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Beam emittance has particular importance in particle physics, because it provides information about
the quality of the particle beam. There are many techniques for measuring the beam emittance, such as
that proposed by Miller et al. [Report No. SLAC-PUB-3186, (A) (1983)]. This technique is based on
determining the emittance by measuring the second-order moment of the beam using quadrupole
pickups consisting of four symmetrical electrodes placed around the beam pipe at 90° intervals,
respectively. Based on Miller’s approach, two signal processing methods are generally used to get the
quadrupole moment of the beam, namely the difference over sum and the log ratio [P. Li et al., IEEE
Nuclear Science Symposium Conference Record, N24-404, 2007, pp. 1675–1678] methods. However,
these traditional methods provide results with a good accuracy only for a well centered beam. The
method presented in this paper, which starts with Miller’s approach, considerably reduces the impact of
the dipole signal on the quadrupole moment measurement for both small and large values of the beam
position. Furthermore, a methodology for the numerical determination of the sensitivity of quadrupole
pickups will be presented.

DOI: 10.1103/PhysRevAccelBeams.19.042801

I. INTRODUCTION

A capacitive or electrostatic pickup measures the charge
collected on electrodes around the beam. It is usually used
as a beam position monitor (BPM) in beam diagnostics for
measuring the center of mass of the beam, whose longi-
tudinal extent is much longer than the electrode length.
However, using a certain combination of the signal voltages
induced at the electrodes, the capacitive pickup can be
operated as a quadrupole pickup. This pickup consists in
general of four symmetric metallic electrodes placed in the
same transverse plane and is sensitive to the second-order
moment of an electrically charged particle beam, namely
σ2x − σ2y. Here, σx and σy are the rms half beam dimensions
in the transverse plane (x and y directions).
Quadrupole pickups find application in several areas of

accelerator physics, including in the measurement of the
transverse beam emittance [1,2] and the detection of the
injection mismatch causing envelope oscillations [3].
The emittance measurement technique was first suggested
by Roger Miller et al. at SLAC National Accelerator
Laboratory and requires six pickups, comprising four
stripline electrodes respectively, placed at different posi-
tions in the linac [1]. Miller’s technique is based on

measuring the second-order moment of the electron beam
at each of the six pickups and subsequently by means of
the transfer matrix from a reference point in the linac to
the pickup positions, determining the transverse beam
emittances ϵx and ϵy in both transverse planes.
In synchrotrons, quadrupole pickups have also been used

for measuring the beam emittance, thereunder the magnetic
pickup design [2] comprising four antenna loop electrodes.
The main advantage of this pickup model is its insensibility
to the common mode signal [2].
According to the emittance measurement technique

mentioned above and described in detail in [1], the most
widely used signal processing methods for determining the
quadrupole signal Ξ (signal coming from a quadrupole
pickup) and thus the second moment of the beam are as
mentioned in the abstract the difference over sum and the
log ratio method. It should be noted that Ξ, obtained with
these methods, depends not only on σ2x − σ2y, which is the
information we need, but also on the beam position (x̄, ȳ),

Ξ ∝ σ2x − σ2y þ x̄2 − ȳ2: ð1Þ

Thus, to get σ2x − σ2y, the contribution of the beam
displacement from the beam pipe center must first be
subtracted from the quadrupole signal. However, to mea-
sure the beam position, it should be noted that the dipole
signals are also sensitive to the sextupole moment of the
beam, which can be neglected for small values of x̄ and ȳ.
For large values of x̄ or ȳ, this is a significant effect and can
lead to an inaccurate measurement of σ2x − σ2y.
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The main goal of this paper consists, starting from [1,4]
and the log ratio method [5], in developing a pickup method
that considerably decreases the beam position effect on the
measurement of the quadrupole moment of the beam for
both small and large values of x̄ or ȳ. This method is called
modified log ratio.
Furthermore, an asymmetrical BPM [6] installed at GSI

SIS-18 will be investigated numerically using the electro-
magnetic field simulation softwares CST EMS and CST PS
[7] to estimate its properties and evaluate its usage as a
possible quadrupole pickup for the observation of beam
size oscillations [3,8].
SIS-18 [9] is a heavy ion synchrotron at GSI

(Helmholtzzentrum für Schwerionenforschung) with a
circumference of 216 m, comprising 92 elements. In this
ring accelerator, the ions are accelerated to an adjustable
energy whose peak value depends on their mass-to-charge
ratio [9]. The maximum magnetic rigidity of the synchro-
tron in SIS-18 is 18 Tm, thus explaining the number 18 in
its name. Ions from the linear accelerator UNILAC can be
accelerated in SIS18 to up to 90 percent of the speed of
light (270;000 km=s). The basic and technical parameters
for SIS-18 can be found in [9] (page 8).
In Secs. II and III of this paper, analytical investigations

will be performed, including the derivation of the modified
log ratio method. The first part of Sec. IV will present the
simulation results of the modified log ratio technique tested
on the asymmetrical pickup mentioned above. Moreover,
these results will be compared with those obtained with the
traditional signal processing methods. In the second part of
this section, the results arising from the simulation of the
previously mentioned SIS-18 pickup model obtained in the
frequency domain using the PIC solver of CST PS will be
shown and compared with the simulation results coming
from the electrostatic solver of CST EMS in terms of the
pickup sensitivity to σ2x − σ2y. The last section of this paper
is devoted to a summary and an outlook.

II. SIGNAL VOLTAGES INDUCED
AT THE PICKUP ELECTRODES

A. Electric field generated by a charged particle
beam inside a metallic duct

For bunches whose longitudinal extent is longer than the
electrode length, the problem can be approximatively
solved as a two-dimensional electrostatic problem.
In this case, the beam can be considered as an infinitely

long line charge, and the electrostatic potential V at any
point P [see Fig. 1(a)] inside the beam pipe can be obtained
using the method of image charge [10]:

Vðr; θÞ ¼ q
2πϵ0

"
ln

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2 − 2rb cosðθ − βÞ

p
− ln

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðd2b Þ2 − 2rd2

b cosðθ − βÞ
q þ C

#
: ð2Þ

The first term on the right side of Eq. (2) is the potential
generated by the line charge and the second term is
produced by its mirror charge. The constant C ¼
lnðb=dÞ has been determined using the boundary condition
[Vðr ¼ d; θÞ ¼ 0] at the surface of the grounded metallic
duct. Assuming that b is much less than the space point
radius r (b ≪ r ∼ d) and making use of the addition and
subtraction theorems of the trigonometric functions, the
above equation can be approximately expanded to the
Taylor series as follows [10]:

Vðr; θÞ ¼ q
2πϵ0

�
ln
d
r
þ
X∞
k¼1

bk

k

�
1

rk
−

rk

d2k

�

× cos fkðθ − βÞg
�
: ð3Þ

(a) (b)

FIG. 1. (a) Line charge inside a metallic duct. (b) Cross section of the symmetrical four-electrodes pickup model used for calculations.
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Now, the electric field generated by the line charge inside
a metallic beam pipe can be determined making use of the
gradient of the potential V given in Eq. (3):

~E ¼ −∇V: ð4Þ

Equation (4) can be expressed in the cylindrical coor-
dinate system (r, θ, z) as [11]

~E ¼ −
�∂V
∂r ~er þ

1

r
∂V
∂θ ~eθ þ

∂V
∂z ~ez

�
: ð5Þ

From Eq. (5), the transverse components of the electric
field vector can be obtained as follows:

Erðr; θÞ ¼ −
∂V
∂r

¼ q
2πϵ0r

�
1þ

X∞
k¼1

bk
�
1

rk
þ rk

d2k

�
cos fkðθ − βÞg

�
;

ð6aÞ

Eθðr; θÞ ¼ −
1

r
∂V
∂θ

¼ q
2πϵ0r

X∞
k¼1

bk
�
1

rk
−

rk

d2k

�
sin fkðθ − βÞg: ð6bÞ

B. Signal voltages induced at the pickup electrodes

The voltages induced by the beam charge on the
electrodes will be derived using the pickup design depicted
in Fig. 1(b), where R, L, Tand B stand for the right, left, top
and bottom electrodes, respectively. The angular width of
each electrode is given by α and d is the pickup radius.
The induced voltage U at each electrode of the pickup

model in Fig. 1(b) can be obtained from the area
integration of the radial component Erðr ¼ dÞ [given in
Eq. (6b)] of the electric field on each plate, divided by the
capacitance between the electrode and the beam pipe.
Since the quadrupole signal to be calculated is a normal-
ized signal to the sum of all electrode signals [see
Eq. (11)] and due to the symmetry of the pickup design
used for calculations, the capacitance between the plate
and the beam pipe as well as the integration over the
electrode length will be omitted in the derivation of the
output voltages. For the right electrode R, the output
voltage is then given by

UR ∝ d
Z

α=2

−α=2
ðε0ErÞdθ: ð7Þ

In the case of a real beam, the line charge density q
in Fig. 1(a) may be multiplied by a suitable weighting
function [12]. For Gaussian beam distributions in
both transverse directions (σx, σy ≪ d) and by means of

standard trigonometric identities [cosðβÞ ¼ x=b,
sinðβÞ ¼ y=b], Eq. (7) becomes

UR ∝
ib
2π

�
αþ 4 sinðα=2Þ x̄

d

þ 2 sinðαÞ
�
σ2x − σ2y

d2
þ x̄2 − ȳ2

d2

�

þ 4
sinð3α=2Þ

3

�
3

�
σ2x − σ2y

d2

�
þ x̄2 − 3ȳ2

d2

�
x̄
d

þO

�
1

d4

�
þ � � �

�
; ð8Þ

where (x̄, ȳ) is the center of mass of the beam, ib the beam
current and Oð1=d4Þ the fourth-order term. The output
voltages at all electrodes are summarized below, where UL,
UT and UB have been derived analog to UR:

UR ∝
ib
2π

α½1þ z1x þ z2 þ z3x þ � � ��; ð9aÞ

UL ∝
ib
2π

α½1 − z1x þ z2 − z3x þ � � ��; ð9bÞ

UT ∝
ib
2π

α½1þ z1y − z2 − z3y þ � � ��; ð9cÞ

UB ∝
ib
2π

α½1 − z1y − z2 þ z3y þ � � ��: ð9dÞ

Here z1x, z1y, z2, z3x and z3y are the normalized first- (in
both transverse directions), second- and third- (also in both
transverse directions) order terms, respectively:

z1x ¼ 4
sinðα=2Þ

α

x̄
d
; z1y ¼ 4

sinðα=2Þ
α

ȳ
d
;

z2 ¼ 2
sinðαÞ
α

�
σ2x − σ2y

d2
þ x̄2 − ȳ2

d2

�
;

z3x ¼ 4
sinð3α=2Þ

3α

�
3

�
σ2x − σ2y

d2

�
þ x̄2 − 3ȳ2

d2

�
x̄
d
;

z3y ¼ 4
sinð3α=2Þ

3α

�
3

�
σ2x − σ2y

d2

�
þ 3x̄2 − ȳ2

d2

�
ȳ
d
: ð10Þ

Since we are interested in the second-order moment of
the beam, the multipole expansion is limited here to the
sextupole term.
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III. METHODS TO PICK UP THE QUADRUPOLE
MOMENT OF THE BEAM

A. Traditional methods

1. Difference over sum

Looking at the output voltages given in Eqs. (9a), (9b),
(9c) and (9d), it is obvious that the most simple approach to
obtain z2 is to apply the following signal combination:
ðUR þ ULÞ − ðUT þ UBÞ. To make the resulting signal
independent of the beam current, the signal combination
mentioned above has to be divided by the sum of all
electrode signals; this is why this method is called differ-
ence over sum:

ΞΔ=Σ ¼ ðUR þ ULÞ − ðUT þ UBÞ
UR þUL þ UT þUB

ð11Þ

¼ z2

¼ 2
sinðαÞ
α

1

d2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
SΔ=Σ

ðσ2x − σ2y þ x̄2 − ȳ2Þ; ð12Þ

where ΞΔ=Σ is called the quadrupole signal and SΔ=Σ the
sensitivity of the quadrupole pickup illustrated in Fig. 1(b).
The index Δ=Σ is related to the name of the method.
To obtain σ2x − σ2y from Eq. (12), the beam position must

be known. This can be obtained from the horizontal and
vertical dipole signals Δx and Δy:

Δx ¼
UR −UL

UR þUL
ð13Þ

¼ z1x þ z3x

¼ 4
sinðα=2Þ

α

1

d|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Sd

x̄ þ z3x; ð14Þ

where Sd stands for the sensitivity of the beam position
monitor. Since the pickup design in Fig. 1(b) is symmet-
rical, Eq. (14) also holds for the vertical dipole signal by
replacing x̄ and z3x with ȳ and −z3y, respectively. From
Eq. (14), while omitting the third-order term z3x, respec-
tively z3y, one can approximately solve x̄, respectively ȳ,
and combine the result into Eq. (12). The second moment
can then be represented as follows:

σ2x − σ2y ¼
ΞΔ=Σ

SΔ=Σ
−
��

Δx

Sd

�
2

−
�
Δy

Sd

�
2
�
: ð15Þ

More details about this method can be found in [1,4].

2. Log ratio

Using a logarithmic amplifier at the output of each
electrode, and assuming that the sum of all multipole terms

starting from the first-order term is less than the monopole
term, then the quadrupole signal Ξlog is given by [5]

Ξlog ¼ 20 log

�
UR · UL

UT · UB

�
ð16Þ

¼ 20 logðURÞ þ 20 logðULÞ − 20 logðUTÞ
− 20 logðUBÞ

¼ 80

lnð10Þ
�
z2 −

z21x − z21y
4

�
þO

�
1

d4

�
ð17Þ

¼ 160

lnð10Þ
sinðαÞ
α

�
σ2x − σ2y

d2
þ
�
1 −

tanðα=2Þ
α

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

m

x̄2 − ȳ2

d2

�

þO

�
1

d4

�
: ð18Þ

In the same way as in the previous section, the second
moment of the beam can be obtained as follows:

σ2x − σ2y ¼
Ξlog

Slog
−m

��
Δx;log

Sd;log

�
2

−
�
Δy;log

Sd;log

�
2
�

ð19Þ

with

Slog ¼
160

lnð10Þ
1

d2
sinðαÞ
α

ðin dB=mm2Þ

Δx;log ¼ 20 logðURÞ − 20 logðULÞ

¼ 160

lnð10Þ
1

d
sinðα=2Þ

α|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Sd;log

x̄ þ O

�
1

d3

�

Δy;log ¼ 20 logðUTÞ − 20 logðUBÞ

¼ 160

lnð10Þ
1

d
sinðα=2Þ

α|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Sd;log

ȳ þ O

�
1

d3

�
: ð20Þ

More details about the derivation and work principle of the
log ratio can be found in [5,13].

B. Modified log ratio method

1. Derivation of σ2x − σ2y
Looking at Eq. (18), it is obvious that, for all values of

the angular electrode width α, the term m is less than or
equal to 0.5. The aim of this method is to find an approach
to have the term m in Eq. (18) equal zero for any angular
electrode width α. Looking at Eq. (17), one can state that
the dipole terms z1x and z1y generate the factor m through
the logarithm development lnð1þ z1x;y þ z2 þ � � �Þ (see
more details in [5]). Going away from there, z21x and z21y
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in Eq. (17) will be modified such that the new resultant
term m vanishes. The first step of the method consists in
adding a weighted dipole signal to each electrode output
signal,

UR;mod ¼ UR þ cx · ðUR −ULÞ

¼ ib
2π

α½1þ z1x þ z2 þ z3xþ2cx(z1xþz3x)þ � � ��

¼ ib
2π

α½1þ ð1þ 2cxÞz1x þ z2

þ ð1þ 2cxÞz3x þ � � ��; ð21aÞ

UL;mod ¼ UL − cx · ðUR −ULÞ

¼ ib
2π

α½1 − z1x þ z2 − z3x−2cx(z1xþz3x)þ � � ��

¼ ib
2π

α½1 − ð1þ 2cxÞz1x þ z2

− ð1þ 2cxÞz3x þ � � ��; ð21bÞ

UT;mod ¼ UT þ cy · ðUT −UBÞ

¼ ib
2π

α½1þ z1y − z2 − z3yþ2cy(z1y−z3y)þ � � ��

¼ ib
2π

α½1þ ð1þ 2cyÞz1y − z2

− ð1þ 2cyÞz3y þ � � ��; ð21cÞ

UB;mod ¼ UB − cy · ðUT −UBÞ

¼ ib
2π

α½1 − z1y − z2 þ z3y−2cy(z1y−z3y)þ � � ��

¼ ib
2π

α½1 − ð1þ 2cyÞz1y − z2

þ ð1þ 2cyÞz3y þ � � ��; ð21dÞ

where cx and cy are the weighting factors of the weighted
dipole signals in the horizontal and vertical planes, respec-
tively. The terms, marked in bold in the above equations,
are the added weighted dipole signals. It should be noted
that, for example, the weighted dipole signal cxðUR −ULÞ,
added to the output signal of the right electrode R, must be
subtracted from the output signal of the left electrode L, so
that later by carrying out the signal combination for
obtaining the quadrupole signal the monopole and trans-
verse dipole terms still remain suppressed.
The next step of this technique consists in applying a

logarithmic amplifier to the signals given in Eqs. (21a),
(21b), (21c) and (21d). After that, the quadrupole signal
Ξmod can be obtained analogously to that of the log ratio
method, which was in the previous section:

Ξmod ¼ 20 log

�
UR;mod · UL;mod

UT;mod · UB;mod

�
ð22Þ

¼ 80

lnð10Þ
�
z2 −

ð1þ 2cxÞ2z21x − ð1þ 2cyÞ2z21y
4

�

þO

�
1

d4
; cx; cy

�
ð23Þ

¼ 160

lnð10Þ
sinðαÞ
α

�
σ2x − σ2y

d2
þmx

x̄2

d2
−my

ȳ2

d2

�

þO

�
1

d4
; cx; cy

�
; ð24Þ

with

mx ¼ 1 − ð1þ 2cxÞ2
tanðα=2Þ

α
; ð25aÞ

my ¼ 1 − ð1þ 2cyÞ2
tanðα=2Þ

α
: ð25bÞ

More details about the derivation of Ξmod can be found in
Appendix A 1 or in [14] (page 62).
The weighting factors cx and cy can now be determined

as the roots of the terms mx and my:

mx ¼ 0 ⇒ cx ¼ −
1

2

�
1∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α

tanðα=2Þ
r �

; ð26aÞ

my ¼ 0 ⇒ cy ¼ −
1

2

�
1∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α

tanðα=2Þ
r �

: ð26bÞ

From Eqs. (26a) and (26b), it is obvious that the factors cx
and cy are equal to each other as expected, because the
pickup design used for the analytical investigations is
symmetrical with respect to the x axis and to the y axis
[see Fig. 1(b)]. For an asymmetrical pickup, where the
angular width of all electrodes or the pickup radius d in
both planes is not the same, cx will be unequal to cy.
Now, substituting Eqs. (26a) and (26b) into Eq. (24) and

neglecting the fourth-order term Oð1=d4; cx; cyÞ in
Eq. (24), the quadrupole moment can be approximatively
obtained as

σ2x − σ2y ¼
Ξmod

Slog
; ð27Þ

where Slog is the sensitivity of the quadrupole pickup
according to the log ratio method. A graphical representa-
tion of the modified log ratio method is illustrated in Fig. 2.
In Fig. 3, the quadrupole moment of the beam obtained

according to Eqs. (15), (19) and (27) is depicted as a
function of the horizontal and vertical beam position. The
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factors cx ¼ cy ¼ 0.1885 have been obtained according to
Eqs. (26a) and (26b). Looking at the upper graph in Fig. 3,
one can see that in the range of x̄ between 0 and around
10% of the pickup radius d, the quadrupole moment
provided by the three methods is almost the same and
equal to the ideal value (setting value) of ðσ2x − σ2yÞ=d2.
This can be explained by the fact that in the mentioned
range of x̄ and ȳ the contribution of the sextupole moment
in the dipole signal in both horizontal and vertical planes is
too small and can be neglected. Thus, the dipole signal in
that x̄, ȳ range (0 � � � 0.1d) can be considered as linear to the
beam position, as can be seen in Fig. 4.

The horizontal and vertical dipole signals Δx and Δy are
obtained using the difference over sum method according
to Eq. (14). In Fig. 4, the ideal curve represents the dipole
signal, which is linear with respect to the beam position and
corresponds in this case to the terms z1x and z1y for the
horizontal and vertical planes, respectively. These terms are
given in Eq. (14).
For a value of x̄=d greater than 0.1, however, the

traditional methods provide slightly better results as one
can see on the upper diagram in Fig. 3. But, by means of
appropriate values of the weighting factors cx and cy, the
modified log ratio method can be optimized as will be
shown in the second part of this section.

2. Optimization of the method

In this section, the modified log ratio will be optimized
by matching the factors cx and cy. To better understand the
matching approach, the quadrupole signal according to
Eq. (24) can be rewritten as follows:

Ξmod ¼
160

lnð10Þ
sinðαÞ
α

�
σ2x − σ2y

d2
þ P

�
; ð28Þ

with

P ¼ mx
x̄2

d2
−my

ȳ2

d2
þO

�
1

d4
; cx; cy

�
: ð29Þ

This equation shows that the fourth-order term, which is
detailed in Appendix A 1 and in [14] (page 62), also

(a)

(b)

FIG. 3. Normalized quadrupole moment (σ2x − σ2y)/d2 as a
function of the beam position; σx=d ¼ 0.15, σy=d ¼ 0.075,
α ¼ 45°, cx ¼ cy ¼ 0.1885: (a) as a function of x̄=d,
ȳ=d ¼ 0.05; (b) as a function of ȳ=d, x̄=d ¼ 0.05.

Log

Log
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Log
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+

+
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quadrupolar
signal Ξmod

FIG. 2. Graphical representation of the modified log ratio
technique.

FIG. 4. Above: Δx as a function of x̄=d, ȳ=d ¼ 0.05; below: Δy
as a function of ȳ=d, x̄=d ¼ 0.05.
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depends on cx and cy. The main idea of the optimization
consists in calculating the weighting factors for each value
of x̄ and ȳ such that the term P in the above equation
becomes zero. The optimized horizontal, respectively the
vertical damping factor can then be set as the arithmetic
mean of all cxðx̄Þ respectively cyðȳÞ. It should be noted that
to calculate cxðx̄Þ, the vertical beam position ȳ should be set
to zero and vice versa for determining cyðȳÞ.
For the optimization of the modified log ratio method,

both a fixed-beam dimension as well as a range of the beam
position should be defined in which the weighting factors
will be optimized. It should be assumed that x̄=d and ȳ=d
vary between 0 and 0.15 and the beam has the transverse
dimension σx=d ¼ 0.15, σy=d ¼ 0.075. Since in the ȳ=d
range up to 0.15, the quadrupole moment obtained with this
method is almost constant [see the blue curve in Fig. 3(b)],
therefore only cx will be optimized and this will occur in
the x̄=d range from 0.1 to 0.15. Figure 5 shows for ȳ ¼ 0
the values of cx for 21 equidistant x̄=d values from 0.1 to
0.15, such that the term P in Eq. (29) vanishes. In other
words, for each value of x̄=d the factor cx was determined
as a root of the function P.
The optimized factor cx ¼ 0.1735 was obtained as

the arithmetical mean of all weighting factors illustrated
in Fig. 5. To calculate the optimized value of cx, the
arithmetic average has been used as an example.
Nevertheless, depending on the optimization wishes, other
fitting techniques can be used, which can lead to better
results. Figure 6 shows the normalized quadrupole moment
calculated with the modified log ratio method for once a not
optimized and once an optimized amplification factor cx as
a function of the horizontal beam position. The black dotted
line in that figure stands for the ideal value of ðσ2x − σ2yÞ=d2,
which refers to the setting value of ðσ2x − σ2yÞ=d2 used for
calculations.
From Fig. 6 it is obvious that the quadrupole moment

calculated using the optimized amplification coefficient
cx ¼ 0.1735 is less dependent on the beam position.
Nevertheless, it should be noted that cx ¼ 0.1735 was
determined for one transverse beam size (σx=d ¼ 0.15,
σy=d ¼ 0.075). Now, taking into account that the term P in

Eq. (28) also depends on the transverse beam size through
the fourth-order term, the quadrupole moment should be
also calculated for different values of σx using the same
optimized value of cx. Since the curves of the second
moment as a function of the beam size are so close that the
difference between them is not clear, Fig. 7 shows instead
only their relative deviations from the ideal value. Here, it
should be noted that this relative deviation is equal to the
absolute deviation divided by the maximal value of the
ideal curve. The quadrupole moment was calculated for a
variation of σx=d in the range of 0.075 to 0.3 with a
constant σy=d ¼ 0.075 and constant beam position.

FIG. 5. Weighting factor cx as a function of x̄=d; cy ¼ 0.1885,
σx=d ¼ 0.15, σy=d ¼ 0.075, ȳ ¼ 0.

FIG. 6. ðσ2x − σ2yÞ=d2 as a function of x̄=d for a not and an
optimized factor cx; cy ¼ 0.1885.

(a)

(b)

FIG. 7. Relative error of the calculated values of ðσ2x − σ2yÞ=d2
as a function of σx=σy, σy=d ¼ 0.075: (a) x̄=d ¼ 0.05, ȳ ¼ 0;
(b) x̄=d ¼ 0.125, ȳ ¼ 0.
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Figure 7(a) shows an insignificant difference between
both curves due to the small value of the used beam
position (x̄=d ¼ 0.05, ȳ ¼ 0). In contrast, in Fig. 7(b) one
can see that the curve with cx ¼ 0.1735 provides a better
result over the whole range of the used beam sizes. Based
on these results, one can conclude that the amplification
factor cx ¼ 0.1735 obtained for σx=d ¼ 0.15, σy=d ¼
0.075 can also be applied to the other beam sizes plotted
in Fig. 7. Therefore, this factor will be used in the following
as the horizontal amplification factor of the modified log
ratio method.
Figure 9 shows for all pickup methods the quadrupole

moment, calculated according to Eqs. (15), (19) and (27) as
a function of the beam position. The setting values of the
beam size used for calculations are σx=d ¼ 0.15 and
σy=d ¼ 0.075, which lead to the ideal value (setting value)
of the normalized quadrupole moment ðσ2x − σ2yÞ=d2 ¼
1.6875 × 10−2. This is represented in the figure by the
black dotted line. Looking at all images in Fig. 9, it is
obvious that in the whole range of x̄=d until 0.15 the
modified log ratio is the method with the lowest depend-
ence on the beam position. In other words, one can say that,
for a beam located inside a quadrant bounded by the planes
x̄ ¼ 0, x̄=d ¼ 0.15, ȳ ¼ 0 and ȳ=d ¼ 0.15, the modified
log ratio method is less dependent on the beam position. To
get a better overview of the difference between the three

methods, the relative deviation of the calculated values of
ðσ2x − σ2yÞ=d2 from its ideal value is illustrated in Fig. 10 for
ȳ=d ¼ 0.125 and ȳ=d ¼ 0.15. The reason for the large
deviation in the conventional methods lies in the dipole
signals, since these (dipole signals) depend not only on the
beam position, but also on the sextupole terms z3x and z3y
[see Eq. (14)]. For large values x̄ or ȳ, this leads to a
nonlinearity of the dipole signals with respect to the
position as one can see below in Fig. 8. Figure 8(a) shows
the horizontal dipole signal Δx as a function of x̄=d for a
fixed value of ȳ=d while Fig. 8(b) shows the vertical dipole
signal Δy as a function of ȳ=d for a fixed value of x̄=d. The
x̄=d range (0.1 ≤ x̄=d ≤ 0.15) chosen here for the optimi-
zation was just an example to show how to optimize the
modified log ratio method when the interval of the beam
position is known. In Sec. IV, a real beam position monitor
model installed at GSI SIS-18 will be simulated as a
quadrupole pickup. Since for the SIS-18 operation the
variation of the beam position can be estimated, it will be
easy to optimize the method presented in this paper.

IV. SIMULATION RESULTS

The pickup model simulated in this paper is, as men-
tioned at the end of the previous section, a beam position
monitor installed at GSI SIS-18. Since for typical SIS-18
operation the bunch is long compared to the pickup
electrodes, the numerical investigation of the modified
log ratio and the traditional methods were carried out
using the electrostatic solver of CST EMS, and the results
are presented in the first part of this section. The second
part of this section will show the simulation results in the
frequency domain carried out using the PIC solver of CST
PS, and these will be compared with the results from the
electrostatic solver in terms of the quadrupole signal and
pickup sensitivity. The figure below shows the front view
and the dimensions of the simulated pickup design. R, T, L
and B in Fig. 11(a) represent the right, top, left and bottom
electrodes, respectively.

A. Simulations with the electrostatic
solver of CST EMS

1. Pickup’s sensitivity

Since the pickup depicted in Fig. 11 has been operated
until now as a beam position monitor for measuring the
center of mass of the beam, the first thing to do is to check if
the pickup is sensitive to the quadrupole signal defined in
Eq. (1). Some simulations have been performed for this to
calculate the quadrupole signal Ξ once for a centered beam
(x̄ ¼ ȳ ¼ 0) as a function of the beam size (σx, σy) and once
for a round beam (σx ¼ σy ¼ 7.5 mm) as a function of the
beam position and the results are shown in Fig. 12. The
beam was modeled by a perfect conductive elliptical
cylinder [the red cylinder in Fig. 11(b)] of radii (σx, σy).
For the excitation, a potential of 1 V was applied to the

(a)

(b)

FIG. 8. Dipole signals calculated with the difference over sum
method; σx=d ¼ 0.15, σy=d ¼ 0.075.
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(a) (b)

(c) (d)

(e) (f)

FIG. 9. ðσ2x − σ2yÞ=d2 as a function of the beam position; cx ¼ 0.1735, cy ¼ 0.1885.
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FIG. 10. Absolute value of the relative deviation of the calculated values of ðσ2x − σ2yÞ=d2 from its ideal value as a function of x̄=d for a
fixed value of ȳ=d.
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entire surface of the modeled beam and the beam pipe was
grounded. The quadrupole signal Ξ illustrated in Fig. 12
was obtained using the difference over sum method
described in III A,

Ξ ¼ ðUR þULÞ − ðUT þUBÞ
UR þ UL þUT þ UB

; ð30Þ

where UR, UL, UT and UB are the induced voltages on the
respective pickup plates. All simulations have been carried
out according to the following beam size and beam position
values: 7.5 mm ≤ σx ≤ 25 mm, 5 mm ≤ σy ≤ 15 mm,
0 ≤ x̄ ≤ 10 mm and 0 ≤ ȳ ≤ 10 mm. As can be seen in
Fig. 12, it is clear that the simulated pickup design is sensitive
to both the beam size and the beam position. Hence, it is
sensitive to the quadrupole signal according to Eq. (12). The

(a) (b)

FIG. 11. (a) Front view of the pickup design installed at GSI SIS-18; a ¼ 35.3 mm, b ¼ 150 mm, c ¼ 60 mm, d ¼ 100.3 mm,
e ¼ 62.5 mm, h ¼ 32 mm, electrode length l ¼ 210 mm, length of the beam pipe ls ¼ 296 mm [6]. (b) Perspective view of the pickup
design with the modeled beam in red, from CST EMS.

(a)

(b)

FIG. 12. (a) Quadrupole signal Ξ for a centered beam as a function of the beam size; (left) as a function of σx=σy, σy ¼ 7.5 mm; (right)
as a function of σy=σx, σx ¼ 15 mm. (b) Quadrupole signal Ξ for a round beam (σx ¼ σy ¼ 7.5 mm) as a function of the beam position;
(left) as a function of x̄=d, ȳ ¼ 0; (right) as a function of ȳ=d, x̄ ¼ 0.
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pickup sensitivityS ¼ 6.65 × 10−5 (1=mm2), which refers to
the sensitivity to σ2x − σ2y, was obtainedwith the left picture in
Fig. 12(a) due to its higher number of simulated σx=σy values
and using the method of linear regression with the coefficient
of determination R2 ¼ 0.997.
The investigated asymmetrical pickup can be character-

ized as a quadrupole pickup for the used values of the beam
size and beam position according to the difference over sum
method as

Ξ ¼ S · ½ðσ2x − σ2yÞ þ n · ðx̄2 − ȳ2Þ� þ Ξ0; ð31Þ
with n ≈ 2 and Ξ0 ¼ −0.3072, the value of the quadrupole
signal for a round and centered beam. For symmetrical (in
both transverse planes) pickup designs, Ξ0 is approxima-
tively equal to zero. It should be noted that the sensitivity S
is related to the geometrical sizes (radii) of the modeled
elliptical beam, which are represented in this case by
(σx, σy) and not to its root mean square (rms).
The characterization of the pickup using the log ratio

method can be done analogously to that of the difference
over sum.

2. Numerical determination of σ2x − σ2y
The modified log ratio method was tested on this

asymmetrical pickup model and the results will be com-
pared with those of the traditional signal processing
methods. Since the log ratio method is the starting point
for the method developed in this paper, let us first look at the
quadrupole signal regarding this method, depicted in Fig. 13
as a function of the beam position for the beam dimension
σx ¼ 15 mm and σy ¼ 7.5 mm. Looking at the images in
that figure it is clear that in the region of the beam position x̄,
ȳ in less than 5% of the horizontal pickup radius b, the
quadrupole signal changes at a maximum of 1%. For this
reason, the weighting factors cx and cy for the modified log
ratio have been optimized only in the range of x̄=d and ȳ=d
from 0.05 to 0.1. Due to the complicated shape of the pickup
electrodes, the determination of cx and cy has been done
numerically with the electrostatic solver of CST EMS by
using the same approach as with the analytical calculation.
The detailed description of this numerical determination of
the weighting factors can be found in Appendix A 2. In
Fig. 14, the weighting factors for five values of the beam
position in the above mentioned range to be optimized are
shown. As can be seen in this figure, cx ¼ 0.4719 and cy ¼
0.1177were obtained as the arithmetic mean of all values of
the plotted weighting factors, respectively.
The normalized quadrupole moment σ2x − σ2y=d2 for the

modified log ratio method can now be obtained according
to Eq. (27), after the pickup sensitivity S and the induced
signal voltages UR, UT , UL, UB are determined numeri-
cally with CST EMS and inserted into the corresponding
equations for calculating the quadrupole signal Ξmod.
However, it should be noted that in the determination of

the quadrupole moment according to Eq. (27), the term Ξ0

in Eq. (31) has to be subtracted from the quadrupole signal
Ξmod. The second moment of the beam for the traditional
methods is obtained analogously.

FIG. 13. Quadrupole signal Ξlog regarding the log ratio method;
(above) Ξ as a function of x̄=d, ȳ ¼ 0; (below) Ξ as a function of
ȳ=d, x̄ ¼ 0; σx ¼ 15 mm, σy ¼ 7.5 mm.

FIG. 14. Weighting factors cx and cy as a function of the beam
position; (above) cx as a function of x̄=d, ȳ ¼ 0; (below) cy as a
function of ȳ=d, x̄ ¼ 0; σx ¼ 15 mm, σy ¼ 7.5 mm.

ANALYTICAL AND NUMERICAL CALCULATION … PHYS. REV. ACCEL. BEAMS 19, 042801 (2016)

042801-11



Figure 15 shows σ2x − σ2y=d2 obtained with the three
signal processing methods. The black dotted line in the
figure corresponds to the ideal value (setting value) of
the quadrupole moment, namely 0.152 − 0.0752 ¼
1.6875 × 10−2. Here, 0.15 is the setting value of σx=d
while 0.075 is that of σy=d. Looking at the pictures in
Fig. 15, it can be seen that for a beam with the dimensions
(σx ¼ 15 mm, σy ¼ 7.5 mm) inside of the quadrant
bounded by the planes x ¼ 0, x ¼ 0.1d, y ¼ 0 and
y ¼ 0.1d, the modified log ratio method provides a quadru-
pole moment with the least dependence on the beam
position. To get a better look at the difference between
all these methods, the relative deviation of the pickup
values of ðσ2x − σ2yÞ=d2 from its ideal value is depicted in
Fig. 16 for the vertical beam position ȳ=d ¼ 0.075
and ȳ=d ¼ 0.1.
The reason for the large deviation in the traditional

methods lies, as already shown in analytical investigations,
in the dipole signals, since these signals depend not only on
the beam position, but also on the sextupole terms. In other
words, large values of x̄ or ȳ lead to a nonlinearity of the
dipole signals with respect to the beam position.
The optimization of the modified log ratio method

was performed for a fixed beam dimension, namely
(σx ¼ 15 mm, σy ¼ 7.5 mm). Accordingly, a general

(a) (b)

(c) (d)

FIG. 15. ðσ2x − σ2yÞ=d2 as a function of the beam position; cx ¼ 4719, cy ¼ 0.1177.
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FIG. 16. Absolute value of the relative deviation of the pickup
values of ðσ2x − σ2yÞ=d2 from its ideal value as a function of the
beam position; setting beam size: σx ¼ 15 mm, σy ¼ 7.5 mm;
(above) ȳ=d ¼ 0.075, (below) ȳ=d ¼ 0.1.
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statement about the comparison between the signal
processing methods can only be made after the calculation
of the quadrupole moment is carried out for different values
of the beam size at a fixed beam position, because the term
P in Eq. (28) also depends on the beam size. Figure 17
shows the quadrupole moment calculated with all methods
for different values of the beam size, while the beam
position is held constant. Since the curves of the second
moment as a function of the beam size are so close that the
difference between them is not clear, Fig. 17 shows only
their relative deviations from the ideal value instead. Here,
it should be noted that this relative deviation is equal to
the absolute deviation divided by the maximum value of the
ideal curve. The images in Fig. 17(a) show, due to the
relatively small value of the beam position (x̄=d ¼ 0.025,
ȳ=d ¼ 0.035), a lower relative deviation from the ideal
value as expected.
In the diagrams of Fig. 17(b) in contrast, where

x̄=d ¼ 0.075, ȳ=d ¼ 0.06, one can see that for almost all
used beam dimensions, the modified log ratio method
provides the better results.

B. Simulations in the frequency domain

1. Cutoff frequency of each electrode

Since the frequency range of interest for a typical SIS-18
operation is between 10 kHz and 10 MHz, a high
terminating resistor of 1 MΩ was connected at the output

of each electrode to obtain a low 3 dB cutoff frequency fc
of the plate. However, to get fc, the self-capacitance
(grounded) of each electrode must be known. This can
be found from the capacitance matrix obtained numerically
using the electrostatic solver of CST EMS. The pickup used
for this calculation is depicted in Fig. 18(a). The different
colors of the electrodes in Fig. 18(a) designate the values of
the applied potential: (i) right electrode R (blue): 1 V,
(ii) top electrode T (green): 2 V, (iii) left electrode L (black):
3 V, (iv) bottom electrode B (red): 4 V, (v) beam pipe: 0 V
(ground). The calculated capacitance matrix with respect to
ground is summarized in Table I.
The self-capacitances of the electrodes R, T, L and B can

be obtained from the positive values of the diagonal in the
capacitance matrix displayed in Table I:

CR ¼ CL ¼ 16.4 pF;

CT ¼ CB ¼ 10.3 pF: ð32Þ

It should be noted that the above self-capacitances of the
electrodes have been calculated without taking into account
the coaxial line connecting the electrodes with the beam-
pipe and they will be slightly varied depending on the
coaxial line dimensions. With the values of the self-
capacitance from Eq. (32) the 3 dB cutoff frequency of
each electrode can be obtained as

(a)

(b)

FIG. 17. Absolute value of the relative error of ðσ2x − σ2yÞ=d2 from the ideal value: (a) (left) as a function of σx=σy, σy ¼ 7.5 mm;
(right) as a function of σy=σx, σx ¼ 15 mm; (b) (left) as a function of σx=σy, σy ¼ 7.5 mm; (right) as a function of σy=σx, σx ¼ 15 mm.
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fc;R ¼ fc;L ¼ 1

2πRCR
¼ 9.7 kHz;

fc;T ¼ fc;B ¼ 1

2πRCT
¼ 15.45 kHz; ð33Þ

where fc;R , fc;L , fc;T and fc;B are the cutoff frequency for
the right, left, top and bottom electrode, respectively.
From Eq. (33), one can say that using a high terminating

resistor of 1 MΩ, almost all frequencies of interest for the
SIS-18 operation mentioned above will be passed by the
electrodes.

2. Pickup’s sensitivity in the frequency domain

The pickup design used for the simulations is shown in
Fig. 18(b). At the output of each electrode, a high
terminating resistor of 1 MΩ is, as mentioned previously,
connected between the inner and outer conductors of the
used coaxial transmission line. The simulation was carried
out using CST PS, with a PIC solver in the frequency range
of DC ≤ f ≤ 200 MHz. The quadrupole signal ΞðfÞ in the
frequency domain obtained regarding the traditional differ-
ence over sum method [see Eq. (11)] is illustrated
in Fig. 19.
Here UR, UL, UT and UB in Eq. (11) stand for the

amplitudes of the fast Fourier transform signal voltages
induced on the respective pickup plates. In Fig. 19, one can
see that the greater the horizontal beam size σx, the greater

the quadrupole signal in the whole frequency range.
Furthermore, it is obvious that, in the frequency range of
interest (10 kHz–10 MHz) the quadrupole signal is
almost constant; the maximum absolute value of the
relative deviation of the quadrupole signal in the mentioned
frequency range from the value of Ξ at 10 MHZ is
below 0.2%.
Now, to get the pickup sensitivity SðfÞ in the frequency

domain, the quadrupole signal for a centered beam at the
frequency 1 MHz is depicted in Fig. 20 as a function of the
normalized beam size σx=σy. Here, the horizontal beam
radius σx is varied from 7.5 to 25 mm while the vertical
beam radius σy is 7.5 mm.
From Fig. 20 one can state a good agreement between

both the PIC solver of CST PS and the electrostatic solver of
CSTEMS; themaximum relative deviation of the PIC solver
results from the electrostatic ones is below 0.25%. The
sensitivity S ¼ 6.57 × 10−5 (1=mm2) of the quadrupole
pickup to σ2x − σ2y was determined at the frequency of
1 MHz and, as in the electrostatic case using the method
of linear regression with the coefficient of determination
R2 ¼ 0.9974, it deviates by approximately 1.1% from the
value of the electrostatic solver [S ¼ 6.65 × 10−5 (1=mm2)].

(a) (b)

FIG. 18. (a) Pickup model used for the calculation of the capacitance matrix, from CST EMS. (b) Pickup model used for the simulation
in the time domain, from CST PS.

TABLE I. Capacitance matrix of the simulated pickup model;
values given in pF.

R T L B

R 16.4 −3.06 −0.178 −3.06
T −3.06 10.3 −3.06 −0.95
L −0.178 −3.06 16.4 −3.06
B −3.06 −0.95 −3.06 10.3 FIG. 19. Quadrupole signal in the frequency domain for

different values of the beam size.
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V. CONCLUSIONS AND OUTLOOK

A. Conclusions

A method to pick up the quadrupole moment of an
electrically charged particle beam was developed and
presented in this paper. This method was called the
modified log ratio.
Analytical and numerical investigations (using the

electromagnetic field simulation software CST EMS) on
this methodwere carried out in this work. The results arising
from these investigations have shown that the modified log
ratio compared with the usual signal processing methods,
namely the difference over sum and the log ratio, provides a
quadrupole moment (σ2x − σ2y) with the least dependence on
the beam position. This method was also tested analytically
on a magnetic pickup [2], which consists of four symmet-
rical loop electrodes, by coupling the azimuthal component
Bθ of the magnetic field; even with this pickup type, the
modified log ratio provides better results than the conven-
tional methods as can be seen in [14] (pages 129 and 130).
Due to its reduced dependence on the beam position, the
modified log ratio method can be very suitable in practice to
determine the transverse beam emittance using the Miller
et al. approach mentioned in the abstract.
In the second part of this paper an asymmetrical BPM

installed at GSI SIS-18 was numerically investigated using

both the electrostatic solver of CST EMS and the PIC
solver of CST PS. The main goal of this study consisted of
estimating the properties of this beam position monitor and
evaluating its usage as a possible quadrupole pickup. The
simulation results have shown that this BPM is sensitive to
the used beam sizes and therefore can be used as a
quadrupole pickup. Furthermore, there was a good agree-
ment between the two solvers because the maximum
relative deviation of the pickup sensitivity to σ2x − σ2y
obtained with the PIC solver from the value of the
electrostatic solver was approximately 1.1%. However,
the main advantage of the electrostatic solver against the
PIC solver is the considerably lower simulation time. Based
on these results, one can conclude that, for beams with a
longitudinal extent much larger in comparison to the pickup
electrode length, the pickup properties can be well deter-
mined electrostatically.
After these investigations some measurements have been

carried out at GSI SIS-18 with this asymmetrical pickup
and it was possible to observe quadrupole signals. This
means that the pickup sensitivity obtained numerically in
this investigation was sufficiently large that in practice the
quadrupole signal could be extracted from the dominant
longitudinal signal, which is also called the monopole or
sum signal. The results of the mentioned measurements are
presented in [15].

B. Outlook

The method presented in this paper was both analytically
and numerically studied with the electromagnetic field
simulation software programs mentioned in the previous
section. Nevertheless, all output signals at the electrodes
were ideally processed, e.g. without consideration of a real
differential amplifier with the amplification factor c used in
the modified log ratio method (see Fig. 2) as well as
external electronic components of the log ratio method,
such as the low-frequency filter to pass only frequency
components of interest, the transmission cable from the
electrodes to the network analyzer. The complete study of
the influences that these electronic parts—particularly a
real differential amplifier mentioned above—may have on
the previous simulation results—in other words, the
practical realization of this method—is among the next
challenges of this project.
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FIG. 20. (a) Ξ as a function of σx=σy, σy ¼ 7.5 mm; (b) relative
deviation of the quadrupole signal obtained with the PIC solver of
CST PS from the quadrupole signal obtained with the electro-
static solver of CST EMS.
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APPENDIX: DETAILED DERIVATION OF THE MODIFIED LOG RATIO APPROACH

1. Quadrupole signal

Ξmod ¼ 20 · log
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Umod
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2

��
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2. Numerical calculation of the weighting
factors cx and cy

The calculations of cx and cy have been performed, as
already mentioned in Sec. IV.A.2 for the beam sizes
σx ¼ 15 mm, σy ¼ 7.5 mm and for five values of the beam
position in the range from 0.05 to 0.1. Here d is the pickup
radius illustrated in Fig. 11. For each value of x̄=d, for
example, a parameter sweep of cx has been performed with
the electrostatic solver of CST EMS until the term P on
the right side of Eq. (28) is equal to zero. It should be noted
that in the determination of the horizontal factor cx, the
vertical beam position ȳ was set to zero. The values of cx
obtained from this parameter sweep are depicted in the
following table.

The optimized horizontal weighting factor cx ¼ 0.4719
was determined as the arithmetic mean of all values of cx in
Table II. The vertical damping factor cy ¼ 0.1177 was
obtained analogously.
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