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A multiobjective genetic algorithm is developed for optimizing nonlinearities in diffraction limited
storage rings. This algorithm determines sextupole and octupole strengths for chromaticity correction that
deliver optimized dynamic aperture and beam lifetime. The algorithm makes use of dominance constraints
to breed desirable properties into the early generations. The momentum aperture is optimized indirectly by
constraining the chromatic tune footprint and optimizing the off-energy dynamic aperture. The result is an
effective and computationally efficient technique for correcting chromaticity in a storage ring while
maintaining optimal dynamic aperture and beam lifetime.
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I. INTRODUCTION

Multiobjective genetic algorithms have found much
success providing nonintuitive solutions to problems that
are not adequately solved by analytic methods. Such
algorithms have been successfully applied to various
aspects of accelerator design [1–5]. In this paper, a genetic
algorithm is developed for optimizing dynamic aperture
and beam lifetime using sextupole and octupole strengths
in next-generation diffraction limited storage rings (DLSR).
The one-turn map for a DLSR contains strong non-

linearities. Such machines use stronger focusing and lower
dispersion to achieve an emittance that is below the
diffraction limit for some wavelengths of light. The strong
focusing of these machines leads to a large chromaticity,
which must be corrected by placing strong sextupoles in
dispersive regions. Furthermore, the low dispersion neces-
sitates that the sextupole strengths be even higher. Such
strong sextupole moments add strong nonlinearities to the
lattice.
These nonlinearities must be carefully designed to

maintain adequate injection efficiency and beam lifetime.
Nonlinearities induce tune shifts and increase the sensi-
tivity of particles to machine imperfections. This reduces
the dynamic aperture, which is the volume in 6D phase
space containing stable particle trajectories. Touschek
scattering and residual gas scattering excite the phase
space coordinates of particles stored in a ring. A particle
is lost if it exits the dynamic aperture. This imposes a beam
lifetime. A reduced dynamic aperture also complicates
injection by reducing the capture efficiency of the machine.

The problem of nonlinear optics in a storage ring is to
correct the chromaticity without inducing nonlinearities
that degrade the other lattice properties too much.
The established technique for optimizing nonlinearities

in a storage ring is resonant driving term minimization and
was developed for the original Swiss Light Source (SLS)
[6]. It is a Lie algebra expansion of the transfer map in
driving terms that are functions of the sextupole strength.
These terms drive higher order chromatic tune shifts,
amplitude dependent tune shifts, and resonances. A gra-
dient optimizer is used to minimize a weighted vector of the
driving terms. The weights are determined by judging from
the tune diagram and frequency maps which resonances
and tune shifts are most important. This technique is
straightforward to wield up to second order in sextupole
strength. Beyond second order, the number of driving terms
which need to be minimized makes the method less robust.
The complexity of the optimization space necessitates
much trial and error to locate good local minima, and
the procedure becomes a bit of a dark art.
A storage ring is a complicated nonlinear oscillator. Its

transfer map is the concatenation of many hundreds of
linear and nonlinear maps. Explicit algorithms yield only
an incomplete control of particle motion in a storage ring.
This lack of analytic clarity makes accelerators good
candidates for genetic algorithms, which typically do not
depend on knowledge of the system. Genetic algorithms
optimize a system by selectively breeding trial solutions
according to their fitness.
One example where a genetic algorithm performs better

than perturbation techniques is in confining the chromatic
and amplitude-dependent tune shifts. Second order pertur-
bation theory is unable to bend the chromatic and amplitude
dependent tune shifts beyond second order. The genetic
algorithm developed here fits tune footprints into tighter
areas using higher orders of correction.
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A well-designed genetic algorithm will encourage
behaviors in the evolving population that, further down
the road, lead to solutions with optimal objective functions.
For example, the algorithm presented here includes a
dominance constraint (see Sec. III C) on the amplitude
of the nonlinear dispersion. A small-amplitude nonlinear
dispersion is not one of the objective functions, but it is a
property that a lattice with good objective functions will
have. By applying a dominance constraint to the nonlinear
dispersion, we are, in a sense, breeding characteristics into
the early generations, that in later generations will yield
improved objective functions.
Genetic algorithms for the optimization of storage ring

nonlinearities have been developed and evaluated else-
where [3,7–10]. The present application stands out in its
use of dominance constraints to more efficiently evolve the
population. The algorithm requires only modest computing
resources. On a Linux cluster consisting of 64 E5-2670
xeon cores, it delivers solutions to ten variable problems in
one or two days, and 20 variable problems in two or three
days. The scheme consistently does as well or better than
Lie algebra approaches, and repeated attempts with differ-
ent random seeds on different lattice variants suggest that
the solutions it finds are globally optimal. So the optimi-
zation scheme presented here allows for a lattice develop-
ment cycle on the order of a couple days, and does not
consume expensive computing resources. This framework
was developed for the Swiss Light Source upgrade
project [20].
Section II of this paper gives an overview of the system,

listing the components out of which this optimization
scheme is built. Section III introduces multiobjective
genetic algorithms, and Sec. IV describes the optimization
problem, including the physics behind the calculations
of the objectives and constraints. In Sec. V the optimization
scheme is applied to upgrade prototypes of SLS and the
proposed Armenian light source CANDLE [11].
Misalignment studies are conducted on the SLS upgrade
lattice in Sec. VI.

II. SYSTEM ARCHITECTURE

The optimizer is built within the PISA framework [12],
which specifies that the sorting algorithm be separated from
the rest of the optimizer. The sorting algorithm is imple-
mented as a stand-alone binary that communicates with the
rest of the optimizer through the filesystem. This separation
simplifies the coding and makes it trivial to switch between
different sorting algorithms, such as SPEA2 [13] or
NSGA2 [14].
We use the APISA variant [5] of PISA. APISA modifies the

original PISA framework by supporting dominance con-
straints. APISA was originally developed for the design of
the Cornell Energy Recovery Linac injector.
Accelerator physics calculations are handled by calls to

the BMAD library [15]. The top-level coding, which

includes population management and breeding, paralleli-
zation, and additional physics calculations, was developed
at PSI and is coded in FORTRAN90. The parallelization
paradigm is master-slave and is implemented using
COARRAYS, which in Intel’s Fortran compiler is imple-
mented as a high-level language on top of MPI.
The cluster management software is Sun Grid Engine.

The cluster is composed of several 16-core E5-2670
compute nodes running 64-bit Scientific Linux.
Typically four of these nodes are used in an optimization
run.

III. MULTIOBJECTIVE GENETIC ALGORITHMS

The multiobjective optimization problem is formulated
as [16]

Minimize fmðxÞ; m ¼ 1; 2;…;M;

subject to gjðxÞ ≥ 0; j ¼ 1; 2;…; J;

hkðxÞ ¼ 0; k ¼ 1; 2;…; K;

xðLÞi ≤ xi ≤ xðUÞ
i i ¼ 1; 2;…; n:

ð1Þ

fm are the objectives, which generally are competing. gj are
inequality constraints and hk are equality constraints. xðLÞi

and xðUÞ
i are upper and lower bounds on variables. A vector

of variable strengths x ¼ ðx1; x2;…; xnÞT is called an
individual.
A genetic algorithm manages a population of individ-

uals. Every individual i in the population is represented by
a vector of variables xðiÞ. For our purposes xðiÞ is real
valued, but in general it could contain integer, logical, and
complex variables. Each individual i has an associated
vector of objective values fðiÞ and constraint values gðiÞ

and hðiÞ.
The output of a multiobjective optimizer is of a different

nature than that of a single-objective optimizer. A single
objective optimizer, or equivalently, an optimizer which
reduces fðiÞ to a single value by weighting the individual
objectives, gives the user one particular x that is the best
solution to the optimization problem it could find. A
multiobjective optimizer, on the other hand, returns a
population of x’s. This returned population is an optimal
surface in the objective space called a Pareto front. For any
individual on the Pareto front, no improvement to any one
of its objectives can be achieved without worsening the
others. The user of a multiobjective optimizer typically
applies additional criteria when selecting a particular
solution from the Pareto front.

A. Ranking the population

The ranking of individuals in a single objective opti-
mization problem is straightforward: the individual with the
better objective value is preferred. Ranking in multiobjec-
tive optimization problem is more complicated. The core
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concept is the dominance relationship, which is a way of
comparing any two individuals, say xðiÞ and xðjÞ. They are
compared by asking the question: “Does xðiÞ dominate
xðjÞ?” The dominance relationship is defined as follows
[16]. Definition 1.—An individual xðiÞ is said to dominate
another xðjÞ, if both of the following conditions are true:
(i) xðiÞ is no worse than xðjÞ in all objectives; (ii) xðiÞ is
strictly better than xðjÞ in at least one objective.
A sorting algorithm applies the dominance relationship

to sort the population from best to worst. There exist many
different sorting algorithms. Two algorithms that we have
used are NSGA2 and SPEA2. We obtain similar results
with both algorithms, but find that the populations resulting
from SPEA2 span the objective space more evenly.
For details on SPEA2 see Ref. [13]. In short summary,

dominance is determined for every ordered pair of indi-
viduals in the population. Each individual in the population
is assigned a strength which is the number of individuals it
dominates. Then, each individual is assigned a fitness
which is the sum of the strengths of all the individuals
that dominate it. A lower fitness is better. A “clumping”
penalty is added to this fitness based on the shortest
distance (in objective space) of the individual to another
individual. This encourages the population to span a wider
region of the objective space. Incidentally, the clumping
penalty makes it unlikely for any two individuals to have
the exact same fitness, even if they are both not dominated
by any other individual.
Individuals are ordered according to their fitness value.

The lowest ranked individuals are deleted from the pop-
ulation. This is typically the worst half or three-quarters of
the population each generation. The population is replen-
ished by mating the surviving individuals.
Mating pairs are determined by drawing integers in a

procedure called a tournament. Two or more random
integers are drawn between 1 and N, where N is the
number of surviving individuals. 1 corresponds to the
most fit, andN to the least fit. The individual corresponding
to the smallest of the drawn integers is chosen for
mating. Thus, individuals with better fitness are more
likely to reproduce. Its mate is chosen through the same
process. This is repeated until enough pairs have been
selected to replenish the population. Each pair generates
two offspring.
A two-step process generates two new children

from each mating pair. The first step is simulated

binary crossover [17]. Say the two parents are xðp1Þ ¼
fxðp1Þ1 ; xðp1Þ2 ;…; xðp1Þn g and xðp2Þ ¼fxðp2Þ1 ;xðp2Þ2 ;…;xðp2Þn g.
They will produce two offspring, xðc1Þ and xðc2Þ.
Start with variable xð·Þ1 and draw a random real t between

0 and 1. Compare t to Pc, which is a parameter between
0 and 1 that determines how likely it is that a variable is
simply copied from parent to child, as opposed to applying

a stochastic function. If t > Pc, then variable x
ðp1Þ
1 is simply

copied to the child xðc1Þ1 , and xðp2Þ1 copied to xðc2Þ1 . If t ≤ Pc,
then draw another random real q between 0 and 1. Then,

βq ¼
( ð2qÞκ if q ≤ 0.5�

0.5
1−q

�
κ

otherwise;
ð2Þ

and

xðc1Þ1 ¼ 1

2
½ð1þ βqÞxðp1Þ1 þ ð1 − βqÞxðp2Þ1 � ð3Þ

xðc2Þ1 ¼ 1

2
½ð1 − βqÞxðp1Þ1 þ ð1þ βqÞxðp2Þ1 �; ð4Þ

where κ is a parameter that controls the width of the
distribution. As depicted in Fig. 1, smaller values of κ cause
the offspring to explore a broader parameter space. A
typical value for Pc is 0.8. This process is repeated for all n
variables.
Next a mutator is applied separately to xðc1Þ and xðc2Þ.

For each variable i in xðc1Þ, draw a random real t between 0
and 1. Compare t to Pm, a parameter that determines how
likely it is for a variable to undergo mutation. If t > Pm, the
variable is not mutated. If t ≤ Pm, then draw a second

random real m. Variable xðc1Þi is adjusted according to

βm ¼
� ð2mÞκ − 1 if m ≤ 0.5

1 − ½2ð1 −mÞ�κ otherwise;
ð5Þ

and

xðc1Þi ¼ xðc1Þi þ σmut × βm: ð6Þ

A typical value for Pm is n−1, so that on average one
variable is mutated per child. σmut is typically set to about

FIG. 1. The crossover operation takes the parent values xðp1Þi
and xðp2Þi and a random number q, and returns two offspring
values xðc1Þi and xðc2Þi . Larger values of the parameter κ result in
“near-parent” offspring.
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10% of the reasonable variable strength. βm is depicted
in Fig. 2.
After xðc1Þ, the mutation process is repeated on each

variable in xðc2Þ and both are added to the population. New
individuals are generated until the population is fully
replenished.

B. Progression of generations

Once the population is fully replenished, the worker
processes calculate the objectives and constraints of the
newly generated individuals. The population, consisting of
both the parents and children, is resorted and the least fit are
deleted. Some of the children will be more fit and displace
the older individuals in the surviving population. So is the
overall fitness of the population improved. This process of
evaluation, sorting, deletion, and replenishment is looped
continually. Each loop is referred to as a generation.
As implemented, there is not actually a clear line

between one generation and the next. The algorithm is
modified to improve computational efficiency. By far, the
most time-consuming step is when the objectives and
constraints of an individual are calculated. It could often
be the case that many nodes in the cluster sit idle while the
last few individuals of a given generation are being
evaluated. To avoid this situation, the optimizer initially
generates extra individuals equal to the number of cores in
the cluster. For example, if the population is set to 300 and
there are 64 nodes in the cluster, the optimizer will initially
generate 364 individuals. Whenever a core finishes evalu-
ating an individual, the individual is added to the pop-
ulation and the core is always immediately given a new
unevaluated individual to process. Whenever the popula-
tion reaches 300, it is resorted, culled, and new individuals
are bred. These new individuals replenish the pool of
individuals awaiting evaluation. This modification to the
algorithm improves cluster efficiency. The loss of a clear
demarcation between the generations does not seem to
negatively impact the evolution of the population.

C. Dominance constraints

Dominance constraints are a powerful type of constraint
that is unique to multiobjective optimization. It is imple-
mented by modifying the dominance relationship. We
apply the dominance relationship as implemented in
APISA [5].
In addition to calculating objective values fðxðiÞÞ for

each individual i, we also calculate a vector of constraint
values cðxðiÞÞ. For example, say c1 is a dominance
constraint for the off-momentum horizontal closed orbit
xinj at the injection point, and we wish to constrain jxinjj to
be less than xmax. Then, c1 ¼ xmax − jxinjj. If c1 is negative,
it indicates that the constraint is violated. The magnitude of
c1 represents the degree to which it is violated.
Dominance constraints are implemented by replacing

the ordinary definition for dominance in Definition 1 with
Definition 2. An individual is called infeasible if it violates
any of its dominance constraints, else it is called feasible.
Definition 2.—xðiÞ is said to constraint dominate an
individual xðjÞ if any of the following conditions are true:
(i) xðiÞ is feasible and xðjÞ is not; (ii) xðiÞ and xðjÞ are both
feasible, and xðiÞ dominates xðjÞ as in Definition 1; (iii) xðiÞ

and xðjÞ are both infeasible, and both (a) xðiÞ is no worse
than xðjÞ in all constraints and (b) xðiÞ is strictly better than
xðjÞ in at least one constraint.
The behavior of a genetic algorithm implementing

dominance constraints flows through three phases:
(i) Random population, possibly containing no feasible
individuals, spans variable space, sorted according to
severity of constraint violations. (ii) Entire population is
feasible and spans feasible region of variable space, sorted
according to objective values. (iii) Population spans var-
iable space that approaches the Pareto optimal objective
space.
Notice that if an individual violates any of its dominance

constraints, then its objective values are not taken into
account during ranking. Therefore, to save computing time,
objective values are calculated only for individuals which
do not violate any dominance constraints. Dominance
constraints are based on variable bounds, closed orbit
amplitudes, and chromatic tune shifts. These quantities
are orders of magnitude quicker to evaluate than objective
values, which are based on particle tracking.

IV. EVALUATION OF INDIVIDUALS

The design problem is to correct the chromaticity while
maintaining acceptable dynamic aperture and beam life-
time. The beam lifetime would be maximized by maxi-
mizing the momentum aperture, which is the largest
momentum kick that an initially on-axis particle can receive
without being lost downstream. The momentum aperture
can vary throughout the lattice and is typically calculated
element by element or in fixed steps. It is computationally

FIG. 2. The mutator operation takes a random real m and
adjusts an offspring variable by an amount M × βmðmÞ. M is a
settable parameter which can be customized for each variable
type. Larger values of κ make large mutations less likely.
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expensive to calculate, so instead we optimize the off-
energy dynamic aperture and apply a dominance constraint
to the chromatic tune footprint. The results in Sec. V
show that this is an effective proxy for the momentum
aperture.

A. Objectives

The dynamic apertures are calculated relative to the
linear aperture. The linear aperture is the smallest aperture
found by projecting the beam chamber from each point in
the lattice to the injection point using the linearization of
the map about the particle momentum. The linear aperture,
in general, depends on the particle momentum. The on-
energy linear aperture does not depend on the sextupole and
multipole strengths, but the off-energy linear aperture does.
The objective function is formulated relative to the linear
aperture such that 1.0 is perfectly bad and 0.0 is perfectly
good,

fðxÞ ¼ 1

Nangle

X
Nangle

(�
LlðxÞ−LdaðxÞ

LlðxÞ
�
2
; if Lda < Ll

0; otherwise;
ð7Þ

where Nangle is the number of rays along which the aperture
is calculated. Ll is the length of the linear aperture ray. Lda
is the length of the dynamic aperture ray. Ll and Lda are
depicted in Fig. 3.
The conditional in Eq. (7) reflects our design philosophy

that a machine with optimized nonlinearities should behave
as if it were linear. The objective function is not rewarded
when the dynamic aperture exceeds the linear aperture.
Three objectives are used in our multiobjective optimi-

zation problem:

f0ðxÞ ¼ on energy dynamic aperture ð8Þ

fþðxÞ ¼ dynamic aperture at ΔEþDA ð9Þ

f−ðxÞ ¼ dynamic aperture at ΔE−DA; ð10Þ

where ΔEþDA and ΔE−DA specify the energy offset where
dynamic aperture is evaluated. Typical energy offsets are
2% or 3%.

B. Constraints

Three constraint techniques are used: dominance con-
straints, modified objective functions, and variable space
projection.
Five constraints are implemented as dominance con-

straints. They are (i) cmag: boundary on sextupole and
multipole strength; (ii) cþco: global bound on nonlinear
dispersion at ΔEþDA; (iii) c−co: global bound on nonlinear
dispersion at ΔE−DA; (iv) cþχ : confine chromatic tune
footprint between 0 and ΔEþχ ; and (v) c−χ : confine
chromatic tune footprint between 0 and ΔE−χ .
The constraint on sextupole and multipole strength is

calculated as

cmag ¼
Xmagnets

i

8>>><
>>>:

xðUÞ
i −Ki

jxðUÞjþjxðLÞj ; Ki > xðUÞ
i

Ki−x
ðLÞ
i

jxðUÞjþjxðLÞj ; Ki < xðLÞi

0; otherwise;

ð11Þ

where Ki is the strength of magnet i, and xðUÞ
i and xðLÞi are

the upper and lower bounds on the magnet strength.
The two constraints on global nonlinear dispersion are

calculated as

c�co ¼
1

xðcoÞ

h
xðcoÞ − max

i∈all elements
absðxco;i − ηi × ΔE�DAÞ

i
;

ð12Þ

where xðcoÞ is the maximum allowed closed orbit, usually
set to millimeter or so. xco;i and ηi are the closed orbit and
ordinary dispersion at element i.
The positive chromatic footprint between 0 and ΔEþχ is

constrained to cross neither the half-integer nor the integer
resonances. It is calculated by dividing the interval from
ΔE ¼ 0 to ΔE ¼ ΔEþχ into Nχ equal segments. The
horizontal and vertical tunes are calculated by linearizing
the optics about each ΔEj ∈ fΔE1;ΔE2;…;ΔEþχg. The
smallest of these energy offsets that results in an unstable
transfer matrix, or a horizontal or vertical tune that crosses
an integer or half-integer resonance, is used to calculate
the value of the dominance constraint. The value is calcu-
lated as

 0

 1

 2

 3

 4

 5

 6

-8 -6 -4 -2  0  2  4  6  8

y 
(m

m
)

x (mm)

Lda

Ll

Dynamic Aperture
Linear Aperture

FIG. 3. Dynamic aperture is calculated using an element-by-
element tracking code. Particles are tracked for 200 turns. The
aperture is found using a binary search for particle loss. In this
plot Nangle ¼ 7.
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cþχ ¼ −1þ j − 1

Nχ
: ð13Þ

If all ΔEþj are stable and do not cross the half-integer
or integer, cþχ is set to 0. A similar procedure is used to
constrain the negative chromatic tune footprint c−χ .
Two constraints are implemented by modifying the

objective functions. The first is a constraint on the mini-
mum size of the off-energy linear aperture and it modifies
the off-energy objective functions fþ and f−. The con-
straint prevents a failure condition where the optimizer
improves the off-energy objectives by making the linear
aperture tiny, rather than by growing the dynamic aperture.
Setting this constraint to 2 or 3 mm is usually sufficient to
avoid the condition. If the shortest linear aperture ray at
ΔEþDA or ΔE−DA is shorter than this constraint, then fþ or
f− is set to a perfectly bad value of 1.
The second constraint implemented by modifying the

objective functions modifies the on-energy objective func-
tion f0. It confines the on-energy amplitude dependent tune
shift (ADTS). Along the two DA rays closest to the
horizontal axis, the horizontal and vertical tunes are
calculated. Along the vertical ray, the vertical tune is
calculated. This is because the horizontal motion for large
vertical and small horizontal offsets is dominated by
coupling, rather than by the horizontal optics. The tunes
are calculated by summing the element-by-element phase
advance in normal mode coordinates. If the tunes of the
particle cross the half-integer or integer resonances, then
the tracking code considers the particle lost. The apertures
along the two horizontal rays and one vertical ray define a
“clipping” box. When f0 is calculated, all DA rays are
clipped at the box.
The chromaticity correction is applied by projecting the

Ncs-dimensional space of chromatic sextupole strengths
onto the (Ncs − 2)-dimensional surface on which the
horizontal and vertical chromaticities have the desired
values. This is possible because chromaticity depends
linearly on the sextupole strength. Ncs is the number of
chromatic sextupole families in the lattice. A chromaticity
response matrix A is determined numerically,

A ¼
 dχx

dK1

dχx
dK2

� � � dχx
dKNcs

dχy
dK1

dχy
dK2

� � � dχy
dKNcs

!
: ð14Þ

The Moore-Penrose pseudoinverse Ap of A is calculated
via singular value decomposition (SVD) [18]. Then the
thin-QR decomposition [18] Q1 of I −ApA is taken,
where I is the Ncs × Ncs identity matrix. Note that
Q1 ∈ RNcs×Ncs−2.
With Ap and Q1 in hand, take any vector ~ω ∈ RNcs−2.

The chromatic sextupole strengths ~K given by

~K ¼ Ap

�
χx0

χy0

�
þQ1 ~ω ð15Þ

result in chromaticities of χx0 and χy0.
The algorithm does not operate directly on the chromatic

sextupole strengths. Instead it operates on ~ω, thus con-
straining the chromaticities to the desired values and
reducing the dimension of the variable space by 2.

V. APPLICATION

Here the genetic algorithm is applied to a prototype
lattice for the SLS upgrade, and also the proposed
Armenian light source CANDLE.
The SLS upgrade is a 2.4 GeV storage ring built of 12

arcs which consist of five longitudinal gradient bends
(LGB) plus two half-bend longitudinal gradient dispersion
suppressors. There are three types of straight (short,
medium, and long) which reduce the periodicity to 3.
The lattice uses antibends to focus the dispersion into the
LGBs to minimize the radiation integral I5 [19]. The lattice
parameters are summarized in Table I.
For the SLS upgrade lattice, the objective functions are

the on-energy dynamic aperture and the dynamic aperture
at −3% and þ3%. The chromatic footprint between −5%
and þ5% is constrained such that 37.0 < Qx < 37.5
and 10.0 < Qx < 10.5. The amplitude-dependent tune
shift as described in Sec. IV is constrained to this same
region.
For CANDLE, the objective functions are the on-

energy dynamic aperture and the dynamic aperture at
−2% and þ2%. The chromatic footprint between −3%
and þ3% is constrained such that 24.5 < Qx < 25.0 and
14.0 < Qx < 14.5. The amplitude-dependent tune shift
as described in Sec. IV is constrained to these same
regions.

TABLE I. SLS upgrade is a longitudinal gradient bend plus
antibend based replacement for the SLS storage ring. CANDLE is
a proposed Armenian light source based on combined function
magnets.

SLS upgrade [20] CANDLE [21]

Circumference (m) 287.25 258
Emittance (pm) 137 1091
Periodicity 3 16
Topology 12 × 7BA 16 × 4BA
Qx 37.383 24.700
Qy 10.280 14.368
Natural chromaticity χx −64.9 −40.6
Natural chromaticity χy −34.5 −26.5
Peak dispersion (cm) 4.9 9.3
# chromatic sextupole families 4 8
# harmonic sextupole families 9 0
# octupole families 10 0
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The optimization parameters for both lattices are
summarized in Table II.

A. SLS upgrade lattice

1. Layout and linear lattice considerations

The following were taken into consideration during the
design of the layout and linear optics of the SLS upgrade
lattice in order to improve the nonlinearities.
1. The ADTS is suppressed if the horizontal tune is

close to

Qopt ¼
2qþ 1

2
N; ð16Þ

where N is the periodicity of the machine and q is some
integer [22] (Chap. 14.3.1). The periodicity of SLS is 3.

Thus ADTS is reduced by selecting a horizontal tune near
one of the following: f…; 34.5; 37.5; 40.5;…g.
2. Chromatic sextupoles are placed where dispersion is

large, and where either βx ≪ βy or βx ≫ βy. Harmonic
sextupoles are placed in dispersion-free regions where
βx ≫ βy, βx ≪ βy, or βx ≈ βy.
3. The arcs are constructed from five identical unit cells.

The horizontal and vertical phase advances per unit cell are
0.4 and 0.1 radians, respectively. Over the five unit cells,
the lowest order chromatic and geometric resonant driving
terms are canceled out [6].

2. Optimization

The population size for the SLS upgrade optimization is
300 and begins with a pool of 364 unevaluated, randomly
generated, individuals. Each individual is described by
21 variables representing the 23 magnet strengths. The
strengths are bounded by cmag;sext. and cmag;oct., as given in
Table II. Each seed is farmed via MPI to a CPU which

TABLE II. Parameters for genetic optimizer.

SLS upgrade CANDLE

# nonlinear magnet families 23 8
# variables 21 6
cmag;sext ðKsextÞa 500.0 500.0
cmag;oct ðKoctLÞa 500.0 500.0
ΔEþDA 3% 2%
ΔE−DA −3% −2%
ΔEþχ 5% 3%
ΔE−χ −5% −3%
Footprintb Qx;min, Qx;max 37.0, 37.5 24.5, 25.0
Footprintb Qy;min, Qy;max 10.0, 10.5 14.0, 14.5

aThe sextupole and octupole quantities have been normalized
by n!.

bThe footprint constraints apply to both chromatic tune shift
and on-energy ADTS.
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momentum aperture is the influence of nonlinear momentum
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gives a �5% bucket.

TABLE III. Touschek lifetime calculation and assumptions.
Bunch length is natural without third harmonic cavity. The
currents for both SLS upgrade and CANDLE assume a
500 MHz rf system. The horizontal emittance is that given by
the radiation integrals calculation. The Touschek lifetime is
calculated with 6D tracking including radiation damping and
synchrotron oscillations. The reference Touschek lifetime is
calculated for the SLS upgrade by assuming a 5% momentum
acceptance everywhere, and by assuming 3% for CANDLE.

SLS upgrade CANDLE

Horizontal emittance (pm) 137.0 1091.0
Vertical emittance (pm) 10.0 10.0
Current per bunch (mA) 1.0 1.0
Number of particles per bunch (109) 6.0 5.4
Bunch length (mm) 0.261 0.494
6D Touschek lifetime (hr) 4.58 3.82
Reference Touschek lifetime (hr) 4.35 3.63
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evaluates its constraint and objective values. As soon as 300
individuals have been evaluated, the population is sorted
and the 150 least fit are deleted. A four-way tournament is
used to select parent pairs from the surviving population.
From each pair, simulated binary crossover plus mutation is
used to generate two new children. The new children are

added to the pool of unevaluated individuals, and the
process repeats.
The initial random population contains no individuals

which satisfy the dominance constraints (i.e. all individuals
are infeasible). Therefore the population members initially
compete for who has the least-bad constraint violations. For
the particular optimizer run shown here, the first feasible
individual appears at generation 21, and at generation 41
the population consists entirely of individuals which satisfy
all of the dominance constraints. From generation 1 to 20
requires 2 minutes, and from generation 20 to 41 requires
14 minutes. This first stage of the optimization proceeds
quickly because infeasible individuals are evaluated only
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FIG. 6. Horizontal and vertical phase space portraits for SLS upgrade on-energy, and at −3% and þ3% energy defect.

FIG. 7. SLS upgrade: Chromatic footprint from −5% to þ5%
and ADTS along x from the −xDA to theþxDA. Blue points are
1% increments. Resonance lines are labeled ðp; q; r; nÞ where
pQx þ qQy þ rQs ¼ n. Low order resonance lines and higher
order lines are plotted. Higher order resonance lines excluded by
periodicity 3 are not shown.
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for off-momentum closed orbit amplitudes and tune foot-
prints. During the remainder of the optimization run,
individuals are competing based on dynamic aperture.
The entire optimization completes after 45 hours to con-
verge at generation 616. Computing resources are 64 E5-
2670 xeon cores. These compute time requirements are
generally indicative of the resources required by the
algorithm on the SLS upgrade.
Following the optimization run, the seeds with the most

promising objective function values are selected by hand
for further evaluation. Further evaluation includes on- and
off-energy rastered survival plots, higher resolution chro-
matic and ADTS tune footprints, momentum aperture, and
Touschek lifetime evaluation. Using these additional eval-
uations, the lattice designer selects a best individual.

The dynamic aperture of this individual at 0%, −3%, and
þ3% is shown in Fig. 4. Figure 5 compares the momentum
aperture and linear momentum aperture. The linear
momentum aperture is calculated by linearizing the one-
turn map at each element. The reference Touschek lifetime
is calculated from the linear rf bucket height, and is taken as
the benchmark against which to judge the effectiveness of
the algorithm.
The assumptions used for the Touschek lifetime calcu-

lation are shown in Table III. The lifetime exceeds the
reference lifetime because the nonlinearity of the longi-
tudinal phase space causes it to exceed the dimensions of
the linear rf bucket, and the momentum aperture is not
otherwise limited by the transverse nonlinearities.
Recall that the genetic algorithm does not directly opti-

mize the Touschek lifetime normomentum aperture. Rather,
it constraints the chromatic and amplitude-dependent tune
footprints and maximizes the dynamic aperture area at 0%
and�3%. The element-by-element variation in the momen-
tum aperture is small. This indicates that the Touschek
lifetime is limited by the longitudinal dynamics, and not by
nonlinearities in the transverse optics. Judging by this result,
an off-momentum dynamic aperture optimization plus tune
footprint constraint is a valid proxy for optimizing the
Touschek lifetime and momentum aperture.
Shown in Fig. 6 are x − px and y − py phase space

portraits for the optimized SLS upgrade lattice. The
portraits are calculated using 4D tracking for 100 turns.
The lack of large resonance islands and lack of thick
chaotic layers inside the stable region is a positive result
that should contribute to the robustness of the solution
when misalignments are added.
Figure 7 shows the chromatic tune footprint and ADTS

along�x. The chromatic tunes are calculated by linearizing
the off-energy optics. The ADTS is calculated by summing
element-by-element phase advances in normal mode coor-
dinates. The ADTSs along þx and −x mostly overlap.

B. CANDLE

CANDLE is a proposed 3 GeV, 216 m Armenian light
source project [21] providing 8.54 nm horizontal beam
emittance. According to the recent developments in storage
ring lattice design and magnet technologies a new upgrade
prototype has been designed [11], which is constructed of
sixteen 4BA cells and provides 1.1 nm horizontal beam
emittance. The study shown here is on this new 1.1 nm
prototype. Each cell is composed of combined function
bends with both quadrupole and sextupole moments. Some
properties are shown in Table I. Two features which
contribute to CANDLE’s nonlinearities are: (1) The sextu-
pole moments are spread out across a broad phase advance.
(2) All sextupole moments are in dispersive regions.
The dynamic aperture on-energy and at �2% are shown

in Fig. 8. The horizontal ADTS and chromatic footprint out
to �3% are shown in Fig. 9.

FIG. 9. CANDLE: Chromatic footprint from −3% to þ3% and
ADTS along x from the−xDA to theþxDA. ADTS is calculated
with a small vertical offset to allow for accurate calculation of
vertical tune. Higher order resonance lines excluded by perio-
dicity 16 are not shown.
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Touschek lifetime results and assumptions are shown in
Table III. The momentum aperture calculated from 6D
tracking is shown in Fig. 10. The aperture is determined
entirely by the rf bucket and not limited by the transverse
optics. The phase space portraits are shown in Fig. 11.
Optimizing the �2% dynamic aperture and constraining
the chromatic tune footprint to �3% has successfully
optimized the global momentum aperture to at least �3%.

VI. TOLERANCE TO MACHINE
MISALIGNMENTS

The tolerance of the optimized SLS upgrade lattice to
machine misalignments is tested. The genetic algorithm is

applied to the ideal lattice and a single solution is selected
by the lattice designer. The lattice is then misaligned
according to Table IV and corrected as described below.
The beam lifetime and on-energy dynamic aperture
of the resulting misaligned and corrected lattice is
calculated. This procedure is repeated for many misalign-
ment seeds.
The correction procedure begins by flattening the hori-

zontal and vertical orbits using an orbit response matrix and
SVD. Then a simultaneous horizontal phase, vertical phase,
and horizontal dispersion correction is applied using a
combined phase and dispersion response matrix. The
residual coupling after these corrections ranges from 0.4
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FIG. 11. Horizontal and vertical phase space portraits for CANDLE on-energy, and at −2% and þ2% energy defect.

TABLE IV. Misalignments are drawn from a random Gaussian
distribution, subject to a 2-σ cutoff. Misalignments which exceed
the cutoff are redrawn.

Property Relative
to

Distribution
σ

Quadrupole and sextupole tilt Girder 50 μrad
Quadrupole and sextupole horizontal
offset

Girder 20 μm

Quadrupole and sextupole vertical offset Girder 20 μm
Bend and antibend tilt Girder 50 μrad
Bend and antibend horizontal offset Girder 20 μm
Bend and antibend vertical offset Girder 20 μm
Girder tilt Lab 50 μrad
Girder horizontal offset Lab 50 μm
Girder vertical offset Lab 50 μm
LGB tilt Lab 50 μrad
LGB horizontal offset Lab 20 μm
LGB vertical offset Lab 20 μm
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FIG. 12. On-energy dynamic aperture for ideal lattice and 30
misaligned and corrected lattices. At the injection point βx ¼
3.3 m and βy ¼ 6.5 m. The maxima throughout the machine are
βx ¼ 8.7 m and βy ¼ 11.7 m.
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to 3.2%. A dedicated coupling correction is not included in
this study.
So 30 misalignment seeds are generated and corrected.

One of these seeds fails to have a closed orbit and is
discarded. The on-energy dynamic aperture and momen-
tum aperture for the remaining 29 are calculated and the
results are shown in Figs. 12 and 13. Fifty percent of the
misaligned and corrected lattices have a lifetime longer
than 3.8 hr, and 95% have a lifetime longer than 3.6 hr. The
reference lifetime is 4.4 hr.
The misalignment and correction procedure applied

here is pessimistic. The fully developed SLS upgrade
misalignment model will take into account that the LGBs
will be aligned relative to the girders, and the girders
relative to one another. Furthermore, coupling correction
and vertical dispersion correction will be applied in the
actual machine. Despite the pessimistic scenario, the
calculated dynamic aperture and lifetimes of the mis-
aligned and corrected lattices are acceptable. From this we
conclude that the sextupole and octupole scheme gener-
ated by the genetic algorithm is sufficiently robust against
imperfections.
The sensitivity of the chromaticity correction scheme to

beta beating is tested by applying gradient errors to the

quadrupole moments in quadrupoles and gradient bends.
Errors with rms values of 0.05%, 0.10%, 0.15%, and
0.20%, subject to a 2-σ cutoff, are tested. No corrections
are applied. One thousand seeds are generated for each
of the four cases. For each seed, the on-energy dynamic
aperture and mean percent beta beat is calculated. Plotted in
Fig. 14 is the mean for each case and the convex hulls that
contain 50% and 90% of the seeds closest to the mean. In
the original SLS, beta beating is measured to be 2% [23].
We therefore anticipate a reduction in the on-energy
dynamic aperture area in the SLS upgrade due to beta
beating of less than 20%.

VII. CONCLUSION

The genetic algorithm presented here offers a robust and
computationally affordable technique for generating glob-
ally optimal chromaticity correction schemes for diffraction
limited light sources. The resulting correction schemes
have good on-energy dynamic aperture which should help
injection efficiency and give a wide momentum aperture for
long beam lifetime. The schemes are sufficiently robust
against misalignments.
One feature of this algorithm is the use of dominance

constraints to encourage individuals in the early population
to take on properties that will later on contribute to healthy
objective values.
A second feature is the use of off-energy dynamic

aperture along with tune footprint constraints as a proxy
for the computationally expensive direct momentum aper-
ture calculation.
Based on development efforts at SLS and results shared

by the CANDLE collaboration [11], this genetic algorithm
delivers results that are as good or better than those
obtained by applying second order resonant driving term
minimization. The genetic algorithm converges in a
couple days on commonly available computing resources.
This turn-around time is comparable to that required for a
lattice designer to develop a scheme using resonant
driving term minimization. Thus the genetic algorithm
presented here is a practical solution for optimizing
sextupole and octupole strengths in a diffraction limited
light source project.
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