ. Note that in this description of the
beam we neglect the effects of the beam emittance and
energy spread and at a given time t associate a unique value
of the velocity vwith each location rwithin the bunch. With
this new understanding of the velocity field vðr; tÞ, Eq. (2)
can be written as

dðE þ eϕÞ
dt

¼ e
∂ðϕ − β · AÞ

∂t þ eA ·
∂β
∂t ¼ e

∂V
∂t þ eA ·

∂β
∂t ;
ð3Þ

where Vðr; tÞ ¼ ϕðr; tÞ − βðr; tÞ · Aðr; tÞ. The function V
was first introduced into the calculation of CSR wakefields
in Ref. [1].
We will limit our consideration to the cases where the

velocity v at a given location r does not depend on time t,
v ¼ vðrÞ, which is a good approximation for relativistic
beams with a small angular spread when all the particles
at a given location are approximately moving in one
direction—the direction of the tangent vector to the trajec-
tory of the reference particle. In this case, the last term on the
right-hand side of (3) can be neglected, and the rate of
change of E þ eϕ is given by the partial time derivative of V.
In free space, far from metal boundaries, ϕ and A are

expressed in terms of n and v through the retarded
potentials [14],

ϕðr; tÞ ¼ e
c

Z
d3r0

τ
nðr0; t − τÞ;

Aðr; tÞ ¼ e
c

Z
d3r0

τ
βðr0Þnðr0; t − τÞ; ð4Þ

where τ ¼ τðr; r0Þ ¼ jr − r0j=c. Correspondingly, for the
function V one finds

Vðr; tÞ ¼ e
c

Z
d3r0

τ
ð1 − β · β0Þnðr0; t − τÞ; ð5Þ

where β ¼ βðrÞ and β0 ¼ βðr0Þ. Note that the integrand in
this expression has a singularity when r0 → r because at this
point τ ¼ 0. This singularity however is integrable in three
(and two) dimensions, and the function V is finite.
Considerable simplifications can be achieved if one

chooses a line charge model for the beam. In this model,
all the particles in the beam are moving on the same orbit
r0ðsÞ parametrized by the arc length s measured along it.
The vector βðsÞ is directed along the tangent vector to the
orbit. The distribution function in 1D is denoted by λðs; tÞ;
it gives the number of particles per unit length s. Eq. (5) is
now written as a one-dimensional integral,

Vðs; tÞ ¼ e
c

Z
∞

−∞

ds0

τ
ð1 − β · β0Þλðs0; t − τÞ; ð6Þ

where τðs; s0Þ ¼ jr0ðsÞ − r0ðs0Þj=c is a function of s and s0,
and β ¼ βðsÞ, β0 ¼ βðs0Þ are defined on the orbit. Note that,
in the general case, the singularity of the integrand in the
limit s0 → s makes the integral (logarithmically) divergent,
unless the particles are moving with the speed of light. In
this latter case, jβj ¼ jβ0j ¼ 1 and in the limit s0 → s the
term 1 − β · β0 tends to zero canceling the vanishing τ.
Hence, in what follows we assume jβj ¼ 1, which means
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that all the particles in the bunch are moving with the
speed of light. In accordance with this assumption, the
distribution function λ is transported along the orbit
without changing its shape and can be written as a function
λðs − ctÞ of one argument s − ct. With this distribution
function, Eq. (6) can be rewritten,

Vðs; tÞ ¼ e
c

Z
∞

−∞

ds0

τ
ð1 − β · β0Þλ½s0 − cðt − τÞ�: ð7Þ

Using Eq. (3) (in which we agreed to neglect the last term),
we obtain

dE
dt

þ e
dϕ
dt

¼ e
∂V
∂t

¼ −e2
Z

∞

−∞

ds0

τ
ð1 − β · β0Þλ0½s0 − cðt − τÞ�; ð8Þ

where λ0 denotes the derivative of function λ with respect to
its argument.
A different approach using a “renormalization procedure”

was used in [5,8] to eliminate the singularity without the
assumption v ¼ c. In this approach, a “Coulomb term”
defined as an energy change when the beam is moving along
a straight line, was subtracted from the term responsible for
the singularity. The difference, as was shown in [5], turns out
to converge even for bunches with infinitesimally small
transverse sizes. The advantage of this approach is that it can
be used for calculation of wakefield for finite values of γ.
Unfortunately, keeping γ in calculations makes the

expressions much more complicated in comparison with
the limiting case γ ¼ ∞ that we adopt in this paper.
Our general setup for a class of problems considered

in this paper consists of a region of space occupied by
time independent magnetic fields (a bending magnet or a
sequence of magnets, an undulator, etc.). Before entering
this region, and after exiting it, the beam travels along
straight lines. Our goal will be to calculate the energy loss
ΔEðzÞ (where z is the longitudinal coordinate inside the
beam) of different slices of the beam after it propagates
sufficiently far enough from the exit (t → ∞), so that its
electromagnetic field returns to a steady state (the same
state the beam had before entering the region, at t → −∞).
In this calculation, we will assume that the potential at
each particle of the bunch in the final state is the same
as the initial, Δϕ ¼ ϕðt → ∞Þ − ϕðt → −∞Þ ¼ 0. This
assumption is justified if the bunch is not focused trans-
versely or compressed longitudinally relative to its initial
state after it passes through the magnetic field region. The
effects of transverse focusing on ϕ in round pipes were
studied in Ref. [15]; in principle, they can be added to our
formalism, but they are not a subject of this work.
Taking into account the condition Δϕ ¼ 0, integration of

(8) over time from minus to plus infinity gives the energy
change ΔE from the initial to the final state. Because of the
full derivative dE=dt, the integration has to be carried out
along the particle trajectory s ¼ zþ ct, where z is an
integral of motion and is equal to the coordinate s of a slice
in the beam at t ¼ 0. Replacing s by zþ ct on the right-
hand side of (8), we integrate it over time,

ΔEðzÞ ¼ −e2
Z

∞

−∞
dt

Z
∞

−∞

ds0

τðzþ ct; s0Þ ½1 − βðzþ ctÞ · βðs0Þ�λ0½s0 − ctþ cτðzþ ct; s0Þ�

¼ −
e2

c

Z
∞

−∞
ds

Z
∞

−∞

ds0

τðs; s0Þ ½1 − βðsÞ · βðs0Þ�λ0½s0 − sþ zþ cτðs; s0Þ�: ð9Þ

In the last integral we replaced the integration over time by
integration over s. Formula (9) gives the total integrated
energy change at coordinate z in the bunch. The quantity
−ΔEðzÞ=e2 is usually associated with the beam wakefield
caused by the radiation.
We will also consider in the paper the two cases when the

asymptotic trajectories at t → �∞ are not straight lines: these
are the case of a circular motion [1,2] and an infinitely long
wiggler [8,9]. These two models represent a long enough
region of themagnetic field, such that the transient effects due
to the entrance to and exit from it can be neglected. In these
two cases the relevant quantity is the energy loss per unit

length (averaged over the wiggler period in the case of the
wiggler). For circular motion the integration over s in (9) is
omitted and the formula gives an energy loss per unit length.
For an infinitely longwiggler the integrationover s is replaced
by averaging over one period of the wiggler.
As was first pointed out in [1], and also in subsequent

studies, for short bunches, the main contribution to the
integral (7) comes from the particles behind the observation
point, that is s0 < s. While Eqs. (6)–(9) are valid for an
arbitrary bunch length, in this paper, following [1], we will
limit our analysis to such short bunches and replace the
infinite upper limit in the integral over s0 by s:

ΔEðzÞ ¼ −
e2

c

Z
∞

−∞
ds

Z
s

−∞

ds0

τðs; s0Þ ½1 − βðsÞ · βðs0Þ�λ0½s0 − sþ zþ cτðs; s0Þ�: ð10Þ
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In subsequent equations of this section this assumption can
be easily omitted and, if needed, the original form (9) used
instead of (10).

B. CSR wake and impedance

Instead of working with the function ΔEðzÞ it is more
convenient to introduce the longitudinal radiation wake
wðzÞ and impedance ZðkÞ. The wake wðzÞ of a point charge
is defined by the following relation (see, e.g., [16])

ΔEðzÞ ¼ −e2
Z

∞

−∞
λðz0Þwðz − z0Þdz0

¼ −e2
Z

∞

−∞
λðz − ζÞwðζÞdζ; ð11Þ

where ζ ¼ z − z0. In this formula we do not assume that the
wake is localized in front of or behind the particle—an
assumption often used in the standard wakefield theory.
The sign of the wake w is chosen so that a positive w
corresponds to energy loss. The longitudinal impedance is
defined by

ZðkÞ ¼ 1

c

Z
∞

−∞
dzwðzÞe−ikz: ð12Þ

Following Ref. [17], we use here e−ikz because the
coordinate z is measured in the direction of motion (in
contrast to the classical wakes where z is often measured in
the opposite direction). Combining Eqs. (11) and (12) we
obtain

ΔEðzÞ ¼ −e2c
Z

∞

−∞
dkZðkÞλ̂ðkÞeikz

¼ −2e2cRe
Z

∞

0

dkZðkÞλ̂ðkÞeikz; ð13Þ

where

λ̂ðkÞ ¼ 1

2π

Z
∞

−∞
dz0e−ikz0λðz0Þ ð14Þ

is the Fourier transform of the distribution function.
Making the inverse Fourier transform of (13) we express
Z through ΔE

ZðkÞ ¼ −
1

2πe2cλ̂ðkÞ
Z

∞

−∞
dzΔEðzÞe−ikz: ð15Þ

Substituting (10) into this equation, changing the integra-
tion variable from z to s ¼ zþ ct and carrying out the
integration over t gives the following result:

ZðkÞ ¼ ik
c2

Z
∞

−∞
ds

Z
s

−∞

ds0

τðs; s0Þ
× ½1 − βðsÞ · βðs0Þ�eik½cτðs;s0Þ−sþs0�: ð16Þ

We see that the distribution function λ̂ disappeared from
the definition of Z, as expected. Being a Fourier transform
of the real function w [see Eq. (12)] the impedance has a
property Zð−kÞ ¼ Z�ðkÞ.
A useful formula for the total energy loss U of the bunch

due to radiation can be obtained from Eq. (13),

U≡ −
Z

∞

−∞
dzΔEðzÞλðzÞ ¼ 4πe2c

Z
∞

0

dkReZðkÞjλ̂ðkÞj2:

ð17Þ

The quantity U=e2 is called the loss factor.

III. DIVERGENCE OF FREE-SPACE IMPEDANCE
AND NECESSITY OF SHIELDING

Equation (16) gives a general formula for calculation
of the impedance for an arbitrary beam trajectory. As we
show in Sec. V, it can easily be applied to an infinitely long
wiggler and a circular orbit [in the latter case the integration
over s in (16) is dropped], and reproduces the known
results. Unfortunately, the integral over s diverges for the
trajectories that begin and end as straight lines. This
statement will be proved in Appendix B for the case of
a bending magnet; it also follows from the expression for
the CSR wake derived in Ref. [6]. There is a simple
physical mechanism behind this divergence: it is due to
the edge radiation [18] of the beam at the entrance and the
exit from the magnet. Indeed, the spectral energy at a given
frequency ω of the edge radiation of a relativistic particle is
proportional to ln γ and tends to infinity when γ → ∞. At
the same time, the spectral energy loss of the beam due to
radiation at this frequency is proportional to the real part of
Zðω=cÞ, see Eq. (17); this explains the divergence of Z in
the limit γ → ∞. In many practical cases, the circumstance
that makes the energy of the edge radiation finite is the
presence of metal walls of the vacuum chamber surround-
ing the orbit, or shielding.
The simplest model that takes into account the shielding

and at the same time allows for analytical treatment consists
of two parallel perfectly conducting plates with the orbit
located in the middle as shown in Fig. 1. We will assume
that the plates are located at y ¼ � 1

2
a with a being the full

gap between the plates.
The derivation of ΔEðzÞ and ZðkÞ from the previous

section can be easily generalized to include the boundary
conditions at the metal plates. These conditions require
zero tangential electric field on the surface of the plates and
can be satisfied by introducing image charges and currents
to the system [2]. With account of these image charges and
currents, Eqs. (4) are replaced by
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ϕðr; tÞ ¼ e
c

X∞
m¼−∞

Z
d3r0

τ
nmðr0; t − τÞ;

Aðr; tÞ ¼ e
c

X∞
m¼−∞

Z
d3r0

τ
βmðr0Þnmðr0; t − τÞ: ð18Þ

Here index m marks the images with the charge density

enmðr; tÞ ¼ ð−1Þmen0ðr −maŷ; tÞ; ð19Þ

where ŷ is the unit vector in y direction and n0ðr; tÞ is the
density distribution of the “real” beam. The normalized
velocity of the mth image is

βm;xðrÞ ¼ β0;xðr −maŷÞ;
βm;yðrÞ ¼ ð−1Þmβ0;yðr −maŷÞ;
βm;zðrÞ ¼ β0;zðr −maŷÞ: ð20Þ

In what follows, we consider plane orbits lying in the y ¼ 0
plane. For such orbits β0;y ¼ 0 and Eqs. (20) are simplified,

βmðrÞ ¼ β0ðr −maŷÞ: ð21Þ

Substituting (19) and (21) into (18) and changing the
integration variable r0 −maŷ → r0 we obtain

ϕðr; tÞ ¼ e
c

X∞
m¼−∞

ð−1Þm
Z

d3r0

τm
n0ðr0; t − τmÞ;

Aðr; tÞ ¼ e
c

X∞
m¼−∞

ð−1Þm
Z

d3r0

τm
β0ðr0Þn0ðr0; t − τmÞ; ð22Þ

where cτmðr; r0Þ ¼ jr − r0 þmaŷj. Replacing Eqs. (4) by
Eqs. (22) and repeating the derivation of the impedance
ZðkÞ from the previous section with the new expressions
for the potentials, we obtain a generalization of Eq. (16)
that includes the effect of shielding by parallel plates:

ZðkÞ ¼ ik
c2

Z
∞

−∞
ds

Z
s

−∞
ds0

X∞
m¼−∞

ð−1Þm

×
1 − βðsÞ · βðs0Þ

τmðs; s0Þ
eik½cτmðs;s0Þ−sþs0�; ð23Þ

where cτmðs; s0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr0ðsÞ − r0ðs0Þj2 þm2a2

p
and we

replaced β0 by the original notation β. Our previous result
(16) of the impedance in free space is contained in this
formula as a summand with m ¼ 0.
While Eq. (23) looks like a viable starting point for

practical calculations, there are two difficulties associated
with it. The first one is that the summation overm cannot be
interchanged with the integration, because, as mentioned
above, the integration in the term m ¼ 0 diverges in the
case of straight orbits. The second difficulty is due to a slow
convergence of the sum over m with the subsequent
summands changing sign. These two difficulties can be
overcome through a transformation in which the summa-
tion over m is carried out. This transformation is described
in Appendix A; it replaces (23) by the following formula,

ZðkÞ ¼ −
2πk
ac

X∞
p¼0

Z
∞

−∞
ds

×
Z

s

−∞
ds0Hð1Þ

0

h
ckτðs; s0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2pþ 1Þ2π2=k2a2

q i
× ½1 − βðsÞ · βðs0Þ�e−ikðs−s0Þ; ð24Þ

where Hð1Þ
0 is the Hankel function of the first kind.

We now make two simplifying assumptions. We first
assume that

ka ≫ 1; ð25Þ

that is the reduced wavelength ƛ ¼ λ=2π that can be
associated with the bunch length is much smaller than
the gap a between the plates. With the sum over p rapidly
converging, this allows us to treat πð2pþ 1Þ=ka as a small
parameter. Second, we assume that ckτ in the argument of
the Hankel function in the region of integration that makes
a dominant contribution to the integral is much greater than
one. This typically means that

kρ ≫ 1; ð26Þ

or the reduced wavelength is much smaller than the
characteristic bending radius in the system. With these
two assumptions we Taylor expand the square root in the

FIG. 1. Parallel plates located at y ¼ � 1
2
a and a plane orbit in

the mid-plane shown in black. The coordinate system is chosen so
that the orbit lies in the xz plane and the z-axis is directed along
the tangent vector to the trajectory at x ¼ z ¼ 0.
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argument of Hð1Þ
0 in (24) and use the asymptotic expansion

for the Hankel function in the limit of large argument,

Hð1Þ
0 ðzÞ ≈ ð1 − iÞ

ffiffiffiffiffi
1

πz

r
eiz: ð27Þ

We then obtain

ZðkÞ ≈ ði − 1Þ 2
ffiffiffiffiffi
πk

p

ac

X∞
p¼0

Z
∞

−∞
ds

Z
s

−∞
ds0

×
1 − βðsÞ · βðs0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijr0ðsÞ − r0ðs0Þj
p exp

�
−icτðs; s0Þ ð2pþ 1Þ2π2

2ka2

�

× exp fik½cτðs; s0Þ − sþ s0�g: ð28Þ

One more approximation can be made if we assume
that the trajectory is at a small angle with a straight line. We
then choose a Cartesian coordinate system with coordinate
z directed along this line and approximate cτðs; s0Þ ¼
jr0ðsÞ − r0ðs0Þj ≈ z − z0 in (28):

ZðkÞ ¼ ði − 1Þ 2
ffiffiffiffiffi
πk

p

ac

X∞
p¼0

Z
∞

−∞
dz

Z
z

−∞
dz0

×
1 − βðzÞ · βðz0Þffiffiffiffiffiffiffiffiffiffiffi

z − z0
p exp

�
−iðz − z0Þ ð2pþ 1Þ2π2

2ka2

�
× exp fik½cτðz; z0Þ − sðzÞ þ sðz0Þ�g: ð29Þ

In the integrand of (28) we replaced cτ by its approximation
z − z0 in two places. However, we did not replace cτ in
the last exponent because, as we mentioned above, cτ is a
large number, and even small corrections to it can lead to a
large phase error in the last exponential function. A more
accurate approximation for this term will be used in
subsequent sections.

IV. COMPUTER CODE CSRZ

To verify the validity of the approximations that were
made in the derivation of the radiation impedance, in the
following sections of the paper we make a comparison of
our analytical results with the computer code CSRZ that
solves numerically the electromagnetic field of a relativistic
bunch and calculates the longitudinal wake and impedance.
The details of the algorithm implemented in the code can be
found in Refs. [19,20]. Here we give its brief description.
The code solves the parabolic equation [21–23] in the

frequency domain in a curvilinear coordinate system x, y, s,

∂E⊥
∂s ¼ i

2k

�
∇2⊥E⊥ − 4πe∇⊥nþ 2k2x

ρðsÞ E⊥
�
; ð30Þ

where E⊥ ¼ ðEx; EyÞ is the transverse electric field, k ¼
ω=c is the wave number. The boundary conditions for the

field correspond to a metal surface of a rectangular cross
section with a given aspect ratio b=a (where a is the size
of the rectangle along y and b is along x). The beam has
transverse charge distribution enðx; yÞ that is independent
of s. In calculations presented in this paper we used a bi-
Gaussian transverse distribution with the rms sizes of a
few tens of microns in the vertical and a few hundreds of
microns in the horizontal directions. The radius of curva-
ture of the reference orbit ρðsÞ is allowed to arbitrary vary
along s. Specifying different functions ρðsÞ enables the
code to simulate a broad range of practical devices, such as
a single bending magnet, a series of bending magnets
connected by straight chambers, or even an undulator or a
wiggler. An infinitely long straight chamber with the same
rectangular cross section is connected to the exit of the
curved part.
With the paraxial approximation [23], the longitudinal

electric field is found to be

Es ¼
i
k

�
∇⊥ · E⊥ −

4π

c
js

�
; ð31Þ

where js ¼ enc is the current density. The longitudinal
radiation impedance is calculated by directly integrating Es
over s

Z∥ðkÞ ¼ −
1

Q

Z
∞

−∞
Esðxc; yc; sÞds; ð32Þ

where ðxc; ycÞ denotes the center of the beam in the
transverse plane and Q is the charge of the beam. The
integration from the exit of the curved chamber to s ¼ ∞ in
Eq. (32) is performed using the mode expansion method as
proposed in Refs. [23,24]. Details of the implementation of
the integration method can be found in [19].
While the code calculates the impedance assuming a

metallic vacuum chamber of rectangular cross section, our
analytical theory deals with two parallel metal plates. To be
able to draw a comparison between the two approaches we
set the vertical dimension of the vacuum chamber in the
code equal to the gap between the plates. At the same time,
to minimize the effect of the vertical walls of the chamber,
we choose a large aspect ratio b=a. This positions the
vertical walls far from the beam orbit and suppresses their
effect on the impedance. Experimenting with various aspect
ratios, we found that a good agreement with the parallel
plates model can be achieved if the aspect ratio b=a≳ 3.
Below we indicate in the text the aspect ratio used in each
particular simulation.

V. REPRODUCING KNOWN RESULTS

In this section we will show how some of the known
analytical results for the CSR impedance can be easily
obtained from the general formalism developed in Sec. III.
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A. Circular orbit

We first consider a circular orbit of radius ρ and calculate
the CSR impedance Z per unit length. The coordinate
system and the orbit are shown in Fig. 2.
For large values of the wave number, k ≫ 1=ρ, the

dominant contribution to the integrals (16) comes from
distances much smaller than ρ, and we can use approximate
formulas for the orbit:

x0ðzÞ ¼
1

2ρ
z2; y0ðzÞ ¼ 0: ð33Þ

Within the same approximation, vector β is given by

β⊥ðzÞ ¼ x̂
z
ρ
; βz ¼ 1 −

1

2ρ2
z2: ð34Þ

We now express τ

cτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − z0Þ2 þ ðx0ðzÞ − x0ðz0ÞÞ2

q
≈ jz − z0j

þ 1

8ρ2jz − z0j ðz
2 − z02Þ2; ð35Þ

and the factor 1 − β · β0,

1 − β · β0 ¼ 1 −
�
1 −

1

2ρ2
z2
��

1 −
1

2ρ2
z02

�
−

1

ρ2
zz0

≈
1

2ρ2
ðz − z0Þ2; ð36Þ

as functions of z and z0. Finally, integrating the relation for
the arc length

ds
dz

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
dx0
dz

�
2

s
≈ 1þ 1

2ρ2
z2; ð37Þ

we obtain

sðzÞ ≈ z

�
1þ 1

6ρ2
z2
�
: ð38Þ

For unshielded CSR impedance (corresponding to the
gap between the conducting plates a → ∞) we can use

Eq. (16), in which, as discussed in Sec. II A, we drop the
integration over s; this gives the impedance per unit length
of the trajectory. We also replace integration over s0 by
integration over z0, ds0 ≈ dz0, and take into account that
z0 < z which means that the wake acting on a given particle
in the bunch is determined by the particles behind it. For τ
in the denominator of (16) we use τ ≈ ðz − z0Þ=c, while
more accurate expressions (35) and (38) are substituted into
the exponent. The result is:

ZðkÞ ¼ 1

2

ik
cρ2

Z
z

−∞
dz0ðz − z0Þ exp

�
−ik

1

24ρ2
ðz − zÞ03

�

¼ 1

31=3
ðiþ

ffiffiffi
3

p
ÞΓ
�
2

3

�
k1=3

cρ2=3
; ð39Þ

where Γ is the gamma-function. Note that the main
contribution to the integral comes from the distance
z − z0 ∼ l∥, with l∥ ¼ ð24ρ2=kÞ1=3; this distance is inter-
preted as the formation length of the radiation with the
wavelength 2π=k. Equation (39) fully agrees with the
wakefield first derived in [1] (and our derivation to some
extent repeats the derivation in that paper).
It is also very easy to derive the shielded CSR impedance

of a circular orbit between parallel conducting plates, and
reproduce the result of Ref. [2]. For this we use Eq. (29)
again dropping the integration over z to obtain the
impedance per unit length,

ZðkÞ ¼ ði − 1Þ
ffiffiffiffiffi
πk

p

acρ2
X∞
p¼0

Z
z

−∞
dz0ðz − z0Þ3=2 exp

×

�
−iðz − z0Þ ð2pþ 1Þ2π2

2ka2
− i

k
24ρ2

ðz − zÞ03
�
:

ð40Þ

To improve the convergence of the integral we change the
integration variable from z0 to t with t ¼ eiπ=6ðk=24ρ2Þ1=3
ðz − z0Þ which corresponds to the rotation of the integration
path in the complex plane of the variable z − z0. As a result
we arrive at the expression for the impedance in the form
first obtained in Ref. [2],

ZðkÞ ¼ 4
ffiffiffiffiffiffi
2π

p

c
32=3eiπ=6

k1=3

αρ2=3

X∞
p¼0

Z
∞

0

t3=2dt exp

×

�
−t3 − t

ð2pþ 1Þ2π2
2α2

�
; ð41Þ

where

α ¼ e−iπ=6k2=3a

21=231=6ρ1=3
: ð42Þ

FIG. 2. A part of a circular orbit with coordinate system.
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We see that the impedance, apart from a general scaling
factor, depends on one dimensionless variable k2=3a=ρ1=3

which can be interpreted as a ratio of a to the transverse
coherence (or formation) size of the radiation
l⊥ ∼ ρ1=3=k2=3. Analysis shows that in the limit a ≫ l⊥
the shielded impedance (41) approaches the unshielded
result (39). In the opposite limit, a ≪ l⊥, the shielded
impedance becomes much smaller than (39).

B. Infinitely long wiggler in free space

CSR wake of an infinitely long wiggler in free space was
first calculated in Ref. [5]. The complicated general
analytical expressions derived in that paper were somewhat
simplified in Ref. [6] in the limit v ¼ c and assuming the
wiggler parameter K ≫ 1. It was then used in the study of
the beam instability in damping rings in [25]. We will now
show how the result of [6] can be straightforwardly
obtained from the method developed in this work. The
derivation below is much simpler than the approach used
in Ref. [25].
Consider a long plane wiggler that is characterized by the

wiggler parameterK ≫ 1 and period λw. In this analysis we
neglect the contribution to the impedance from the transient
regions at the entrance to and the exit from the wiggler. The
trajectory of a relativistic particle with the Lorentz factor γ
in such a wiggler is given by

x0ðzÞ ¼ −
θ0
kw

cos kwz; y0ðzÞ ¼ 0; ð43Þ

with the velocity

β⊥ðzÞ ¼ θ0x̂ sin kwz; βz ¼ 1 −
1

2
θ20sin

2kwz; ð44Þ

where kw ¼ 2π=λw, θ0 ¼ K=γ and we assume that θ0 ≪ 1.
Note, that we take the limit γ → ∞ after we have intro-
duced θ0; the angle θ0 is considered as a small, but finite
number. Using the smallness of θ0 it is easy to derive
approximate expressions for all the factors that enter
Eq. (16) as was done for a circular orbit in the previous
section. We find (z0 < z)

cτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − z0Þ2 þ ½x0ðzÞ − x0ðz0Þ�2

q
≈ z − z0 þ θ20

2k2wðz − z0Þ ðcos kwz − cos kwz0Þ2;

1 − β · β0 ≈
1

2
θ20ðsin kwz − sin kwz0Þ2;

sðzÞ ≈ z

�
1þ 1

4
θ20

�
−

θ20
8kw

sin 2kwz: ð45Þ

We now substitute these expressions into Eq. (16) and
replace the integration over s and s0 by the integration over

z and z0 using ds ≈ dz and ds0 ¼ dz0. We limit the
integration over z by one wiggler period and divide the
result by λw; this gives the impedance per unit length
averaged over the wiggler period. Finally, we replace the
integration variable z0 by ζ ¼ z − z0. The result is,1

ZðkÞ ¼ 4iqkw
πc

Z
λw

−λw
dz

Z
∞

0

dζ
ζ
sin2

�
kw

ζ

2

�
cos2

�
kwz−

kwζ
2

�

× exp

�
−iq

�
kwζ − sinðkwζÞ cosð2kwz− kwζÞ

−
8

kwζ
sin2

�
kwζ
2

�
sin2

�
kwz−

kwζ
2

���
; ð46Þ

where

q ¼ kθ20
4kw

: ð47Þ

Analysis of this formula (which we do not present here)
shows that this expression coincides with the result of
Ref. [9]. Note that the parameter q is equal to the ratio of
the frequency ck to the fundamental radiation frequency
of the wiggler ≈4ckwγ2=K2.
The limiting case q ≪ 1 deserves a special attention—

this is the case when the wavelength 2π=k is much longer
the wiggler fundamental wavelength of radiation. To
calculate the real part of the impedance in this limit,
Eq. (46) can be simplified taking into account that the
integral converges at distances ζ ∼ ƛ=θ20 ≫ 1, so that we
can neglect terms of order of 1 and ∼1=kwζ in the phase and
replace cos2ðkwz − kwζ=2Þ by its averaged value 1

2
,

ReZðkÞ ¼ k
c
θ20

Z
∞

0

dζ
ζ
sin2

�
kwζ
2

�
sin

�
1

4
θ20kζ

�
¼ πk

4c
θ20:

ð48Þ

Similarly, for the imaginary part we find

ImZðkÞ ¼ k
c
θ20

Z
∞

0

dζ
ζ
sin2

�
kwζ
2

�
cos

�
1

4
θ20kζ

�

¼ −
k
2c

θ20 ln
�

1

4kw
θ20k

�
: ð49Þ

These results are also in agreement with [9].

1The requirement K ≫ 1 comes from the following consid-
eration. If one does not take the limit v ¼ c in (16), the
exponential factor cτðs; s0Þ should be replaced by vτðs; s0Þ.
Tracing this term to Eq. (46) gives an additional phase term
ikζð1 − v=cÞ ≈ ikζ=2γ2 in the exponential factor. To be able to
neglect this term in comparison with ikθ20ζ=4 we should require
θ0 ≪ 1=γ that is K ≫ 1.

GENNADY STUPAKOV and DEMIN ZHOU PHYS. REV. ACCEL. BEAMS 19, 044402 (2016)

044402-8



VI. IMPEDANCE OF A KINK ORBIT

We now proceed to the calculation of the radiation
impedance for several types of orbits that have not been
studied before in the literature.
One of the simplest cases is presented by a short dipole

magnet that deflects the beam by angle θ0 ≪ 1. In our
analysis we neglect the length of the magnet and consider
the orbit consisting of two straight lines with the
second one rotated by a small angle θ0 relative to the first:
x0ðzÞ ¼ 0 for z < 0 and x0ðzÞ ¼ θ0z for z > 0, see Fig. 3.
Radiation of a point charge moving on such an orbit is
studied in the textbook [26]—it can be related to the low-
frequency limit of the bremsstrahlung radiation. A more
complicated case where the finite length of the magnet is
taken into account is considered in the next section.
We will use Eq. (29) assuming a gap a between the

parallel conducting plates. It is clear that the integrand is
not equal to zero only if z > 0 and at the same time z0 < 0,
because otherwise 1 − βðzÞ · βðz0Þ ¼ 0. Using the small-
ness of the angle θ0, for z > 0 and z0 < 0, we find

cτðz; z0Þ ≈ z − z0 þ 1

2ðz − z0Þ θ
2
0z

2;

s − s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ θ20z

2

q
− z0 ≈ z − z0 þ 1

2
θ20z;

1 − β · β0 ¼ 1

2
θ20: ð50Þ

This gives the following expression for the impedance

ZðkÞ≈ði−1Þ
ffiffiffiffiffi
πk

p

ac
θ20
X∞
p¼0

Z
∞

0

dz
Z

∞

z

dζffiffiffi
ζ

p exp

×

�
−ik

1

2
θ20zþ ik

1

2ζ
θ20z

2− iζ
ð2pþ1Þ2π2

2ka2

�
; ð51Þ

with ζ ¼ z − z0. Changing the order of integration in (51),
and using the relation

Z
ζ

0

dz exp

�
−ik

1

2
θ20zþ ik

1

2ζ
θ20z

2

�

¼ −
ffiffiffi
π

2

r
ðiþ 1Þe−it2=4erf

�
i − 1

2
ffiffiffi
2

p t

� ffiffiffiffiffiffiffi
2ζ

kθ20

s
; ð52Þ

where t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζkθ20=2

p
and erfðxÞ is the error function, we

arrive at the following equation

ZðkÞ ¼ 8π

ackθ0

X∞
p¼0

Z
∞

0

tdt exp

�
−it2

ð2pþ 1Þ2π2
k2a2θ20

�

× e−it
2=4erf

�
i − 1

2
ffiffiffi
2

p t

�
: ð53Þ

Using w ¼ kaθ0 we can write this equation in the following
form

ZðwÞ
Z0

¼ 2

w

X∞
p¼0

Z
∞

0

tdt exp

�
−it2

�ð2pþ 1Þ2π2
w2

þ 1

4

��

× erf

�
i − 1

2
ffiffiffi
2

p t

�
; ð54Þ

where Z0 ¼ 4π=c is the impedance of free space. The
integral on the right-hand side can be easily calculated
numerically as a function of the parameter w; the sum can
also be calculated analytically

ZðwÞ
Z0

¼ 1

2π

�
ψ ð0Þ

�
1

2
þ iw
4π

�
þψ ð0Þ

�
1

2
−
iw
4π

�
− 2ψ ð0Þ

�
1

2

��
;

ð55Þ

where ψ ð0ÞðxÞ ¼ Γ0ðxÞ=ΓðxÞ is the polygamma function of
order zero and ΓðxÞ is the gamma function. The plot of this
function is shown in Fig. 4. As it turns out, the impedance
(54) is purely real, ImZ ¼ 0.
Let us consider the limiting cases of large and small

values of w. For w ≪ 1, assuming p ∼ 1, the main con-
tribution to the integral comes from the region t ∼ w ≪ 1.
In this region the error function can be replaced by its
asymptotic values for t ≪ 1, erfðxÞ ≈ 2x=

ffiffiffi
π

p
. We then

obtain,

FIG. 4. Impedance of a kink as a function of parameter
w ¼ kaθ0.

FIG. 3. Kink orbit shown in blue corresponds to a short magnet
that deflects the orbit by a small angle θ0 ≪ 1.
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ZðwÞ
Z0

≈
2ði − 1Þ
w

ffiffiffiffiffiffi
2π

p
X∞
p¼0

Z
∞

0

t2dt exp

�
−it2

ð2pþ 1Þ2π2
w2

�

¼ w2

2π3
X∞
p¼0

1

ð2pþ 1Þ3 ¼
7w2

16π3
ζð3Þ; ð56Þ

where ζðxÞ is the Riemann zeta function. In the
opposite limit, w ≫ 1, from the asymptotic approxima-
tion of the polygamma function, it follows that
ZðwÞ=Z0 ∼ lnw.
Note that in the limit a → ∞ the impedance of a kink

diverges because this limit corresponds to w → ∞. Hence,
the radiation impedance of a kink is not defined in free
space (which formally corresponds to a ¼ ∞). This is of
course a consequence of our assumption v ¼ c.
The physical mechanism behind the radiation imped-

ance of a kink can be attributed to the edge radiation of
the beam, as discussed in Sec. III. Given that the minimal
transverse wave number k⊥ in y direction is equal to π=a,
we conclude that the bulk of the edge radiation energy is
localized at angles θ ∼ k⊥=k ∼ π=ak. There are two cones
of radiation: the first one is localized around the initial
direction of motion, the z axis, and the second one is
around the deflected direction of motion at angle θ0. The
regime w ≪ 1 corresponds to the overlapping of the edge
radiation cones from the incoming and outgoing direc-
tions. The opposite regime, w ≫ 1, corresponds to the
case when the cones are well separated in space.
Understanding the physical mechanism behind the

impedance allows us to estimate the formation length lf
of the radiation—the distance after which radiation decou-
ples from the charge. The standard estimate for the
formation length is lf ∼ 1=kθ2, where θ is the angular
spread of the radiation; this gives lf ∼ a2k. Requiring the
formation length to be larger than the reduced wavelength
1=k we obtain the condition of validity of our analysis,
ak ≫ 1, which we have already formulated in Eq. (25). In
the opposite limit, one cannot truncate the integration over
s0 by replacing the upper infinite limit by finite s, as was
done in transitioning from (9) to (10).
In Fig. 5 we compare the analytical result obtained with

Eq. (55) with the numerical simulation carried out with the
CSRZ code. With the code we simulated a short bending
magnet of length L ¼ 1 cm and bending radius ρ ¼ 1 m.
The vertical size of the vacuum chamber is a ¼ 2 cm
and the aspect ratio b=a ¼ 5. In analytical calculations
we used the same a ¼ 2 cm and the bending angle
θ0 ¼ L=ρ ¼ 0.01. The last point on the plot corresponds
to the dimensionless parameter w ¼ kaθ0 ¼ 2. Note that
the numerical simulation shows a small imaginary part of
Z; in this regard it slightly deviates from the analytical
model that predicts ImZ ¼ 0. The simulated real part of the
impedance agrees very well with the analytical one.

VII. BENDING MAGNET OF FINITE LENGTH
WITH SHIELDING

We now consider a bending magnet of length L and
bending radius ρ. The magnet occupies the region
0 < z < L. The orbit is located in the midplane of two
shielding parallel plates with the gap a and consists of a
straight line that enters the magnet at z ¼ 0, a circular arc
inside the magnet, and a straight line exiting the magnet;
see Fig. 6. We assume that the bending angle θ0 ≈ L=ρ is
small, θ0 ≪ 1.
Using Eq. (29) for the calculation of the impedance and

remembering that z0 < z we will have four situations where
the analytical expressions for the integrand in (29) have
different forms. They are: both z and z0 are located inside
the magnet as shown in Fig. 6(a); both z and z0 are located
outside of the magnet as shown in Fig. 6(b); z is inside and
z0 is outside, Fig. 6(c); z is outside and z0 is inside, Fig. 6(d).
We denote the corresponding contributions to the imped-
ance by Z1, Z2, Z3, and Z4, respectively; they are derived in
Appendix B and given by Eqs. (B3), (B8), (B13),
and (B17). For each region we find approximate expres-
sions for τðz; z0Þ, s − s0 and 1 − β · β0 in terms of z and z0. It
turns out that one of the integrations in (29) can be carried
out analytically and the result is expressed through either
elementary or special functions. The resulting expression
for the impedance consists of a sum over p of one
dimensional integrals that can be computed numerically.
In Appendix B, we also show through a direct calcu-

lation that in free space (a ¼ ∞) the contribution Z4

diverges at the upper limit and the radiation impedance
is infinite. This proves the statement made in Sec. III.
To demonstrate the capabilities of the analytical method,

in Fig. 7, we benchmark our formulas with numerical
simulations. The left panel shows the impedance for the
bending magnet with L ¼ 20 cm, ρ ¼ 5 m, a ¼ 2 cm, and

FIG. 5. Comparison of the analytical theory (dots) and numeri-
cal simulations (solid lines) for the case of a kink orbit. The blue
line shows the real part and the red line shows the imaginary part
of Z computed by the code. The dots show ReZ computed using
Eq. (54) (the imaginary part is equal to zero and is not shown).
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the right panel shows the impedance for a magnet with
L ¼ 55 cm, ρ ¼ 12.94 m, a ¼ 2 cm. The second magnet
has parameters of the magnets in the second bunch
compressor of the LSLS-II free electron laser project
[27]. In numerical calculations we used the aspect ratio
5 for the first case and 4 for the second one. The plots
show an excellent agreement between the analytical and
numerical results.

VIII. RADIATION IMPEDANCE OF A
WIGGLER OF FINITE LENGTH

We now consider a plane wiggler that has Nw periods
(Nw is an integer) with the period length λw and the
undulator parameter K ≫ 1. As in Sec. V B, we introduce
θ0 ¼ K=γ ≪ 1 and kw ¼ 2π=λw. Particle orbits inside

the wiggler, 0 < z < Nwλw, are given by the following
equations

x0ðzÞ ¼ θ0k−1w ½1 − cosðkwzÞ�; y0ðzÞ ¼ 0

β⊥ðzÞ ¼ θ0x̂ sinðkwzÞ; βz ¼ 1 −
1

2
θ20sin

2ð2kwzÞ;
ð57Þ

outside of the wiggler we have x0ðzÞ ¼ y0ðzÞ ¼ 0. In
comparison with Eqs. (43) and (44) we added inside the
wiggler a constant shift θ0k−1w to x to eliminate a jump in the
first derivative of the orbit in the transition from the straight
sections. The orbit is sketched in Fig. 8.
Calculating the impedance with Eq. (29) we split the

contributions to Z into three parts: first, Z1, when 0 < z,

(a) (b)

(c) (d)

FIG. 6. The orbit for a bending magnet of length L consists of a straight line z < 0, a circular arc occupying the region 0 < z < L and a
straight line in the region z > L tilted at angle θ0. Panels (a), (b), (c), and (d) show four different situations for relative locations of the
leading point z (shown by the red dot) and that of the trailing point z0 (shown by the blue dot). The beam moves from left to right.

FIG. 7. Comparison of analytical calculations (shown by dots) with computer simulations (shown by solid lines): ReZ (blue) and
ImZ (red).
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z0 < Lw; second, Z2, when −∞ < z0 < 0 and 0 < z < Lw;
and third, Z3, corresponding to the integration 0 < z0 < Lw
and Lw < z < ∞. The details of the calculations can be
found in Appendix C with the resulting expression for the
impedances given by Eqs. (C7), (C11) and (C15).
Comparison of analytical calculations with numerical

simulations for a wiggler is shown in Fig. 9. The wiggler
has one period, Nw ¼ 1, the period length λw ¼ 1 m and
the angle θ0 ¼ 1.6 × 10−2. The gap is a ¼ 2 cm and the
aspect ratio b=a ¼ 5. In another run we also used the aspect

ratio b=a ¼ 10—the result was the same as for b=a ¼ 5.
We find an excellent agreement between the numerical and
analytical calculations in this case too.

IX. WIGGLER OF INFINITE LENGTH
WITH SHIELDING

For a long wiggler with many periods one can use an
approximation Nw → ∞ and calculate the impedance
averaged over one period, as it was done in Section V B
for an infinitely long wiggler in free space. This calculation
is carried out in Appendix D, with the impedance given
by Eq. (D4).
To test Eq. (D4) we calculated the radiation impedance

for the NSLS-II damping wigglers [28]. The wiggler has
the following parameters: Nw ¼ 70, λw ¼ 10 cm,
K ¼ 16.8. With the NSLS-II beam energy of 3 GeV the
maximal deflection angle is θ0 ¼ 1.86 × 10−3. The vertical
transverse size of the vacuum chamber a ¼ 11.5 mm was
used for the gap between the parallel conducting plates in
the analytical model. In numerical calculations the hori-
zontal size of the vacuum chamber was taken to be three
times larger than the vertical one, b ¼ 3a. The impedance
calculated with Eq. (D4) and with the code CSRZ is shown
in Fig. 10. As one can see from this figure, the impedance is
dominated by sharp, resonantlike spikes at several frequen-
cies. The locations of the spikes are explained by the
synchronicity between waveguide modes of the rectangular
vacuum chamber with the wiggling trajectory of the beam
[29]. The resonant values of k are defined by the following
equation,

k − kw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 −

π2n2

a2
−
π2m2

b2

s
; ð58Þ

where n is an odd andm is an even number, and a and b are
the dimensions of the rectangular cross section. From the
analysis of this equation it follows that the twelve spikes on
the right plot of Fig. 10 are all explained by the resonances

FIG. 8. Wiggler of length Lw ¼ Nwλw with the orbit shown by
blue line.

FIG. 9. Wiggler impedance: comparison of analytical calcu-
lations (shown by dots) with computer simulations (shown by
solid lines). ReZ is shown in blue and ImZ in red.

FIG. 10. Comparison of analytical calculations (left panel) with computer simulations (right panel) for the NSLS-II wiggler
impedance: ReZ (blue) and ImZ (red).
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with n ¼ 1, 3 and m ≤ 12. In the parallel plates model,
formally b ¼ ∞, and the resonant modes are given by (58)
with m ¼ 0. The two spikes on the left plot of Fig. 10 are
the n ¼ 1, 3 resonances.
While impedances in the left and the right plots look very

different, it is remarkable that at a short distance they
correspond to the same wakefield. This is illustrated by
Fig. 11 in which the blue and black lines show two
wakefields, numerical and analytical, calculated from the
impedances shown in Fig. 10 for a Gaussian bunch with
rms length of 0.5 mm. We see that the complicated resonant
structure of the impedances causes deviation of the wakes
at distances z≲ −0.2 cm, while for z≳ −0.2 cm we have
an excellent agreement between the wakes computed with
both methods. In Fig. 11 we also show another numerically
calculated wakefield, for an aspect ratio b=a ¼ 16 (the
dashed magenta line). As expected, this wake agrees much
better with the analytical wake (the black line) of the
parallel plates model.

X. SUMMARY

In this paper, we presented general expressions, Eqs. (24)
and (29), for the radiation impedance of a relativistic beam
moving on an arbitrary plane orbit between two parallel
conducting plates. In the derivation of these expressions we
assumed that the transverse size of the beam is infinitely
small and the particles move with v ¼ c. Eq. (29) addi-
tionally assumes a short bunch and an orbit that does not
deviate much from the direction of the z axis.
We showed that all known in the literature analytical

results for the radiation impedance can be straightforwardly
obtained from these expressions. New analytical results
were derived for the radiation impedance with shielding for

the following orbits: a kink, a bending magnet, a wiggler
of finite length, and an infinitely long wiggler. All our
formulas are benchmarked against numerical simulations
with the CSRZ code.
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APPENDIX A: CALCULATION OF INFINITE
SUM IN EQ. (23)

The infinite sum in Eq. (23) can be written as

S ¼
X∞

m¼−∞
ð−1Þm 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þm2a2
p exp

h
ik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2a2 þ q2

q i
;

ðA1Þ

where q ¼ cτðs; s0Þ ¼ jr0ðsÞ − r0ðs0Þj. We first introduce
an infinite sum of the delta functions and add an integration
over a continuous variable t,

S¼
Z

∞

−∞
dt

X∞
m¼−∞

δðt−mÞ cosðπtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ t2a2

p exp
h
ik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2a2þq2

q i
:

ðA2Þ

We then use the identity

X∞
m¼−∞

δðt −mÞ ¼
X∞
p¼−∞

e2πipt ðA3Þ

to obtain

S ¼
Z

∞

−∞
dt

X∞
p¼−∞

e2πipt
cosðπtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ t2a2

p exp
h
ik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2a2 þ q2

q i

¼ 1

a

X∞
p¼−∞

Z
∞

−∞

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2=a2 þ t2

p eð2pþ1Þiπt

× exp
h
ika

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ q2=a2

q i
: ðA4Þ

This can also be written as

S ¼ 4

a

X∞
p¼0

Z
∞

0

dt
cos½ð2pþ 1Þπt�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2=a2 þ t2
p exp

h
ika

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ q2=a2

q i
:

ðA5Þ

FIG. 11. Wakefields for a Gaussian bunch with σz ¼ 0.5 mm
(the bunch profile is shown by red dotted line): calculated with
CSRZ (blue line) and with the analytical model (red line) using
impedances shown in Fig. 10. The dashed magenta shows the
numerically calculated wake for the aspect ratio b=a ¼ 16.
The bunch head is to the right; positive wake corresponds to
the energy loss.
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Using the integrals 3876.1 and 3876.2 from Ref. [30] we
find that

Z
∞

0

cosðpxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ q2

p exp

�
ik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ q2

q �
dx

¼ i
π

2
Hð1Þ

0

	
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − p2

q 

; ðA6Þ

where Hð1Þ
0 is the Hankel function of the first kind.

Returning now to Eq. (A5) we finally obtain

S ¼ 2π

a
i
X∞
p¼0

Hð1Þ
0

h
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − ð2pþ 1Þ2π2=a2

q i
: ðA7Þ

Substituting this expression for S [see Eq. (A1)] into (23)
gives (24).

APPENDIX B: BEND OF FINITE LENGTH
WITH SHIELDING

1. Contribution Z1 from region 0 < z0 < z < L

A formula for Z1 can be easily obtained from (40) if
we restore the integration over z [that was omitted in (40)]
and change the integration interval for z0 from ð−∞; zÞ to
ð0; zÞ,

Z1ðkÞ ¼ ði − 1Þ
ffiffiffiffiffi
πk

p

acρ2
X∞
p¼0

Z
L

0

dz
Z

z

0

dz0ðz − z0Þ3=2

× exp

�
−iðz − z0Þ ð2pþ 1Þ2π2

2ka2

�

× exp

�
−ik

1

24ρ2
ðz − zÞ03

�
: ðB1Þ

Replacing the integration variables z0 and z by ξ ¼
ðz − z0Þk1=3=241=3ρ2=3 and τ ¼ zk1=3=241=3ρ2=3, respec-
tively, we obtain

Z1 ¼ ði − 1Þ 2
7=237=6

ffiffiffi
π

p
ρ1=3

ack2=3
X∞
p¼0

Z
l

0

dτ
Z

τ

0

dξξ3=2

× exp ½−iξ3 − iξQð2pþ 1Þ2�; ðB2Þ

where Q ¼ 31=3π2ρ2=3=a2k4=3 and l ¼ Lk1=3=241=3ρ2=3.
Finally, changing the order of integration allows one to
take the integral over τ giving

Z1 ¼ ði − 1Þ 2
7=23

ffiffiffiffi
Q

p
c

ffiffiffi
π

p
X∞
p¼0

Z
l

0

dξðl − ξÞξ3=2

× exp ½−iξ3 − iξQð2pþ 1Þ2�: ðB3Þ

The parameter Q is the shielding parameter ka3=2=ρ1=2

to the power −4=3. The parameter l is equal to the ratio
of L to the formation length of the radiation with wave
number k.
In the limit l ≫ 1 the factor l − ξ in (B3) is replaced by l,

and the impedance becomes proportional to L. In this limit,
the impedance per unit length Z1=L reduces to an expres-
sion that is equal to (41).

2. Contribution Z2 from region z0 < 0 and L < z

A simple geometrical analysis gives the following
expressions for τ, s, and s0 as functions of z and z0,

cτ ≈ ζ þ 1

2ζ
θ20

�
z −

1

2
L

�
2

;

s ≈ ðz − LÞ
�
1þ 1

2
θ20

�
þ L

�
1þ 1

6
θ20

�
;

s0 ¼ z0; ðB4Þ
where ζ ¼ z − z0. We also have 1 − βðsÞ · βðs0Þ ¼ 1

2
θ20.

In these expressions we used the smallness of θ0 and
neglected terms of order higher than θ20.
With account of these relations Eq. (29) becomes

Z2 ¼ ði − 1Þθ20
ffiffiffiffiffi
πk

p

ac

X∞
p¼0

Z
∞

L
dz

Z
0

−∞

dz0ffiffiffi
ζ

p exp

�
−iζ

ð2pþ 1Þ2π2
2ka2

�
exp

�
ik

�
1

2ζ
θ20

�
z − Lþ 1

2
L

�
2

−
1

2
θ20ðz − LÞ − 1

6
θ20L

��
:

ðB5Þ

We now change the integration variables from z0 and z to ξ ¼ 1
2
kθ20ðz − z0Þ and τ ¼ 1

2
kθ20ðz − LÞ, respectively, to

obtain

Z2 ¼ ði − 1Þ 2
3=2 ffiffiffi

π
p

kacθ0
e−iu=3

X∞
p¼0

Z
∞

0

dτe−iτ
Z

∞

τþu

dξffiffiffi
ξ

p exp

�
−iξqþ i

1

ξ

�
τ þ 1

2
u

�
2
�
; ðB6Þ

where u ¼ 1
2
kθ20L and q ¼ ð2pþ 1Þ2π2=k2a2θ20. The internal integral can be expressed through the error function

erfðxÞ and erfcðxÞ ¼ 1 − erfðxÞ using the following identity

GENNADY STUPAKOV and DEMIN ZHOU PHYS. REV. ACCEL. BEAMS 19, 044402 (2016)

044402-14



Fða; b; cÞ ¼
Z

∞

c

dξffiffiffi
ξ

p exp

�
i
a
ξ
− ibξ

�

¼
ffiffiffi
π

p

2
ffiffiffiffiffi
ib

p e−2
ffiffiffiffi
ab

p �
erf

� ffiffiffiffiffiffiffiffi
−ia

p
−

ffiffiffiffiffi
ib

p
cffiffiffi

c
p

�
þ e4

ffiffiffiffi
ab

p
erfc

� ffiffiffiffiffiffiffiffi
−ia

p þ ffiffiffiffiffi
ib

p
cffiffiffi

c
p

�
þ 1

�
; ðB7Þ

which gives

Z2 ¼ ði − 1Þ 2
3=2 ffiffiffi

π
p

kacθ0
e−iu=3

X∞
p¼0

Z
∞

0

dτe−iτF

��
τ þ 1

2
u

�
2

; q; τ þ u

�
: ðB8Þ

If the upper limit of integration over z in Eq. (B5) is not infinity but some finite value Lþ Z, it is easy to check that
Eq. (B8) is replaced by the following one

Z2 ¼ ði − 1Þ 2
3=2 ffiffiffi

π
p

kacθ0
e−iu=3

X∞
p¼0

Z
uZ

0

dτe−iτF

��
τ þ 1

2
u

�
2

; q; τ þ u

�
; ðB9Þ

where uZ ¼ 1
2
kZθ20.

3. Contribution Z3 from region z0 < 0 and 0 < z < L

In this region, the following expressions for τ, s, s0 and 1 − β · β0 are valid,

cτ ≈ ζ þ 1

2ζ

1

4L2
θ20z

4; s ≈ zþ 1

6L2
θ20z

3; s0 ¼ z0; 1 − β · β0 ¼ 1

2L2
θ20z

2: ðB10Þ

Substituting them into (29) gives

Z3ðkÞ ¼ ði − 1Þ
ffiffiffiffiffi
πk

p
θ20

acL2

X∞
p¼0

Z
L

0

z2dz
Z

0

−∞

dz0ffiffiffi
ζ

p exp

�
−iζ

ð2pþ 1Þ2π2
2ka2

�
exp

�
ik

�
θ20z

4

8ζL2
−
θ20z

3

6L2

��
: ðB11Þ

We now change the integration variables from z0 and z to ξ ¼ 1
2
kθ20ðz − z0Þ and τ ¼ 1

2
kθ20z, respectively, which gives

Z3ðkÞ ≈ ði − 1Þ 2
3=2 ffiffiffi

π
p

d2kacθ0

X∞
p¼0

Z
u

0

τ2dτ exp

�
−
iτ3

3d2

�Z
∞

τ

dξffiffiffi
ξ

p exp

�
iτ4

4ξd2
− iqξ

�
; ðB12Þ

where u ¼ 1
2
kθ20L, d ¼ 1

2
kθ30ρ and q ¼ ð2pþ 1Þ2π2=k2a2θ20. We then use function F defined by (B7) to obtain

Z3ðkÞ ≈ ði − 1Þ 2
3=2 ffiffiffi

π
p

d2kacθ0

X∞
p¼0

Z
u

0

τ2dτ exp

�
−
iτ3

3d2

�
F

�
τ4

4d2
; q; τ

�
: ðB13Þ

4. Contribution Z4 from region 0 < z0 < L and L < z

In this region we have,

cτ ≈ ζ

�
1þ 1

2ζ2
θ20

�
z −

1

2
L −

1

2L
z02

�
2
�
; s ≈ ðz − LÞ

�
1þ 1

2
θ20

�
þ L

�
1þ 1

6
θ20

�
;

s0 ¼ z0 þ 1

6
ϰ2z03; 1 − β · β0 ≈

1

2
ϰ2ðL − z0Þ2: ðB14Þ

Using Eq. (29) we obtain
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Z4ðkÞ ≈ ði − 1Þ
ffiffiffiffiffi
πk

p

acρ2
exp

�
1

3
ikθ20L

�X∞
p¼0

Z
L

0

ðL − z0Þ2dz0

×
Z

∞

L

dzffiffiffi
ζ

p exp

�
−
1

2
ikθ20zþ i

kz03

6ρ2
þ i

kθ20
2ζ

�
z −

1

2
L −

z02

2L

�
2

− iζ
ð2pþ 1Þ2π2

2ka2

�
: ðB15Þ

Changing the integration variables from z and z0 to τ ¼ 1
2
kθ20ðL − z0Þ and ξ ¼ 1

2
kθ20ðz − z0Þ after simple transformations we

obtain

Z4ðkÞ ≈ ði − 1Þ 23=2
ffiffiffi
π

p
d2kacθ0

e−iu=3
X∞
p¼0

Z
u

0

τ2dτ exp

�
iτ þ i

ðu − τÞ3
3d2

− i
τ2

d

� Z
∞

τ

dξffiffiffi
ξ

p exp

�
iτ4

4ξd2
− iqξ

�
; ðB16Þ

where u ¼ 1
2
kθ20L, d ¼ 1

2
kθ30ρ and q ¼ ð2pþ 1Þ2π2=k2a2θ20. Again, using (B7) we reduce Z4 to a one-dimensional integral

Z4ðkÞ ≈ ði − 1Þ 23=2
ffiffiffi
π

p
d2kacθ0

e−iu=3
X∞
p¼0

Z
u

0

τ2dτ exp

�
iτ þ i

ðu − τÞ3
3d2

− i
τ2

d

�
F

�
τ2

4d2
; q; τ

�
: ðB17Þ

If the upper limit of integration over z in Eq. (B15) is not infinity but some finite value Lþ Z, it is easy to check that
Eq. (B17) is replaced by the following one

Z4ðkÞ ≈ ði − 1Þ 23=2
ffiffiffi
π

p
d2kacθ0

e−iu=3
X∞
p¼0

Z
u

0

τ2dτ exp

�
iτ þ i

ðu − τÞ3
3d2

− i
τ2

d

��
F

�
τ2

4d2
; q; τ

�
− F

�
τ2

4d2
; q; τ þ uZ

��
; ðB18Þ

where uZ ¼ 1
2
kθ20Z.

Using Eqs. (B14) we can now show that the contribution from this region does not converge if one uses Eq. (16) (that is
the impedance for free space) instead of (29). Indeed, comparing these two expressions we see that, apart from a factor, (16)
can be obtained from (29) by omitting the term −iζð2pþ 1Þ2π2=2ka2 in the exponential function, replacing ffiffiffi

ζ
p

→ ζ in the
denominator, and dropping the summation over p,

Zðno shieldÞ
4 ðkÞ ∝

Z
L

0

ðL − z0Þ2dz0
Z

∞

L

dz
z − z0

exp

�
−
1

2
ikθ20zþ i

kz03

6ρ2
þ i

kθ20
2ðz − z0Þ

�
z −

1

2
L −

z02

2L

�
2
�
: ðB19Þ

In the limit z → ∞ the exponential function in the integrand tends to a constant value and the integral over z diverges
logarithmically at the upper limit.

APPENDIX C: WIGGLER OF FINITE LENGTH

1. Contribution Z1 from region 0 < z0 < z < Lw

In this region Eqs. (45) are valid. Substituting them into (29) we obtain

Z1ðkÞ ¼ ði − 1Þθ20
ffiffiffiffiffi
πk

p

ac

X∞
p¼0

Z
Lw

0

dz
Z

z

0

dz0ffiffiffi
ζ

p ½sinðkwzÞ − sinðkwz0Þ�2 exp
�
−iζ

ð2pþ 1Þ2π2
2ka2

�

× exp

�
ik

�
θ20

2k2wζ
½cosðkwzÞ − cosðkwz0Þ�2 −

1

4
θ20ζ þ

θ20
8kw

ðsin 2kwz − sin 2kwz0Þ
��

: ðC1Þ

Using dimensionless variables, ξ ¼ kwz, ν ¼ kwζ and replacing the integration over z0 by integration over ζ we
rewrite (C1) as
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Z1ðkÞ ¼ ði − 1Þθ20
ffiffiffiffiffi
πk

p

k3=2w ac

X∞
p¼0

Z
u

0

dξ
Z

ξ

0

dνffiffiffi
ν

p ½sin ξ − sinðξ − νÞ�2 exp
�
−iν

ð2pþ 1Þ2π2
2kkwa2

�

× exp

�
i
kθ20
kw

�
1

2ν
½cos ξ − cosðξ − νÞ�2 − 1

4
νþ 1

8
½sin 2ξ − sin 2ðξ − νÞ�

��
; ðC2Þ

where u ¼ kwLw ¼ 2πNw.
While direct numerical integration in (C2) is possible, it is slow due to the oscillating nature of the integrand. The

following transformation makes it faster. We first change the order of integration
R
u
0 dξ

R ξ
0 dν ¼

R
u
0 dν

R
u
ν dξ. We then use

the expansion

eia cosϕ ¼
X∞
n¼−∞

JnðaÞeinðπ=2−ϕÞ; ðC3Þ

and rewrite (C2) as follows using the notation r ¼ kθ20=kw

Z1ðkÞ ¼ ði − 1Þθ20
2

ffiffiffiffiffi
πk

p

k3=2w ac

X∞
p¼0

X∞
n¼−∞

Z
u

0

dνffiffiffi
ν

p
Z

u

ν
dξsin2

ν

2
½1þ cos ð2ξ − νÞ� exp

�
−iν

ð2pþ 1Þ2π2
2kkwa2

�

× exp

�
ir

�
1

ν
sin2

ν

2
−
1

4
ν

��
Jn

�
1

4
r sin ν −

r
ν
sin2

ν

2

�
einðπ=2−2ξþνÞ: ðC4Þ

Integration over ξ can be carried out with the help of the following

Gðν; n; uÞ ¼
Z

u

ν
dξð1þ cos ð2ξ − νÞÞeinðπ=2−2ξþνÞ

¼ 1

2nðn2 − 1Þ fi
nþ1e−iνn½ðn2 − 1Þðe2iνn − 1Þ þ n2 cosðνÞðe2iνn − 1Þ − in sinðνÞðe2iνn þ 1Þ�g; ðC5Þ

where u ¼ 2πm with m integer. For n ¼ 0 the integral is Gðν; 0; uÞ ¼ u − ν − sin ν and for n ¼ 1 it is equal to

Gðν;�1; uÞ ¼ � 1

8
e−2iν½−4ie2iνðν − uÞ þ 4eiν − 4e3iν − e4iν þ 1�: ðC6Þ

Hence Eq. (C4) can be replaced by

Z1ðkÞ ¼ −ð1 − iÞθ20
2

ffiffiffiffiffi
πk

p

k3=2w ac

X∞
p¼0

X∞
n¼−∞

Z
u

0

dνffiffiffi
ν

p Gðν; n; uÞsin2 ν
2
exp

�
−iν

ð2pþ 1Þ2π2
2kkwa2

�

× exp

�
ir

�
1

ν
sin2

ν

2
−
1

4
ν

��
Jn

�
1

4
r sin ν −

r
ν
sin2

ν

2

�
; ðC7Þ

where the double integral is replaced by a sum (over n) of single integrals.

2. Contribution Z2 from region −∞ < z0 < 0 and 0 < z < Lw

In this region we have

cτ ≈ ζ þ θ20
2k2wζ

½cosðkwzÞ − 1�2;

1 − β · β0 ¼ 1 −
�
1 −

1

2
θ20sin

2ðkwzÞ
�
¼ 1

2
θ20½sinðkwzÞ�2; ðC8Þ

and
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cτ − sðzÞ þ sðz0Þ ¼ θ20
2k2wζ

½cosðkwzÞ − 1�2 − 1

4
θ20zþ

θ20
8kw

sin 2kwz: ðC9Þ

Substituting these relations into (29) we obtain

Z2ðkÞ ¼ ði − 1Þθ20
ffiffiffiffiffi
πk

p

ac

X∞
p¼0

Z
Lw

0

dz
Z

0

−∞

dz0ffiffiffi
ζ

p ½sinðkwzÞ�2 exp
�
−iζ

ð2pþ 1Þ2π2
2ka2

�

× exp

�
ik

�
θ20

2k2wζ
½cosðkwzÞ − 1�2 − 1

4
θ20zþ

θ20
8kw

sin 2kwz

��
: ðC10Þ

Using dimensionless variables ξ ¼ kwz, ν ¼ kwζ and replacing integration over z0 by integration over ζ we find

Z2ðkÞ ¼ ði − 1Þθ20
ffiffiffiffiffi
πk

p

k3=2w ac

X∞
p¼0

Z
u

0

dξ exp

�
i
kθ20
kw

�
−
1

4
ξþ 1

8
sin 2ξ

��
ðsin ξÞ2

×
Z

∞

ξ

dνffiffiffi
ν

p exp

�
−iν

ð2pþ 1Þ2π2
2kkwa2

�
exp

�
i
kθ20
kw

1

2ν
ðcos ξ − 1Þ2

�
: ðC11Þ

where u ¼ kwLw ¼ 2πNw.

3. Contribution Z3 from region 0 < z0 < Lw and Lw < z < ∞
In this region we have

cτ ≈ ζ þ θ20
2k2wζ

½1 − cosðkwz0Þ�2;

1 − β · β0 ¼ 1 −
�
1 −

1

2
θ20sin

2ðkwz0Þ
�
¼ 1

2
θ20½sinðkwz0Þ�2;

s ¼ zþ 1

4
θ20Lw; ðC12Þ

which gives

cτ − sðzÞ þ sðz0Þ ¼ θ20
2k2wζ

½1 − cosðkwz0Þ�2 −
1

4
θ20Lw þ 1

4
θ20z

0 −
θ20
8kw

sin 2kwz0: ðC13Þ

Substituting this into Eq. (29) we find

Z3ðkÞ ¼ ði − 1Þθ20
ffiffiffiffiffi
πk

p

ac

X∞
p¼0

Z
Lw

0

dz0 exp
�
ik

�
−
1

4
θ20Lw þ 1

4
θ20z

0 −
θ20
8kw

sin 2kwz0
��

½sinðkwz0Þ�2

×
Z

∞

Lw−z0

dζffiffiffi
ζ

p exp

�
−iζ

ð2pþ 1Þ2π2
2ka2

�
exp

�
ik

θ20
2k2wζ

½1 − cosðkwz0Þ�2
�
: ðC14Þ

Using dimensionless variables ξ ¼ kwz0, ν ¼ kwζ and replacing the integration over z by integration over ζ we obtain

Z3ðkÞ ¼ ði − 1Þθ20
ffiffiffiffiffi
πk

p

k3=2w ac

X∞
p¼0

Z
u

0

dξ exp

�
i
kθ20
kw

�
1

4
ðξ − uÞ − 1

8
sin 2ξ

��
ðsin ξÞ2

×
Z

∞

u−ξ

dνffiffiffi
ν

p exp
�
−iν

ð2pþ 1Þ2π2
2kkwa2

�
exp

�
i
kθ20
kw

1

2ν
ðcos ξ − 1Þ2

�
; ðC15Þ

where u ¼ kwLw ¼ 2πNw.
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APPENDIX D: INFINITELY LONG WIGGLER

To calculate the impedance of an infinitely long wiggler we use Eq. (C2) that corresponds to the integration over the orbit
inside the wiggler. In this equation, we replace integration over the whole undulator by averaging over one period

ZðkÞ ¼ ði − 1Þθ20
ffiffiffiffiffi
πk

p

k3=2w λwac

X∞
p¼0

Z
2π

0

dξ
Z

∞

0

dνffiffiffi
ν

p ½sin ξ − sinðξ − νÞ�2 exp
�
−iν

ð2pþ 1Þ2π2
2kkwa2

�

× exp

�
i
kθ20
kw

�
1

2ν
½cos ξ − cosðξ − νÞ�2 − 1

4
νþ 1

8
½sin 2ξ − sin 2ðξ − νÞ�

��
: ðD1Þ

Using standard trigonometric identities we cast (D1) into the following form

ZðkÞ ¼ ði − 1Þθ20
2

ffiffiffiffiffi
πk

p

k3=2w λwac

X∞
p¼0

Z
2π

0

dξ
Z

∞

0

dνffiffiffi
ν

p sin2
ν

2
½1þ cos ð2ξ − νÞ� exp

�
−iν

ð2pþ 1Þ2π2
2kkwa2

�

× exp

�
i
kθ20
kw

�
1

ν
sin2

ν

2
½1 − cos ð2ξ − νÞ� − 1

4
νþ 1

4
sin ν cosð2ξ − νÞ

��
: ðD2Þ

We now change the order of integration and expand the integrand into the series of the Bessel functions using (C3),

ZðkÞ ¼ ði − 1Þθ20
2

ffiffiffiffiffi
πk

p

k3=2w λwac

X∞
p¼0

X∞
n¼−∞

Z
2π

0

dξ
Z

∞

0

dνffiffiffi
ν

p sin2
ν

2
½1þ cos ð2ξ − νÞ� exp

�
−iν

ð2pþ 1Þ2π2
2kkwa2

�

× exp

�
ir

�
1

ν
sin2

ν

2
−
1

4
ν

��
Jn

�
1

4
r sin ν −

r
ν
sin2

ν

2

�
einðπ=2−2ξþνÞ; ðD3Þ

where r ¼ kθ20=kw. Integration over ξ selects J1 and J−1,

ZðkÞ ¼ ði − 1Þθ20
4π

ffiffiffiffiffi
πk

p

k3=2w λwac

X∞
p¼0

Z
∞

0

dνffiffiffi
ν

p sin2
ν

2
exp

�
−iν

ð2pþ 1Þ2π2
2kkwa2

�

× exp

�
ir

�
1

ν
sin2

ν

2
−
1

4
ν

���
J0

�
1

4
r sin ν −

r
ν
sin2

ν

2

�
þ iJ1

�
1

4
r sin ν −

r
ν
sin2

ν

2

��
: ðD4Þ

This expression can be integrated and summed numerically.
It is interesting to consider the limit of low frequencies, r ≪ 1, and large gaps, a → ∞. In this limit Eq. (D4) should

reproduce the low-frequency results of Sec. V B. Analysis shows that the main contribution to (D4) in this limit comes from
the region ν ≪ 1, and we can simplify the integrand replacing the Bessel functions J0 → 1, J1 → 0, and also

exp

�
ir

�
1

ν
sin2

ν

2
−
1

4
ν

��
→ exp

�
−ir

1

4
ν

�
: ðD5Þ

At the same time, due to large a, we replace the summation over p by integration

X∞
p¼0

→
Z

∞

0

dp: ðD6Þ

As a result, we obtain

ZðkÞ ¼ ði − 1Þθ20
4π

ffiffiffiffiffi
πk

p

k3=2w λwac

Z
∞

0

dνffiffiffi
ν

p sin2
ν

2
exp

�
−ir

1

4
ν

�Z
∞

0

dp exp

�
−iν

ð2pþ 1Þ2π2
2kkwa2

�

≈ iθ20
k
c

Z
∞

0

dν
ν
sin2

ν

2
exp

�
−ir

1

4
ν

�
; ðD7Þ

which reproduces Eqs. (48) and (49).
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