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A method is described to solve the Poisson problem for a three dimensional source distribution that is
periodic into one direction. Perpendicular to the direction of periodicity a free space (or open) boundary
condition is realized. In beam physics, this approach allows us to calculate the space charge field of a
continualized charged particle distribution with periodic pattern. The method is based on a particle-mesh
approach with equidistant grid and fast convolution with a Green’s function. The periodic approach uses
only one period of the source distribution, but a periodic extension of the Green’s function. The approach is
numerically efficient and allows the investigation of periodic- and pseudoperiodic structures with period
lengths that are small compared to the source dimensions, for instance of laser modulated beams or of the
evolution of micro bunch structures. Applications for laser modulated beams are given.
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I. INTRODUCTION

The fundamental problem of the analysis of beam
dynamics is to solve the equation of motion for a multi-
particle system (N ∼ 103 � � � 109) in the presence of external
forces (caused by magnets, cavities etc.) and self-forces. A
particular difficulty is to determine the self-fields of the
dynamic many-particle system. The coarsest approxima-
tion to solve this problem is the space charge or Poisson
approach. It assumes that all particles are in uniformmotion
with identical velocity vectors. Therefore the problem is
equivalent to an electrostatic problem, and in principle one
has to add for each observer particle the one over distance
contribution from all other sources. This point-to-point
interaction would allow the slightly better approach of
individual uniform motion per particle, but its effort scales
as N2. This is avoidable by a continualization so that the
point particles are represented by a smooth density func-
tion. Additionally the continualization solves a second
problem that is usually not in the focus of interest: the
near scattering of particles that approach much closer than
the averaged particle distance. A proper tracking with near
scattering needs not only the point-to-point interaction but
also a very fine time step related to the minimal distance
between particles.
Continuous density functions and fields are numerically

represented by superpositions of basis functions. Often this
is done by interpolating field values on a mesh. In this
report we use a three dimensional equidistant cartesian
mesh for binning and compute the static potential by a fast
convolution with a Green’s function as described in [1,2].

This Green’s function fulfills free space (or open) boundary
conditions. Also the electric field is calculated on the mesh,
by numerical differentiation. The field is interpolated to the
particle positions and transformed into a collective force as
it appears in the equation of motion. The numerical
integration of the equation of motion is not described here.
The Poisson-particle-mesh approach is used widely

and successfully in beam dynamics, for instance, in
straight sections with constant energy, but also in particle
sources or accelerating sections and even in sections with
weak curvature. Sometimes the particle distribution has a
fine substructure which has to be taken into account, for
instance if the particles perform plasma oscillations [3–5],
or a micro-modulation builds up (microbunch-instability)
or they interact in an undulator with a laser. Such high
resolution computations need very fine meshes and high
particle (or macroparticle) numbers so that they become
numerically very expensive.
This numerical effort can be dramatically reduced if the

approach assumes and utilizes periodicity: only the par-
ticles of one period have to be tracked and meshed. We
describe such an approach where the periodicity of the
source distribution is interchanged with the periodicity of
the Green’s function. Except for the calculation of the
Green’s function, the established method (Poisson-particle-
mesh with equidistant mesh and fast convolution) can be
used completely unchanged. We consider periodicity into
one direction. The direction is arbitrary and does not need
to coincide with a mesh axis. Perpendicular to this direction
free space (or open) boundary conditions are realized.
The memory requirements are reduced due to the lower

number of particles and the smaller volume of the problem
domain. The reduction factor 1=R is approximately
1=RN ≈ 1=RV , with RN the ratio of the number of particles
in the bunch Nb to the number of particles per period, and
RV the ratio of the volume for the full bunch Vb to volume
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of one period Vp. The effort for numerical operations (per
step of particle tracking) can be split into the effort for the
computation of the Green’s function and the effort for all
other operations (binning to mesh, convolution, field
interpolation, and particle motion). The effort for the first
part is increased by the factor EGp=EG, as the effort EGp to
compute the periodic Green’s function is larger than the
effort EG for the nonperiodic function. This enhancement is
typically 10, as ascertained in Sec. III. Therefore the effort
for the first part scales as EGp=ðEGRVÞ while the effort for
the second part decreases with 1=R. The periodic approach
is highly effective if the ratio R is large and one is interested
in the “pure” periodic behaviour, or in one or few “period-
samples” along the bunch. For a bunch with charge
q ¼ 1 nC, peak current Î ¼ 100 A and period length λp ¼
1 μm the ratio is approximately R ¼ cq=ðλpÎÞ ≈ 3000.
The report is organized as follows. Section II is about

general aspects of periodicity. In Sec. III we describe the
approach, first the standard method (Poisson, particle-
mesh, convolution with Green’s function), then its modi-
fication with periodic Green’s function. For a MATLAB
implementation of our method, called QField, the numeri-
cal effort to calculate the periodic Green’s function in a
given volume is compared with the effort to determine the
nonperiodic function in the same volume. In Sec. IV we
demonstrate the method with examples: the FLASH seed-
ing section [6–8] with different particle densities and
modulations, and parasitic heating after the LCLS laser
heater [9,10]. For comparison of field calculation methods,
we did tracking simulations with Astra [11] and QField.

II. PERIODICITY

Some aspects of spatial periodicity and pseudoperiodic-
ity are illustrated in Fig. 1. The particles in panel (a) are
randomly distributed while panel (b) shows a periodically
repeated set Sp of random particles. Distribution (a) is
caused by applying a periodic transport map to random
particles that are uniformly distributed into the direction of
periodicity. Strictly periodic distributions as in (b) are used
to approximate pseudoperiodic distributions as in (a).
For the strictly periodic approach we consider only a set

Sp of nonrepeated particles. As it can be seen in panels
(b–e) there are many sets Sp that describe the same periodic
distribution. It is easy to manipulate such sets by shifting
particles by a multiple of the repetition vector rp. The sets
in (c) and (d) are chosen so that all particles are in a volume
slice, where the front plane corresponds to the back plane
shifted by rp. These slices might have any orientation (or
shift), but there are orientations so that the volume of a box
(or sphere) that includes all particles is minimal. The
distribution in (b) are particles from one volume slice, that
have been mapped by a periodic transport map. (Particles
with nearly the same spatial coordinates, but with different
momenta may be mapped to very different spatial

coordinates.) For numerical reasons it might be advanta-
geous to use sets without sudden change of density, as it can
be seen in panel (e). This set has been composed similar as
(c), but some particles close to the left boundary are shifted
by rp (beyond the right boundary) and some particles close
to the right boundary are shifted into the opposite direction.
The probability of shifting depends on the distance to the
boundary.
To keep periodicity, the set Sp has to represent a

distribution in the six dimensional phase space X ¼ ½x; y; z;
px; py; pz� which is periodic with respect to P, the six
dimensional periodicity vector. The required property for
the transport TðXÞ → Y is TðX þ nPÞ → TðXÞ þ nTðPÞ.
This is for instance fulfilled if only one spatial component

FIG. 1. Periodic particle distributions and periodic shift vector
rp: (a) pseudoperiodic random distribution with periodic behav-
ior; (b) generating set Sp and periodically repeated particles in
blue resp. gray; (c) equivalent generating set in slice volume
between two planes shifted by rp; (d) other equivalent set in
different volume slice; (e) equivalent generating set without sharp
truncation.
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of P is nonzero and T is a linear function of that
component.
Real distributions are always pseudoperiodic since they

are finite. Sometimes only a small part of a (long) bunch
behaves periodically, as for instance in Figs. 8, 9. The phase
space volume covered by the beam is usually small and the
transport can be linearized, or at least locally (for one or few
periods) linearized. Therefore the Poisson approach can be
used for distributions with finite extension in momenta
space, although the uniform motion approach assumes
identical momentum of all particles. In the same sense
the periodical Poisson approach is applicable to distribu-
tions with nonzero momentum components of P, although
this would mean particles with arbitrarily large momentum.
An example is a bunch with energy chirp and micro
modulation.
In many cases the effect of field periodicity appears even

for charge distributions with very localized periodic
pattern, as in Fig. 2. To estimate this, we consider a

distribution ρðx; y; zÞ of finite length with localized
pseudoperiodic behavior into z-direction. We split this
distribution into the averaged, slowly varying part

ρavðx; y; zÞ ¼ L−1
p

R Lp=2
−Lp=2

ρðx; y; zþ ~zÞd~z and the remain-

ing modulation ~ρðx; y; zÞ ¼ ρðx; y; zÞ − ρavðx; y; yÞ. Lp is
the period length. We want (a) to show that the contribution
of the modulation is localized and (b) to estimate the effect
of the slowly varying part in comparison to the periodic
modulation.
(a) The total charge per period of ~ρ is nearly zero, so that

each single period of ~ρ causes essentially a dipole field.
[Due to the pseudoperiodic nature of ~ρ, the monopole part
is not exactly zero, but it is small compared to the field of
ρavðx; y; zÞ that is estimated in (b).] The longitudinal
electric dipole field of one period of ~ρ declines as

ðz2 þ L2
t =γ2Þ−3=2; ð1Þ
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FIG. 2. Longitudinal field Ez on axis of a bunch with round Gaussian transverse profile. The longitudinal profile is rectangular with
length L, superimposed by two short periodic bursts. Both bursts contain 5 dirac pulses with equidistant spacing. The bunching factor in
the periodic intervals is 0.1, or 10 percent of the charge per period is in the dirac pulses. The period length in the bursts is 0.5σr=γ and
2σr=γ. The field is normalized to En ¼ Λ=ð2πε0σrγÞ with Λ ¼ q=L. (a) Full bunch, (b) detail with burst in the middle, (c) detail with
burst close to the edge.
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for transverse offsets x, y of the order of the typical
transverse size Lt. The influence of all periods, that are
further away from the point of interest than NLp, scales asZ

∞

NLp

ðz2 þ L2
t =γ2Þ−3=2dz

¼ γ2

L2
t

�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLt=ðγNLpÞÞ2 þ 1

q �
: ð2Þ

The term in square brackets describes the relative effect. It
is obvious that distant periods are negligible for
Lt=ðγNLpÞ ≪ 1. The first example in Sec. IVA demon-
strates that about 4 periods in the middle of the distribution
are enough to realize quasiperiodic conditions, compare
Figs. 11 and 12. On the other hand, the pattern about 4 μm
from the center is not regular enough. Alternatively the
complete laser pulse could be calculated and simulated with
a super-period of about 20 laser periods. Such super-
periods are also helpful for other broadband processes as
the excitation and amplification of microbunching due to
shot noise.
(b) The field of the slowly varying part is the macro-

scopic interaction (over lengths that are large compared to
the period length) in a bunch without microstructure. For
bunches that are long compared to the transverse dimension
Lt=γ, it can be estimated by the one-dimensional longi-
tudinal space charge field

EΛðzÞ ¼
Z

Λðz − sÞEδðsÞds; ð3Þ

that can be calculated from the longitudinal charge profile
ΛðzÞ and the field EδðzÞ of a charged disc with the
transverse charge profile ηðx; yÞ. For instance the longi-
tudinal field on axis of a round Gaussian distribution with
radius σr is

Ezð0; 0; zÞ ¼
1

2πε0σ
2
r
F

� ffiffiffi
2

p γz
σr

�
; ð4Þ

and the transversely averaged field hηðx; yÞEzðx; y; zÞi is

EδðzÞ ¼
1

4πε0σ
2
r
F

�
γz
σr

�
; ð5Þ

[12,13] with

FðuÞ ¼ sgnðuÞ
2

−
u

ffiffiffi
π

p
4

exp ½ðu=2Þ2�erfcðju=2jÞ: ð6Þ

The amplitude of the periodic field can be estimated by
~IZðc02π=LpÞ with ~I the amplitude of current modulation
and ZðωÞ the longitudinal impedance per length. The
impedance per length corresponding to Eq. (5) is [12,13]:

ZðωÞ ¼ −
iZ0ω

4πc0γ2
exp

��
ωσr
c0γ

�
2
�
Ei

�
−
�
ωσr
c0γ

�
2
�
: ð7Þ

A macroscopic field with quasiperiodic pattern of micro-
structures can be seen in Fig. 2. The difference between the
curves for finite and infinite bunch length length is the field
of the finite distribution without microstructure. The bunch
has to be long enough so that macroscopic field is
negligible. This also means that in the reverse approach,
to calculate periodic behavior by a nonperiodic method,
the macroscopic distribution must be sufficiently long,
especially if the modulation is weak.

III. METHOD

A. Poisson approach and Lorentz force

The electromagnetic field caused by a set S of discrete
point particles with charge qi, position riðtÞ and velocity
viðtÞ is estimated based on the assumption of collective
uniform motion (of all particles) with the velocity vc. The
particle positions are represented by orthonormal coordi-
nates ri ¼ xie⊥1 þ yie⊥2 þ ziec, wherein the z-axis points
in the direction of motion ec ¼ vc=‖vc‖ and the directions
e⊥1 and e⊥2 are perpendicular. After Lorentz transforma-
tion to the rest frame, the coordinates are ri;c ¼ xie⊥1 þ
yie⊥2 þ ziγcec with γc ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2c

p
and βc ¼ vc=c ¼

‖vc‖=c. The electrostatic field may be computed from
point-to-point interaction as

Ei;c ¼
1

4πε0

X
j∈Si

qj
ri;c − rj;c

‖ri;c − rj;c‖3
; ð8Þ

with excluded self-interaction. Therefore Si is the subset of
all particles without particle i. The continualization repla-
ces the particle distribution fqi; ri;cg by a continuous
charge density function ρcðrÞ and the electrostatic field

EcðrÞ ¼ −∇ϕcðrÞ ð9Þ

is the negative gradient of the electrostatic potential

ϕcðrÞ ¼
1

4πε0

Z
dV 0 ×

ρcðr0Þ
‖r − r0‖

: ð10Þ

Finally we transform back to the moving frame

Ei ¼ γc½e⊥1ðe⊥1 ·Ei;cÞ þ e⊥2ðe⊥2 ·Ei;cÞ� þ ecðec · Ei;cÞ
ð11Þ

Bi ¼ c−2vc ×Ei ð12Þ

and calculate the Lorentz force
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Fi ¼ eðEi þ vi ×BiÞ ¼ eðEi þ c−2vi × vc × EiÞ: ð13Þ

B. Particle-mesh-method

A simple and robust continualization method is to
approximate the discrete charges by a piecewise continuous
distribution that is constant in the cells of an equidistant
mesh. The mesh points rmðj; k; lÞ ¼ jhxe⊥1 þ khye⊥2 þ
lhzec are in the middle of the cells and the charges per cell
are qcðj; k; lÞ. For simplicity we have chosen the direction
of motion ec to coincide with one mesh axis. This has
numerical advantages, as the resolution requirement in
longitudinal direction is usually very different from that
into transverse directions, but it is not necessary. The choice
of the perpendicular directions e⊥1, e⊥2 is free.
The electrostatic potential caused by the charge density

ρ ¼ qcð0; 0; 0Þ=ðhxhyhzÞ in the cell which includes the
origin, is

ϕðrÞ ¼ ρ

4πε0
GðrÞ ð14Þ

with the Green’s function

Gðxe⊥1 þ ye⊥2 þ zecÞ

¼
Z

hx=2

−hx=2

Z
hy=2

−hy=2

Z
hz=2

−hz=2

dx0dy0dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx− x0Þ2 þ ðy− y0Þ2 þ ðz− z0Þ2

p :

ð15Þ

This integral can be solved as [2]:

Gðxe⊥1 þ ye⊥2 þ zecÞ
¼

X
i;j;k∈f−1;1g

ijkHðxþ ihx=2; yþ jhy=2; zþ khz=2Þ;

ð16Þ

with the antiderivative

Hðx; y; zÞ ¼ −
x2

2
arctan

yz
xr

−
y2

2
arctan

zx
yr

−
z2

2
arctan

xy
zr

þ xy lnðzþ rÞ þ yz lnðxþ rÞ þ zx lnðyþ rÞ;
ð17Þ

and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. The asymptotic behavior

GðrÞ → GaðrÞ ¼ hxhyhz=r ð18Þ

is obvious from Eq. (15).
To compute the potential at all mesh points ϕmðj; k; lÞ,

caused by all mesh charges, one has to perform the
summation

ϕmðj; k; lÞ

¼ 1

4πε0

1

hxhyhz

X
j0;k0;l0

qcðj0; k0; l0Þgðj − j0; k − k0; l − l0Þ;

ð19Þ

with gðj; k; lÞ the Green’s function at the mesh points
rmðj; k; lÞ. This can be done efficiently by a three-
dimensional fast convolution. The components of the
electric field are determined as difference quotients
(f.i. Ec ¼ ½ϕmðj; k; lÞ − ϕmðj; k; l þ 1Þ�=hz). These
components, that are allocated on shifted meshes (as
rmðj; k; lþ 1=2Þ), are interpolated to the Lorentz trans-
formed particle positions ri;c to find the fields Ei;c in the
rest frame.
For an efficient computation of the Green’s function on

the mesh, one utilizes the asymptotic behavior for points far
from the origin and calculates only near points by Eq. (16).
Therefore one calculates first the antiderivative Hð½j −
1=2�hx; ½k − 1=2�hy; ½l − 1=2�hzÞ in one octant (j, k, l ≥ 0)
of the near-volume and then the Green’s function itself. The
field in other octants follows from symmetry. Technically,
the change to the asymptotic approximation is realized with
a smooth switch function

SðxÞ ¼

8>><
>>:

0 if x < C1

1 if x > C2

0.5 − 0.5 cos
�
π x−C1

C2−C1

�
otherwise

ð20Þ

as “switched” Green’s function

GsðrÞ ¼ GðrÞ þ ½GaðrÞ − GðrÞ�S½r=maxðhx; hy; hzÞ�:
ð21Þ

The volume of pure asymptotic behavior follows from the
condition

r > C2maxðhx; hy; hzÞ: ð22Þ

In Fig. 3 the Green’s function is compared with the
asymptotic approximation, and the ratios Ga=G and Gs=G
are plotted for cubic mesh cells (hx ¼ hy ¼ hz) and for
mesh cells with large aspect ratio (hx ¼ 10hy ¼ 10hz). The
relative deviation of the asymptotic function is below 0.001
for x=maxðhx; hy; hzÞ > 10. Note that the case of infinite
aspect ratio (maxðhy; hzÞ=hx → 0) is very similar to the
case hx ¼ 10hy ¼ 10hz in the volume r ≥ 2hx. The switch
function is calculated for the parameters C2 ¼ 2C1 ¼ 10.
The relative deviation of the “switched” function is below
0.001 for the whole volume.
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C. Periodic source and periodic Green’s function

Each particle of the set Sp is infinitely repeated with the
spatially periodic shift rp, see Fig. 1(b–c). The continual-
ization of the particles of the set gives the smooth density
function ρc;pðrÞ and the periodic extension is

ρcðrÞ ¼
X∞
n¼−∞

ρc;pðrþ nrpÞ: ð23Þ

The particles in Sp and the continuous function ρc;pðrÞ
generate the periodic behavior, but they are not restricted to
a certain volume, as the volume of one period.
As for two dimensional charge distributions with infinite

size into the third dimension, the potential of periodic
distributions is usually not limited to a finite range.
Therefore the Poisson integral Eq. (10) diverges for all
observation points of interest. It is possible to avoid this and
to achieve convergence, by normalizing the potential

~ϕcðrÞ ¼ ϕcðrÞ − ϕcðr0Þ

¼ 1

4πε0

Z
dV 0 × ρðr0Þ

�
1

‖r − r0‖
−

1

‖r0 − r0‖

�
ð24Þ

to be zero at a certain point r0. The gradient of ~ϕc is
identical to that of ϕc. In the following we skip the tilde and
write for the potential of the periodic distribution

ϕcðrÞ ¼
1

4πε0

Z
dV 0

×
X∞
n¼−∞

ρpðr0 þ nrpÞ
�

1

‖r− r0‖
−

1

‖r0 − r0‖

�

¼ 1

4πε0

Z
dV 0

× ρpðr0Þ
X∞
n¼−∞

�
1

‖rþ nrp − r0‖
−

1

‖r0 þ nrp − r0‖

�
:

The summation term in the second integral can be inter-
preted as Green’s function of a periodically repeated point
charge. The Green’s function of one mesh cell follows from
the integration

GpðrÞ ¼
Z

hx=2

−hx=2

Z
hy=2

−hy=2

Z
hz=2

−hz=2
dV 0

×
X∞
n¼−∞

�
1

‖rþ nrp − r0‖
−

1

‖r0 þ nrp − r0‖

�
:

This can be expressed by the nonperiodic Green’s function
as

GpðrÞ ¼
X∞
n¼−∞

Gðrþ nrpÞ −Gðr0 þ nrpÞ: ð25Þ

To compute the potential at mesh points ϕmðj; k; lÞ,
caused by all mesh charges, one has to perform the
summation

ϕmðj; k; lÞ ¼
1

4πε0

1

hxhyhz

X
j0;k0;l0

qc;pðj0; k0; l0Þgp

× ðj − j0; k − k0; l − l0Þ; ð26Þ

with qc;pðj; k; lÞ the integrated charge of density ρc;p in
mesh cell ðj; k; lÞ and gpðj; k; lÞ the periodic Green’s
function at the mesh points. Therefore the field calculation
for periodic source distributions can be done by the same
method as for a nonperiodic source, only the Green’s
function and the source distribution have to be replaced by
the periodic extension Gp and the nonrepeated representa-
tion qc;p.

D. Numerical calculation of periodic Green’s function

For the numerical evaluation we set r0 ¼ 0 and split Gp

into the terms
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FIG. 3. The Green’s function G, the asymptotic approximation
Ga and the “switched” approximation Gs for switch parameters
C2 ¼ 2C1 ¼ 10: (a) and (c) comparison of G and its asymptotic
approximation Gp; (b) and (d) ratios Ga=G and Gs=G; (a) and
(b) for cubic mesh cells; (c) and (d) for mesh cells with large
aspect ratio (hx ¼ 10hy ¼ 10hz). The Green’s function is only
calculated for discrete mesh points (x ¼ nhx).
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G1 ¼
XM−1

n¼−Mþ1

½Gðrþ nrpÞ − GðnrpÞ�; ð27Þ

G2 ¼
X−M
n¼−∞

½Gðrþ nrpÞ −GðnrpÞ�

þ
X∞

n¼M>0

½Gðrþ nrpÞ −GðnrpÞ�: ð28Þ

The finite sum is computed directly, using Eq. (21). The
number M has to be chosen to be large enough to fulfill
the condition ‖r�Mrp‖ > C2 maxfhx; hy; hzg for the
applicability of the asymptotic approximation, compare
Eq. (22). Especially for meshes with small stepwidth, an
early transition to the asymptotic approach is possible.
Usually M is not much larger than 2.
In order to calculate the infinite sums, we use the

asymptotic Eq. (18)

G2ðrÞ ≈ hxhyhz

� X−M
n¼−∞

�
1

‖rþ nrp‖
−

1

jnjrp

�

þ
X∞
n¼M

�
1

‖rþ nrp‖
−

1

jnjrp

��

¼ hxhyhz
rp

f

�
r · rp
r2p

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

r2p
−
�
r · rp
r2p

�
2

s
;M

�
; ð29Þ

and the auxiliary function

fðp; q;M ≥ 0Þ ¼
X∞
n¼M

aðn; p; qÞ ð30Þ

að0; p; qÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p ð31Þ

aðn > 0; p; qÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ pÞ2 þ q2

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−nþ pÞ2 þ q2

p −
2

n
: ð32Þ

In the following we describe two approximations for the
auxiliary function. The first, with a Fourier series, con-
verges well for large values of jqj. The second, for small
values of jqj, sums the lowest terms of the infinite sum and
uses a truncated Taylor expansion for the rest.
Approximation 1: The auxiliary function fðp; q; 0Þ is

periodic in p and can be written as Fourier series

ffðp; qÞ ¼ const − 2 ln jqj þ 4
X∞
n¼1

K0ð2πnjqjÞ cosð2πnpÞ:

ð33Þ

The harmonic sum converges well for large values of jqj,
due to the expð−xÞ= ffiffiffi

x
p

behavior of the modified Bessel
function for large arguments. The sum is usually truncated
after Mf terms, see below. Function values for positive M
can be calculated by subtracting the first terms of the
summation in Eq. (33)

fðp; q;MÞ ¼ ffðp; qÞ −
XM−1

n¼0

aðn; p; qÞ: ð34Þ

Approximation 2: For small values of q the auxiliary
function is calculated with help of a Taylor expansion

fðp; q;Mt > 0Þ ¼ ftðp; q;MtÞ þO½ðp2 þ q2Þ5M−10
t �

ð35Þ
and the Taylor polynomial

ftðp; q;MtÞ

¼ ð2p2 − q2ÞS3;Mt
þ
�
2p6 − 6p2q2 þ 3

4
q4
�
S5;Mt

þ
�
2p6 − 15p4q2 þ 45

4
p2q4 −

5

8
q6
�
S7;Mt

þ
�
2p8 − 28p6q2 þ 105

2
p4q4

−
35

2
p2q6 þ 35

64
q8
�
S9;Mt

; ð36Þ

with Skþ1;Mt
¼ −ψðk;MtÞ=ðk!Þ and ψ the polygamma

function [13]. For small values of M it is necessary to
split the function into a finite sum and a Taylor approxi-
mation for a sufficiently high number Mt

fðp; q;MÞ ≈
XMt−1

n¼M

aðn; p; qÞ þ ftðp; q;MtÞ: ð37Þ

To compute fðp; q;MÞ to a desired level of accuracy for
all possible arguments, it is necessary to choose a transition
value qt [to decide if Eq. (34) or (37) is more efficient] and to
determineMt andMf, the number of summands in Eq. (33)
to be taken into account. The values for qt, Mt, Mf are
selected by comparison with “high precession” results
fhpðp; q; 0Þ which have been calculated to numerical accu-
racy by using a Fourier series to sufficiently high harmonics
or by a sufficiently high Mt for the Taylor expansion.
For qt ¼ 0.5, Mt ¼ 16 and Mf ¼ 8 the numerically

calculated function fðp; q; 0Þ and the deviation
Δfðp; q; 0Þ ¼ jfðp; q; 0Þ − fhpðp; q; 0Þj are plotted in
Fig. 4. The highest values of Δf appear at q≃ 0.5
where the type of expansion is switched. The accuracy
in the range −0.5 ≤ p ∈ ≤ and 0 ≤ q ≤ 1.2 is better then
2 × 10−12.
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The numerical effort to compute the periodic Green’s
function is higher than for the nonperiodic function. To
estimate this enhancement of effort, we take the CPU times
TG, TGp to compute G, Gp on the same equidistant grid as
measure for the efforts EG, EGp. We used a MATLAB
implementation with the program version “MATLAB-
R2012b” on a processor “Intel(R) Core(TM) i5-200 CPU
@ 3.30 GHz” to determine CPU times. Figure 5 shows the
enhancement ratio EGp=EG for meshes with equidistant
stepwidth Δx ¼ Δy ¼ γΔz and different mesh volume
Nx ¼ Ny, Nz as function of the aspect ratio Nz=Nx. For
aspect ratios greater than 0.3 the enhancement factor is
approximately 10 or lower. It should be noted, that the mesh
volume for a full-bunch calculation is usually much larger
than for one period. The numerical effort for full bunch
simulations with high number of particles, for instance the
macroparticles coincide with real particles, is usually not
driven by the computation of the Green’s function, but by
the effort for operations as binning to the mesh, convolution,
field interpolation and particle motion. This effort scales
linear with the number of particles or the mesh volume and
can be significantly reduced by a periodic approach.

E. Mesh-periodicity and symmetry

It is obvious from Fig. 1 that the choice of Sp is not
unique. Nevertheless the convolution of the smoothed
density with the periodic Green’s function might result
in the same values ϕmðj; k; lÞ of the potential on the
mesh. This happens if the mesh supports the periodicity,
which means the vector rp coincides with a mesh vector
jhxe⊥1 þ khye⊥2 þ lhzec as in Fig. 6(b).

For practical simulations it is desirable to use a mesh that
supports periodicity, and to shift the particles of the original
set by a multiple of rp so that they fill a one-period-slice as
in Fig. 1(b) and (c). It stands to reason, to align the slice
with respect to the mesh as in Fig. 1(b). A small volume of
filled mesh cells is preferable.
Meshes that do not support periodicity can be favorable

to avoid extreme aspect ratios of mesh cells, as it would
happen for supported periodicity if the ratio of nonzero
components of rp is extreme. Such a mesh, as in Fig. 6(d),
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FIG. 4. Function fðp; q; 0Þ and absolute error Δfðp; q; 0Þ of the numerical calculation. As f is singular at the origin (p ¼ q ¼ 0), it is
truncated for the plot to values below 10. The transition from the Taylor approximation (for small jqj) to the Fourier series is at jqj ¼ 0.5.
The Taylor approximation is used for the upper part of the sum from Mt ¼ 16 to infinity. The harmonic expansion is truncated after
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gives reasonable results supposed the generating set Sp is
sufficiently smooth. (Sudden changes of density have to be
resolved by the discretization.) The potential has to be
computed in a volume that overlaps partially with the
shifted volume. In overlapping regions the potential is not
quite identical, due to nonperiodic discretization errors.
Therefore an appropriate interpolation between potentials
in overlapping regions (while entering one region and
leaving the other) helps to avoid discontinuous potentials
and infinite fields.
The periodical Green’s function has point symmetry to

the origin Gpðj; k; lÞ ¼ Gpð−j;−k;−lÞ. It is mirror sym-
metric Gpðj; k; lÞ ¼ Gpð−j; k; lÞ if rp · e⊥1 ¼ 0, or
Gpðj; k; lÞ ¼ Gpðj;−k; lÞ if rp · e⊥2 ¼ 0, or Gpðj; k; lÞ ¼
Gpðj; k;−lÞ if rp · ec ¼ 0.

IV. APPLICATIONS

A. FLASH seeding section, with 800 nm energy
modulation of a 1.5 kA bunch

In the seeding section of the FLASH free electron laser
[6–8] an electron bunch is energy modulated by an external
laser and sent through three chicanes and several undulators
as it can be seen in Fig. 7. To investigate microbunching
effects the radiator undulator (after chicane 1) and the

sFLASH undulators (after chicane 2) have been switched
off. The simulation starts directly after the modulator
(longitudinal position 162 m) and ends 10 m behind after
the transverse deflecting structure TDS (at longitudinal
position 204.2 m).
The initial beam (after the modulator) has the following

properties: energy E0 ¼ 585 MeV, charge 0.3 nC, normal-
ized emittance 1.5 μm, peak current 1.5 kA, uncorrelated
energy spread σE ¼ 150 keV and Gaussian longitudinal
and transverse profiles. Therefore, the rms length is 80 fs.
The beam has been energy modulated in the modulator
undulator by a laser with wavelength λ ¼ 800 nm. The
duration of the laser pulse of minimal 30 fs (FWHM) is
short compared to bunch length, but long enough to permit
pseudoperiodic behavior. As the optical beam in the
undulator is much wider than the particle beam, the energy
modulation amplitude Ê (of 250 keV) is nearly transverse
offset independent.
Effects in drift-quadrupole-lattices are the modification

of particle energies, the modification of transverse optics
and plasma oscillations. For the given parameters, the
energy effect is strongest, transverse defocusing is weak
and the length for a full plasma oscillation, in longitudinal
phase space, is about Lp ¼ 120 m [5]. Therefore the
longitudinal phase space distribution is nearly not altered
on the short distance to the first chicane. The longitudinal
dispersion of the first chicane R56 ¼ 220 μm couples
relative energy deviations δE ¼ ðE − E0Þ=E0 to longitudinal
displacements δz ¼ R56δE , and creates density modulation
due to the initial energy modulation. The effect of the
second chicane is weak due to its small dispersion
R56 ¼ 3 μm. More important is the interchange between
density and energy modulation, as it is typical for plasma
oscillations, on the distance between chicane 1 and 3 of
about Lp=6. The bunch current with its modulation is
shown in Fig 8(a). Up to this position, the energy
modulation has grown by more than a factor of ten to
an amplitude of about 4 MeV. This amplification is beyond
the linear regime and this will be exacerbated in the last
chicane with R56 ¼ 170 μm. This longitudinal dispersion is
sufficient to shear particles, that were originally (during
modulation) in one period, over several periods as it can be
seen within the longitudinal phase space in Fig. 9(a). At
rollover “points” in longitudinal phase space, where the
band with particles is folded back, current spikes appear as
can be seen in Fig. 8(b). These spikes cause strong space
charge fields and lead to a complicated energy pattern after
a further drift of about 15 m, see Fig. 9(b).
Figure 9 has been calculated by the established space

charge code Astra [11] with a three dimensional solver
based on the particle-mesh method. For comparison we did
nonperiodic and periodic simulations with our implemen-
tation, called QField. The spatial resolution of all compu-
tations is 20 meshlines per period in longitudinal direction
and 5 meshlines per rms-width in transverse direction. The

FIG. 6. Equivalent generating sets Sp for the same periodic
distribution: (a) volume is not limited to a one-period-slice;
(b) particles in one-period-slice and mesh that supports perio-
dicity; (c) particles in equivalent one-period-slice; (d) particles
without sharp truncation and mesh that does not support
periodicity.
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results of full-bunch simulations with one million macro
particles with Astra and QField-none-periodic can be seen
in Figs. 9 and 10, showing the longitudinal phase space
after chicane 3 and 15 m downstream. As both methods use
the same approach for field calculation and the same spatial
resolution, it is not surprising that the results are in good
agreement.

To verify the periodic approach, we did a high resolution
full-bunch simulation with 20 million macro particles with
QField-none-periodic, and a periodic simulation with same
macroparticle density in only one period. The full-bunch
simulations was done with longer laser modulation (60 fs,
FWHM) to increase the length of the pseudo periodic
range. Figs. 11 and 12 show a short part of the longitudinal

FIG. 7. Seeding section of FLASH: optical functions and layout.

(a) (b)

FIG. 8. Application A: current (a) before and (b) after the third chicane, for 30 fs (FWHM) laser modulation, calculated with
20 million macro-particles.
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phase space around the middle of the bunch, directly after
the last chicane and 15 m downstream. Particles in gray are
periodic repetitions of the simulated particles that are
plotted in blue. Not all simulated particles in the observa-
tion range are plotted to avoid large overpainted areas. (The
number of plotted particles is equivalent for the different
plots.) In the subpanels 11(a), 12(a) for the full-bunch, the
nonperiodic behavior due to finite modulation length is
clearly observable. The subpanels 11(b), 12(b) for the full-
bunch simulation with longer laser modulation show a nice
quasiperiodic pattern that is in good agreement with the
periodic results in Figs. 11(c), 12(c).
Compared to the oscillations in Figs. 11 and 12 with an

amplitude of 3 to 4 MeV, the macroscopic wake is weak:
the peak energy spread of an unmodulated Gaussian bunch,
calculated by Eqs. (3), (5) for an averaged beta-function of
10 m and the section length of about 40 m is 0.35 MeV. In

the range of the laser modulation (�8 μm) the macroscopic
wake is even below 0.17 MeV.

B. FLASH seeding section, with 266 nm energy
modulation of a 45 A bunch

This example compares the three-dimensional periodic
model with a one-dimensional impedance model, for a
periodic distribution that is modulated and compressed to
achieve current spikes of maximal amplitude. Significant
self-effects happen on the drift-quadrupole-lattice after the
four-magnet compressor chicane. The one-dimensional
impedance model averages the longitudinal field of a round
Gaussian beam versus the transverse offset, as derived in
[12], see also [5]. A periodic version of the one dimensional
model was used for the comparison. (The periodic repeti-
tion can be realized either by a summation of the spatially

z [ m]

[MeV]

z [ m]

[MeV]

(a) (b)

FIG. 9. Application A: longitudinal phase space (a) direct after chicane 3 and (b) 15 m behind, for 30 fs (FWHM) laser modulation,
calculated with one million macro-particles, by Astra.

z [ m]

[MeV]

z [ m]

[MeV]

(a) (b)

FIG. 10. Application A: longitudinal phase space (a) direct after chicane 3 and (b) 15 m behind, for 30 fs (FWHM) laser modulation,
calculated with one million macro-particles, by QField.

PERIODIC POISSON MODEL FOR BEAM DYNAMICS … PHYS. REV. ACCEL. BEAMS 19, 034401 (2016)

034401-11



shifted field, or by a summation of the harmonics of the
impedance in frequency domain.)
The setup is the same as before, but with different

parameters and only one active chicane: beam energy
E0 ¼ 700 MeV, bunch charge 0.3 nC, normalized emittance
1.5 μm, peak current 45A, uncorrelated energy spread σE ¼
3 keV and Gaussian profiles. The particle beam is energy
modulated by a laser of wavelength λ ¼ 267 nm with the

modulation amplitude Ê ¼ 0.2 MeV. The dispersion R56 ≈
145 μm of the first chicane is adjusted for maximum
bunching and maximum current spikes as it can be seen
Fig. 13. The second and third chicane are switched off.
Directly before the first chicane, the phase space dis-

tribution is almost not changed by self-effects, due to the
small beam current, the high particle energy and the short
traveled distance to this position. In contrast to the previous

(a)
z [ m]

[MeV] [MeV]

z [ m]

(b)
z [ m]

[MeV]

(c)

FIG. 11. Application A: longitudinal phase space direct after chicane 3. (a) Calculated with QField-non-periodic, one million macro-
particles, 30 fs (FWHM) laser modulation, (b) calculated with QField-non-periodic, 20 million particles, 60 fs (FWHM) laser
modulation, (c) calculated with QField-periodic.

(a)
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z [ m]
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FIG. 12. Application A: longitudinal phase space 15 m behind chicane 3. (a) Calculated with QField-non-periodic, one million macro-
particles, 30 fs (FWHM) laser modulation, (b) calculated with QField-non-periodic, 20 million particles, 60 fs (FWHM) laser
modulation, (c) calculated with QField-periodic.
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example, the particles are tracked through the magnetic
fields of the chicane, but the effect of one- respectively
three-dimensional self fields are so small, that Fig. 13 looks
identical for both cases, and it is not to distinguish from the
corresponding figure for a calculation without self-fields.
The sharpness of the current spikes is not only determined
by uncorrelated energy spread and longitudinal dispersion,
but also by transverse emittance and second order coupling
to the longitudinal direction. The current spikes are very
short and the bunching factor bn ¼ jP expðin2πzν=λÞj=N
is above ten percent even for spectral lines beyond the 30th
harmonic. The required resolution of the longitudinal mesh
has to be much better than λ=30. It is set to 0.6 nm, which is
450 meshlines per period of the fundamental modulation
and thus below the shortest possible rms length of
R56σE=E0 that would appear if the particles are ideally
(linear chirp, no nonlinear effects) compressed to minimal
length. There are about 220000 electrons per period which
are directly simulated. A macroparticle number equal (or
higher) than the number of electrons can be easily handled
with the periodical approach.

The particle distribution with sharp density spikes is
tracked about 23 m through quadrupoles and drifts to the
exit of the (inactive) third chicane. Figures 14, 15 show
the longitudinal phase space, the bunch current and the
bunching for the one- and three-dimensional field model.
The current spikes are diverged and the high harmonic
content is significantly reduced, in good agreement with
both models. It can be seen that the slope of the initial saw-
tooth-like modulation has been reduced, similar to the
reduction of the energy modulation during a plasma
oscillation, after a length that is short compared to the
period length. In the one-dimensional model all particles in
one slice feel the same longitudinal field. Therefore the
only mechanism to increase the slice energy spread is
individual longitudinal particle motion. The longitudinal
field in the spikes is strongest and causes an energy
modulation comparable to the initial laser modulation
and a large energy spread. But the space charge distribution
significantly violates the requirements for the one dimen-
sional approach of a long bunch: γσz ≫ σ⊥. The length of
the current spike of few nanometers times γ is not large

FIG. 13. Application B: longitudinal phase space, current and bunching after 1st chicane.

FIG. 14. Application B: longitudinal phase space, current and bunching after 3rd chicane, calculated with one dimensional impedance.
Chicanes 2 and 3 are off.
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compared to the typical transverse dimension of about
100 μm (that follows from the emittance ϵ ¼ 1.5 μm=γ
and the beta function in Fig. 7). The vectorial field of
the three dimensional model depends on the transverse
offset and is integrated along betatron trajectories. (For the
other extreme of flat bunches γσz ≪ σ⊥ the longitudinal
field is proportional to the transverse density, as ∂Ez=∂z≈
divE ¼ ρ=ε0.) This increases the slice energy spread as it
can be seen in Fig. 15.

C. Parasitic heating after LCLS laser heater

At LCLS a laser heater is used to increase the uncorre-
lated energy spread of the electron beam to counteract a
microbunch instability [14]. Therefore the electron beam is
energy modulated in an undulator that is in the middle of a
short chicane, see Fig. 16. The periodic modulation directly
after the undulator is (in principle) visible in longitudinal
phase space. This is different after the dogleg comprising of
the last two chicane magnets: the angular divergence before

the dogleg, due to emittance, causes spatial longitudinal
divergence due to the dispersion parameter r52. This z-
divergence is large compared to modulation wavelength so
that the periodic behavior is obscured, see ðΔE; zÞ-diagram
in Fig. 19. Similarly, in spatial space appears no pattern of
the harmonic excitation, see ðx; zÞ-diagram in Fig. 19.
Therefore it was unexpected to measure energy spectra with
rms widths that are not proportional to amplitudes of the
exciting laser field. The position of the spectrometer can
be seen in Fig. 16. This effect is a clear indication for
self-effects and has been discussed, explained and esti-
mated in [10].
We give a simplified explanation for this effect. The

transport equation from the exit of the laser heater undu-
lator to an arbitrary position after the dogleg is

�
x

z

�
¼

�
r11 0

0 1

��
x0
z0

�
þ
�
r12
r52

�
x00 þ

�
r16
r56

�
δ̂ cosðkz0Þ;

ð38Þ

with x0, x00, z0, δ0 ¼ δ̂ cosðkz0Þ the phase space coordinates
after the undulator and x, z the spatial coordinates (at the
arbitrary position) after the dogleg and the relative modu-
lation amplitude δ̂. The energy spread before the undulator
is neglected and for the beginning we neglect also the
contribution of x0. Figure 17 illustrates the transformation
by Eq. (38): an equidistant orthogonal grid in the ðx00; z0Þ-
plane is transformed to the ðx; zÞ plane. The chosen
numbers are typical for the given setup. It is obvious that
the original area has been sheared and modulated and
spatial density oscillations have been created. Also particles
with the same initial coordinate z0 but different slope x00 are
distributed horizontally, they are still located on lines. To
achieve a homogeneous spatial mixing, a horizontal spread
of x0 is necessary that is coupled by r11 into the horizontal
direction again. Supposed the fluctuation of r11x0 is
sufficiently large (compared to the horizontal distance

FIG. 16. Application C: the LCLS injector layout showing laser
heater, transverse rf deflector OTR/YAG screens wire scanners,
and spectrometers, from [10].

FIG. 15. Application B: longitudinal phase space, current and bunching after 3rd chicane, calculated with three dimensional
impedance. Chicanes 2 and 3 are off.
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between lines withΔz0 ¼ λ), then the density is uniform, as
for instance in Fig. 19. This is different in the vicinity of
zero crossings of r11 as in Fig. 18 with r11 and optical
functions βx, βy. At these positions appear spatial density
fluctuations and space charge fields cause an additional
energy modulation, which is correlated with the original
modulation.
Figures 19, 20, and 21 are results of a numerical

simulation with the periodic space charge solver of the
setup described in [10] (E ¼ 135 MeV, σE ¼ 2 keV, peak
current 37 A, charge 250 pC, normalized emittance 0.4 μm,
modulation wavelength λ ¼ 758 nm). The beam is heated
to σE ¼ 8 keV. The blue particles in the ðΔE; zÞ- and ðx; zÞ-
diagrams are particles that have been in the same longi-
tudinal period during modulation, the gray particles are a
periodic repetition. Figure 19 refers to a position short after

the laser heater chicane. The particles behave as expected
by a theory neglecting self-effects: the oscillating behavior
is not visible, the particles are longitudinally smeared over
a length larger than the period λ. The spectral density agrees
with the predicted double bump structure [15]. Figure 20
refers to the position 15.5 m, close to the zero crossing of
r11. In the spatial diagram the periodic pattern appears as

z0 [ m]

0x [ rad]

z0 [ m]

x [ m]

FIG. 17. Application C: visualization of transport transformation of ðz0; x00Þ, after laser heater undulator to ðx; zÞ, at 15.5 m position for
particles without offset x0.

FIG. 18. Application C: beta functions and r11 from the end of
the laser heater undulator to an arbitrary lattice. The plot range is
from the exit of the undulator to the beginning of the spectrometer
magnet.

z
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x [ m]
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FIG. 19. Application C: longitudinal phase space ðΔE; zÞ, top
view ðx; zÞ and energy spectrum for the position 11 m, short after
the chicane.
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microbunching, although the relative longitudinal position
of all the particles is not changed. The space charge fields
due to the microstructure changes the particles energy and
alters the energy distribution: the spectrum is different and
its rms width is increased. At the position 17.5 m shown in
Fig. 21, no microbunching is obvious but the energy
distribution is significantly widened to σE ≈ 12 keV.
Figure 22 shows the rms energy spread along the beam
line for different heating strengths. The blue 2 keV curve is
calculated without heating, the thick black line refers to a

z [ m]

z [ m]

[keV]

x [ m]

[1/keV]

FIG. 20. Application C: longitudinal phase space ðΔE; zÞ, top
view ðx; zÞ and energy spectrum for the position 15.5 m, near the
zero crossing of r11.
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FIG. 21. Application C: longitudinal phase space ðΔE; zÞ, top
view ðx; zÞ and energy spectrum for the position 17.5 m.
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FIG. 22. Application C: energy spread after the laser heater
chicane as function of the beamline coordinate. The initial spread
varies due to different laser modulation.
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FIG. 23. Application C: energy spread at the spectrometer
(position Z2 ¼ 19 m) as function of the spread directly after the
laser heater chicane (position Z1 ¼ 11 m). The initial spread
varies due to different laser modulation.
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heating (from initially 2 keV) to 8 keV as in the previous
figures. The parasitic heating effect can be clearly seen. The
characteristic of this heating is described in Fig. 23 showing
the rms energy spread at the spectrometer entrance versus
the initial energy spread. It is remarkable that parasitic
heating changes not only the rms width but also the shape
of the spectrum, see Figs. 19, 20, and 21 with the energy
spectrum in the upper right plot.
This calculation has been performed with one million

macro particles per period although the number of electrons
per period is approximately 550 000. The longitudinal
resolution is Δz ¼ λ=50, the transverse resolution is
Δx ¼ Δy ¼ γΔz, so that the Lorentz transformed mesh
has the same resolution in all directions. The phase space
pictures have been computed separately, with a resolution
of 20 meshlines per period.
Figure 24 shows the publishedmeasurement [10] together

with a periodic and nonperiodic simulation with QField.
Although the shapes agree qualitatively, the results are not in
good agreement. The first maximum of the measured curve
describes a heating from 7.5 keV (“with laser only”) to
28 keV. The corresponding maximum in the Qfield diagram
is a heating from 7 keV (“with laser only”) to 12 keV.
For details about the curve “theory (laser þ LSC)” in
diagram (a) please refer to the original publication [10].

V. CONCLUSION

In this paper we developed a method to calculate the
potential and electromagnetic field of a periodic charge
distribution that moves in free space with constant velocity.
The charge distribution is three dimensional and periodic in
one direction of space. The numerical technique is a
modification of the well-known particle-mesh-method with
fast convolution of the discretized source with the Green’s

function of one cell. An efficient method has been described
to compute the periodic Green’s function so that only
particles, representing one period, have to be considered
for the convolution.
The method has been demonstrated with examples of

pure spatial periodicity into the direction of motion. For
example (A) a comparison with nonperiodic simulations is
shown. Although the quasiperiodic part of the bunch is
quite short, a good agreement is achieved. A nonperiodic
simulation for example (B) was beyond the available
computational capacities. For example (C) some points
of the curve in Fig. 24(b) have been verified with large
effort by nonperiodic simulations with lower spatial reso-
lution. The CPU time requirement for each point was about
1000 times larger despite the lower resolution.
Not all capabilities of the method have been demon-

strated by these examples. For instance a density modulated
beam with energy chirp represents a periodicity in geo-
metric- and momentum-space. Due to longitudinal and
transverse dispersion the periodicity vector rp changes its
length and direction and deviates from the direction of
motion. This happens in bunch compressor chicanes.
The periodic approach is numerically much more effi-

cient than nonperiodic simulations of bunches with qua-
siperiodicity, as the number of particles and the volume of
the problem domain is reduced by orders of magnitude.
The generalization of the Poisson approach to a Maxwell

approach with coherent synchrotron radiation (CSR) is a
topic that has not finally been solved, see f.i. [16].
Particularly the conditions for a periodic approach are more
restricted, as CSR effects include long range interactions,
while the shape of the source distribution might change on
that distance. On the other hand, simplified CSR models,
that describe the interaction by a time-dependent, offset-
independent longitudinal wake, are widely used and can be

(a) (b)
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FIG. 24. Application C: (a) measurement with the 135 MeV spectrometer [10], (b) simulation with QField-periodic and QField-
nonperiodic.
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considered in a periodic approach. In the linear regime of
weak microbunching this is done in with a local steady state
impedance [17,18] and a transient impedance [19].
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