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Simulation of nonlinear superconducting rf losses derived from
characteristic topography of etched and electropolished niobium surfaces
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A simplified numerical model has been developed to simulate nonlinear superconducting radiofrequency
(SRF) losses on Nb surfaces. This study focuses exclusively on excessive surface resistance (R;) losses due
to the microscopic topographical magnetic field enhancements. When the enhanced local surface magnetic
field exceeds the superconducting critical transition magnetic field H ., small volumes of surface material
may become normal conducting and increase the effective surface resistance without inducing a quench.
We seek to build an improved quantitative characterization of this qualitative model. Using topographic
data from typical buffered chemical polish (BCP)- and electropolish (EP)-treated fine grain niobium, we
have estimated the resulting field-dependent losses and extrapolated this model to the implications for
cavity performance. The model predictions correspond well to the characteristic BCP versus EP high field
Q, performance differences for fine grain niobium. We describe the algorithm of the model, its limitations,

and the effects of this nonlinear loss contribution on SRF cavity performance.
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I. INTRODUCTION

The roughness of superconducting radiofrequency (SRF)
surfaces has long been recognized as influential on mech-
anisms which limit the performance of niobium SRF
resonators [1]. Decreasing cavity unloaded quality factor
Q, reflects an increasing of average surface resistance, R;.
Several models attempt to explain the dependency of
quality factors at different accelerator fields. Agreement
of these models and experiments has been mixed [2].
Surface roughness has been associated with increased
losses, lower quench fields, and increased difficulty in
cleaning. Various surface treatments are implemented to
achieve beneficial smoothness. Typical surfaces have been
statistically characterized and analyzed. Different treat-
ments modify surface features at various lateral length
scales [3,4]. However, it has not been well established just
how the details of topographical features directly affect
integrated rf performance. It is understood that sharp
features promote magnetic field enhancement and may,
under appropriate conditions, initiate quench [5,6].

Knobloch et al. estimated rf loss from a grain boundary
edge and extended this estimate to anticipated effects in
an SRF cavity [5]. Here, this method is improved by a
detailed finite element method simulation. This simulation
also integrates both rf field and thermal calculations on
representative niobium SRF surfaces obtained by AFM
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profilometry with micrometer resolution rather than infer a
distribution function of local field enhancements from
observed cavity performance constraints. In addition, we
allow the size of local normal conducting volumes to be
determined dynamically, rather than assuming a fixed
width and depth as was done in [5]. Second, this simulation
incorporates the temperature dependency of various super-
conducting material properties. We customized an algo-
rithm to iteratively compute rf losses under steady state
conditions. Our analysis provides for no fit parameters, just
direct calculation limited by the available mesh resolution.
Such an attempt to model increased rf losses due to
topographic enhancements has not been previously
reported. Third, we will relate the simulation results to
accelerator cavity performance differences associated with
either chemical etching or electropolishing finishing steps.

Typical buffered chemical polish (BCP)-treated fine
grain Nb cavities commonly show a Qg that starts to
decrease with dramatic slope when the accelerating gra-
dient increases from 16 to 22 MV/m. This occurs even
after the cavities are treated with a postchemistry bake
[7-9]. In some extreme cases, cavities exhibit this kind of
nonlinear loss when the accelerating gradient is as low as
15 MV/m. After electropolish (EP) treatment, this Q,
decrease is removed [9-11]. This frequently encountered
phenomenon is dramatically illustrated in Fig. 1, which
presents the performance of Jefferson Lab CEBAF seven-
cell prototype cavity HGO06 with very heavy BCP etch
followed by a 30 ym EP, with no field emission loading in
any test [12]. Such a difference in performance has come to
be qualitatively associated with field enhancements of
the “rougher” BCP-treated surface. Such roughness from
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FIG. 1. Performance of Nb cavity HGO06 after a very heavy
etching BCP and a subsequent 30 yum EP [12].

chemical etching can be highly variable depending on
crystalline structure and defect density of the niobium
surface and amount of material removal. Since the principal
difference between these two surface states is microscopic
topographical roughness, these results suggest that man-
aging topography evolution plays a critical role in improv-
ing useful cavity gradient.

Compared to EP surfaces, BCP-treated surfaces have a
higher root mean square (rms) height variation and a greater
density of sharp features [3,4]. Those high and sharp
features enhance the local magnetic field, and the enhanced
magnetic field at these local features may exceed the
superconducting critical field H.;. As a result, local
superconducting transition is initiated and small areas
may become normal conducting. For niobium, in general
a mixed state occurs and transition is quite complicated. As
a weak type II superconductor, Nb has a Ginzburg-Landau
factor around 1.3, close to type I superconductors [13].

In this paper, we focus our study on the topographical
enhancements to surface rf losses. For simplification, we
simply treat Nb as a type I superconductor. Thus, a mixed
state will be ignored and Nb will become normal con-
ducting whenever the local field exceeds H,, as a type I
superconductor. We choose to simplify the normal to
superconducting transition by using a single value H_;
to identify normal and superconducting boundary. In a
more complex case, a section of material under the surface
will be in a mixed state when H; is reached. Thus the
normal and superconducting boundary will become a belt
rather than a line. This belt volume represents the mixed
state. With added complexity one could calculate the rf loss
within this belt and the normal-conducting zones. We leave
that effort for future research. In this analysis, the precise
value of H_j;, is open for discussion; somewhat arbitrarily
we use the superheating field Hg, in our simulations [14].

Note that this Hg, changes dynamically according to the
local temperature and also may be suppressed via the
mechanism described by Kubo [15]. Uncertainty in
the precise value of the effective H; has little impact
on the resulting analysis of the present paper, but remains
an opportunity for further future refinement.

The local effective field enhancement may be quantified
by the local geometric magnetic field enhancement factor
(LGMEFE). This index is a ratio of local enhanced magnetic
field over the nominally applied rf field [16,17].

The magnetic field amplitude decays exponentially in
the Nb material. When the surface H field is greater than
H., alocation inside the surface will have an H field less
than H . In this circumstance, there is an interface between
normal conducting material on the surface and super-
conducting material in the bulk. Because the electric time
constants are so short compared with the rf frequency, this
interface is moving along with the rf phase in our
simulation relevant to 1-2 GHz cavities. An excess 1f loss
is generated by these small normal nucleation sites on the
surface. Moreover, this rf loss raises the local surface
temperature and consequently reduces the local H,. The
positive thermal feedback aggravates the normal con-
ducting transition. Detailed calculation is needed to evalu-
ate the local rf loss and attendant temperature rise. The
consequential additional rf loss can be expressed as an
increasing effective surface resistance [18,19]. In addition,
a temperature map may be calculated to estimate the local
H,. Temperature rise would increase the normal zones
and bring additional loss. In this analysis, electromagnetic
and thermal iterations are adapted to mimic this thermal
feedback condition. Stable solutions are approached with
a convergence. We propose a model to calculate nonlinear
rf loss from microscopic surface topographical features.
An averaged surface resistance as a function of applied
H field is given to compare with cavity cold testing
experiments.

In this analysis, electromagnetic and thermal simulations
are numerically provided by the finite element method
(FEM). Corresponding field-dependent rf Ohmic losses are
characterized from surface topography associated with two
types of popular surface treatments. The effective R, values
are calculated, and corresponding quality factor, Q, versus
accelerating gradient, E, curves are generated from this
analytic model. The model may be applied to cavities with
various surface treatments in order to further understand
and predict the influence of surface topography on practical
resonators at high surface magnetic fields.

II. METHODOLOGY

A. Electromagnetic calculation

To calculate the electromagnetic field distribution near a
surface, Maxwell’s equations must be solved with a
boundary condition by an eigenmode solver [20]. We
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reorganize the Maxwell equations into a Helmholtz equa-
tion as shown:

(V2+ kg =0, (1)

where ¢ is the magnetic scalar potential and wave number
k= |k| =<

After separation of variables, space ¢(r) and time T(¢)
give general wave solutions. An example of 1D solution is

expressed below:

o(r) = chik”'r + ZCze_”‘"",
T(f) =) Dyel™" + Dye on, 2)

In our case, we simplify the wave equation into a static
form near the surface. The simplification is appropriate
when the second term in Eq. (1) is much smaller than the
first term. This is applicable when the simulated area lateral
size is much smaller than the rf wavelength. In our
simulation, the lateral scale [ is 100 ym while wavelength
A at 1.5 GHz is 20 cm. At this simulated scale, the wave
number k has an order 107> cm™!. The sinusoidal field
difference within the simulated length is trivial. Therefore,
the dominating equation reduces into a Laplace equation,
given in Eq. (3):

V2 = 0. (3)

FEM and conformal mapping methods are used to solve
the Laplace equation in 2D. The rf H field gets enhanced
when it crosses the groove features and remains uniform
when the H field comes along the groove direction. Note
that ¢ in Egs. (2) and (3) can be interchanged with any
vector fields and scalar potentials, such as electric field E,
magnetic field H, magnetic flux B, magnetic scalar
potential ¢ or magnetic vector potential A. In this study,
we use magnetic scalar potential ¢, because it has a set of
simple boundary conditions.

We take a representative surface strip profile obtained
from AFM characterization of a fine grain Nb surface. This
surface is reasonably presumed isotropic at a scale of
100 um since the typical fine grain Nb has grain size
20-50 pm. The boundaries of our model to describe the
magnetic scalar potential, ¢, near this surface are labeled
with numbers in Fig. 2. Boundaries 1 and 3 are a pair of
periodic boundary conditions. We assign them Dirichlet
boundary conditions where two arbitrary magnetic scalar
amplitudes are given. These two values determine the
applied parallel H field far from the surface. This parallel
H field has a range from 80 to 210 mT in this simulation.
Boundary conditions for boundaries 2 and 4 are the
Neumann boundary conditions because they are treated
as perfect electric walls. Boundary 4 is a surface

FIG. 2. Configuration used for the simulation model calculation
on a cross-section fragment of a BCP-treated sample surface. The
area bounded in blue represents vacuum volume. Borderlines 1
and 3 determine the exciting magnetic field. Borderline 2 and 4
are perfect electric conductors (PEC), while border 4 outlines
a BCP-treated surface profile, also PEC, acquired by AFM
scanning. Unit: pm.

characterized by AFM from a practical BCP-treated sam-
ple. In this analysis, we take H. = 190 mT [14].

In Fig. 3, the conformal mapping calculation yields the
nominally horizontal solid lines as E equipotential con-
tours, while the vertical dotted lines are magnetic equi-
potential contours. The magnetic field at each point on the
surface Hpanced(*) may be calculated as a function of
horizontal position (x) by FEM. The solution obtained is
the maximum amplitude of surface magnetic potential. The
time dependent term must be added to represent the rf phase
variation. The accuracy of the calculation is related to the
surface characterization sampling and FEM resolution.

After FEM calculation, the magnetic field on the surface
is computed by taking the derivative of the scalar potential
along the surface. The LGMEF indexes along the hori-
zontal x are plotted in Fig. 4. The LGMEF factors are
observed varying from 0.4 to 1.9. These amplitudes are
attributed to the local surface topographic “sharpness.” The
LGMEE factor is greater than 1 on surface protrusions and
smaller than 1 on valley areas.

When the applied magnetic field increases, the local H
field may begin to exceed H, at some surface areas where
normal zones begin to nucleate. There then exists a normal
and superconducting interface beneath the surface. In this
study, we presume the superconducting to normal con-
ducting transition would follow the change of the rf field

033501-3



XU, REECE, and KELLEY

PHYS. REV. ACCEL. BEAMS 19, 033501 (2016)

T T T T T T

T T T T T
] ! ] i L
- i ;

4+ i ‘E : { i e
: : -} (' 4’ t

1 T T T ) 1 1 : ;

I lI T T i H 3
: lw_'—+—l——

2t T L

I 1 1 . L 2

0 20 40 60 80 100
b'e

FIG. 3. Electromagnetic equipotential contours by conformal
mapping calculation. The vertical dashed lines are E field lines,
and horizontal lines are magnetic field lines. Unit: ym.

magnitude. Thus, this interface moves inward and outward
with rf phase. The location of this interface is determined
by FEM at each snapshot. Mathematically, this situation is
widely known as the Stefan moving boundary problem, and
it simulates surface crystallization processes and other
phase transition problems [21]. An additional borderline
5 is introduced on Fig. 5. This outline 5 represents the
interface, which we term the “normal conducting phase
front.” The tangential magnetic field value on this boundary
is equal to the local H.. Boundary 4 is subsequently
ignored, because H field decay within the normal zones
between outlines 4 and 5 is negligible. The rest of the

08 1

0.40

FIG. 4. The LGMFE map is calculated from the profile
in Fig. 2. These indexes do not change with the applied field.
Unit: ym.
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FIG.5. Configuration used for simulation model calculation on

cross section fragment of the real BCP-treated sample surface.
The area bounded in blue represents vacuum volume. Borderlines
1 and 3 determine the exciting magnetic field. Borderline 2 has a
PEC boundary condition. Additional border 5 defines an interface
of normal and superconducting materials and also is PEC.
Unit: ym.

configuration in Fig. 2 remains unchanged. Conditions on
boundary 5 are expressed in Eq. (4). In the particular
instance illustrated in Fig. 5, the applied H is greater than
H, for clarity:

HJ_ZO

on boundary 5. (4)
Hll = Hcritical

1. Iteration method

Now let us discuss how to determine the location of this
phase front. The basic algorithm is an iterative simulation
until the known boundary conditions on the moving

[ Calculate the magnet field on actual surface profile (FEM) ]‘—

Field along the surface?>
Threshold transition field Hc

YES
Continue on next
surface ‘ Reduce the local coordinates

downwards by 0.1% by height
reconstruct anew surface

]_

FIG. 6. Flowchart to determine the interface between the
normal conducting and superconducting conducting materials.
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boundary are locally matched. The boundary conditions on
this moving contour are listed in Eq. (4). Starting from the
physical surface, one can calculate surface H field at a
given applied field. If any location on this changing
boundary field has a local H field greater than H,., then
the next step is to reduce this local surface height by a
certain small amount. Continue calculating the field on this
moving boundary until the local field on this boundary is
equal to or less than H .. Presumably, the H field decay is
negligible within the very shallow depth of the normal
conducting zones. This is a reasonable assumption when
the zone depth is a small fraction of the normal conducting
skin depth. Localization of this phase front is thus calcu-
lated within certain error limitations. Accuracy can be
improved at the expense of computing time. The iteration
method is illustrated in the flowchart of Fig. 6.

2. Simulation results and comparison

Figure 7 provides the simulation results of the normal
conducting phase front’s deepest penetration when the
amplitude of applied H field ranges from 100 to
180 mT. The areas between the red and blue lines indicate
the maximum normal zone volumes during each rf cycle.

At low field, there is no normal zone because the local
field is weaker than H,.. For example, if the highest
LGMFE index on a surface is 1.8 and H,. is taken as
190 mT, the normal zone would be expected to nucleate
when the applied H field reaches 105 mT.

B. Thermal simulation and its correction iteration
1. Heat equation

In this study, a thermal calculation uses the results from
the electromagnetic simulation as input. This input includes
the normal conducting/superconducting phase front loca-
tion and H field distribution. A goal for this thermal
simulation is to generate a temperature map internal to
the Nb from the rf surface to the external helium bath. The
simulation estimates a temperature map in order to

determine the material’s phase, thermal conductivity, and
dissipative losses in a self-consistent way.

After using the electromagnetic simulation results to
obtain a temperature map, one can reassign the temperatures
back to the material at each position to then determine the
thermal conductivity. The change of thermal conductivity
initiates the next round of temperature simulation. This
iteration method may modify the normal-conducting phase
front location results from the electromagnetic simulation,
especially if the temperature of the normal conducting and
superconducting interface is higher than T ... In this thermal
study, a second FEM computational code was developed to
estimate the temperatures.

Thermal diffusion is governed by the partial differential
equation:

or .
= = divla(T) - V1] + 4. (5)

where T is temperature, ¢ is related to the internal heat
source density, and « is the thermal diffusivity. Note that
this diffusivity is a function of temperature.

Additionally, the internal heat source density can be
further expressed as

7Q(t,x,y,z) and a:L, (6)

q(t.x.y.2) 2Ch oC,
where Q is the heat generated at a given position and time,
is the thermal conductivity, p is Nb density, C, is specific
heat capacity, and 7 is time. This heat is generated by rf loss
on the surfaces.
For the static state solution, Eq. (5) reduces into

div[a(T) - VT] = a(T)V>T + (VT)Z% =—q. (7

Note that the thermal conductivity is also temperature
dependent.

2 T T T T T T
= Actual surface
1L~ Calculated NC/SC boundary |
1:100mT 1
2:150mT 2
pf 3.180mT 3 i
N
1+ -
2k -
3 1 1 [l 1 Il 1
-20 0 20 40 60 80 100 120

FIG. 7. Normal conducting phase fronts as calculated from different excited fields. Unit: ym.
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With the first order solution, the thermal conductivity is a
constant because the temperature difference on the surface
is small. Equation (7) further reduces into a Poisson
equation:

a(T)V2T = —G = —M (8)

pCp

The right term ¢ in Eq. (8) is treated as a dynamic source,
the rf power loss at a given field. The thermal diffusion time
constant ¢ is determined by 1% /a. The 1 is characteristic size,
which is 100 ym. The «a is the thermal diffusivity, which is
5000 cm2sec”! at 4 K [22]. Therefore, the thermal
diffusion time constant is of order 1077 second. This
means temperature change is slow compared with the rf
field changes. The g in Eq. (8) may then be an averaged
thermal source, and the temperature map at an equilibrium
state is calculated at a given field amplitude.

The thermal simulation setup is illustrated in Fig. 8. The
vertical simulated length is 3.3 mm, which is a typical
cavity wall thickness. To confidently model the temperature
map in a bounded area, the horizontal scale needs to be
comparable to the cavity thickness. If the lateral length is
set too small, the simulation leads to temperature calcu-
lation error because both side boundaries are heat isolation
conditions. However, setting the lateral zone too large costs
computation inefficiency. We take a lateral length of
6.6 mm in our simulation to simulate the thermal response
of an isolated defect region under typical cavity cooling
conditions. The geometry adaptive meshing technique
computationally focuses attention on surface roughness

051
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£
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1 3
4
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X (m)
251
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4 3 2 K] 0 1 2 3 4
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FIG. 8. Typical temperature simulation area in 2D dimension:

Borders are labeled in numbers. Borders 2 and 4 are rf surface and
helium interfaces respectively, and borders 1 and 3 have thermal
isolation boundary conditions. Inset: The surface roughness
feature is highlighted. The grey area represents the internal heat
source location. Unit: ym.

features because the area ratio between roughness features
(inserted) and the whole simulated area is small [23].

Boundary conditions are illustrated in Fig. 8. Borders 1
and 3 satisfy Neumann boundary conditions. Border 2 is the
rf surface. The inset in the figure is an enlargement where the
isolated surface feature for assessment with a lateral scale of
100 pum is located on the center of border 2. The grey area
shows the heat source zone. The convection cooling boun-
dary condition is applied at border 4. Mathematically, it is a
Robin or absorption boundary condition (ABC), and it can
be expressed as below [24]:

oT .
K% = hKap(T - Tbath) =49, (9)

where « is thermal conductivity, and hg,, is the Kapitza
conductivity between helium and Nb. Both /,, and « are

temperature dependent. These dependencies are given in
Eq. (10) [25,26]:

K(T) = 0.761.65T—0.1T2< w )

K-m
(T.To) 4.65 THLS(EY) + 1
hKap T, TO =200-T* = =
4 () 4+ 0.25(550)?
w
x (K-m2)T_ Ty < 1.4 K. (10)

Next, we further consider the heat source term Q in
Eq. (8). Note that the commonly used surface area
integration of Eq. (11) is applicable only if one presumes
that the H field homogeneously penetrates the uniform
surface within a skin depth. Our simulation is an unusual
circumstance because the normal conducting dissipative
layers are thinner than the normal conducting skin depth,
unlike an assumption taken in [5]. This means Eq. (11) is
not suitable for the loss calculation here:

~ 1 2
Q:/EXRsurfaceXH dS (11)

Since this assumption is not valid in our simulation case,
the rf dissipated from a small normal zone volume should
be an integration based on the local electric field and
electrical conductivity as in Eq. (12):

. 1
Q:/ExaszdV, (12)

where ¢ is electric conductivity, E is the volume electric
field, and the integration Q is the loss in the volume of the
normal zone.

The electric field in the normal zone may be calculated
from a quasistatic increasing H field from Maxwell-
Faraday law in Eq. (13):
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OE

T ouH

ay (l)/" X

OE,

e —wuH,. (13)

Note, in our model the electric field lies in a direction
perpendicular to the plane of the paper and has integrated
amplitude described by Eq. (14):

y X
E.(x,y) = wﬂSiHWI</—g—(£dy+ g—g;dx)
+E0(x07y0)7 (14)

where electric field Ey(xg,y) is E field on the normal
conducting and superconducting interface. Its value is set to
zero. Equations (13) and (14) suggest that rf power loss is
proportional to @?.

Numerically, rf power loss is calculated in the form of
discrete power density on each element. This loss is the input
for the thermal simulation. Compared to the rf loss in the
normal zone, the rf loss from the superconducting zone is
small and neglected at this stage. Thermal conductivity is
updated locally after each iteration until a temperature map
converges on each element. The algorithm is illustrated in the
flowchart in Fig. 9. With a converged temperature map, the
resulting rfloss is expressed by an effective surface resistance.

2. Simulation results and comparison

Using the results described in Fig. 7, the calculation
results of the consequent temperature map inside the cavity
wall are demonstrated in Fig. 10. The simulated setup
configuration is from the model of Fig. 8, and the results in
Fig. 10 are at two different applied H field levels.

Initial condition: presume conductivity is uniform @2k and add the external heat
from previous electromagnet NC/SC boundarv

= o

[ Solve the Poisson equation and obtain Temperature mapl ]

= b

Reassign both conductivitv corresponding to Previous T map1l,
Solve the Poisson equation and obtain Temperature map2.

et

If Tmapl —Tmap2<
Tolerance

Calculation halts and renders
Temperature map.

FIG. 9. The flowchart of thermal equation simulation. It is used
to calculate the temperature distribution.

(@)

Temperature Map (mK)
EEE

o
-

(b)

Temperature Map (mK)
8

0s 0 o5
s A as’ 57 —— a3
25 T
3

Cavity Wall thickness (mm)

FIG. 10. Temperature maps calculated for applied magnetic
field of (a) 100 mT and (b) 120 mT with the isolated 100 ym
rough strip from Fig. 8. The maximum temperature reaches 2.094
and 2.300 K, respectively. The helium bath condition is 2.00 K.

In Fig. 10(b), the radius of significantly heated zones on
the surface can be as large as mm scale from a localized
feature. With an exciting field of 100 mT, the highest
temperature is calculated to be 94 mK higher than the
helium bath temperature. At an exciting field of 120 mT,
the highest temperature is around 300 mK higher than the
helium bath temperature. These temperatures are far below
the Nb transition temperature 9.2 K, suggesting that there is
no significant thermal correction on the normal conducting
zone size. It is thermally stabilized.

C. Electromagnetic and thermal iteration simulation

Superconductivity is bounded by three threshold critical
parameters: current, magnetic field, and temperature.
Temperature strongly influences the critical transition H,
and further defines the normal conducting and super-
conducting interface location, which in turn determines
the effective surface resistance [1]. Fortunately, H,. varies
little at low temperatures. Hence, this correction has a
minor effect on rf loss estimate. H, (T) is typically
corrected below in Eq. (15) [1]:

H,(T) = H,(0K) [1 - <1> 2]. (15)

T,

The location of the normal conducting phase front will be
corrected numerically by the new temperature. Since the
temperature rises at the sharp topographic features, local H,.
would decrease. Thus, a new electromagnetic and thermal
configuration requires a recalculation. Therefore, we need to
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Boundary condition:

Hoerpendicular= He (T) on NC phase front.

§

Thermal conductivity (T) in bulk.

Kapitza (T) at the Helium Boundary.

j

Electromagnetism

interface.
simulation

1. EM determined NC/SC

2. EMfield E/H configuration.

Thermal simulation

Output: 1.Temperature map.

2. Integrated and discrete RF Power dissipation on elements.

.

FIG. 11.
simulations are detailed in Secs. Il A and II B in Figs. 6 and 9.

introduce a thermal feedback model including the H.(T)
dependency and generate a higher level iteration that
includes both simulations described in Secs. Il A and I1 B
[22]. The flowchart of this big iteration is given in Fig. 11.

2

ol mmmn |
wam TP
") ‘mryrf,w.m..k 3551,!‘,‘;“‘%;gtgggsgm«, |

FIG. 12. Electromagnetic calculation model for electropolished
Nb surface. Note: The axis ratio is set as 3:1 to show in a
distinguishable format. The inset is an enlargement where the
axis ratio is 1:1. Unit: ym.

(a)

X 20.000 pm/div
80 Z 5000.000 nm/div

FIG. 13.

Flowchart of electromagnetic and temperature simulations. It is used to correct the size of the normal conducting zone and to
estimate the rf loss. The flowchart shows a “big” iteration with two

“small” iterations. Results of electromagnetic and thermal

Similar to the representative BCP-treated Nb surface in
Fig. 2, an electropolished (EP) fine grain Nb surface was
characterized by a 100 um AFM scan and is plotted in
Fig. 12. The same FEM calculation was conducted with the
same boundary conditions described in Fig. 2, only
exchanging boundary 4 with the representative EP surface
profile. For this simulation, a geometry adaptive meshing
was used to accommodate the fine surface features. The
inset in the figure is an enlargement of meshing elements on
the center of boundary 4 with an equal axis ratio.

III. APPLICATION TO CHARACTERISTIC
ETCHED AND ELECTROPOLISHED NB
SURFACE TOPOGRAPHIES

The described integrated analysis above was applied to
two 3D AFM profiles from BCP- and EP-treated fine grain
Nb surfaces. Such representative surfaces can be replicated
from cavities without undermining their performances
[27-29]. The AFM scans used in this analysis are plotted
in Fig. 13. The AFM characterization area covers
100 x 100 ym. The effective raster strip width depends
on the sampling rate, which is 512 x 512 in our case.

X 20.000 pm/div
80 Z 5000.000 nm/div
um

AFM images from a fine grain niobium sample with (a) ~100 ym removal by BCP, (b) after electropolished at 30°C to

remove 48 um. Horizontal scale is 20 ym per division and vertical scale is 5 ym per division [3].
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FIG. 14. Calculated rf power dissipation on each representative 3.125 ym wide strip as a function of external applied magnetic H field
for a 100 ym x 100 gm BCP-treated fine grain Nb surface. Blue lines are the rf loss from each of 32 strips and the red line is the

averaged rf loss.

Limited by computational capacity, we reduce the reso-
lution to 32 x 32. As a result, strip columns, represented in
Figs. 2 and 12, are taken to represent a width of 3.125 ym.
The black line in Fig. 13(a) marks such a typical strip. In
this analysis, rf losses are then collected from the normal
zones along 100 ym x 3.125 pym strips, and the resulting
effective surface resistance increase from topographical
field enhancements is calculated.

The tf losses on 32 such columns derived from the BCP
surface profile were thus calculated as a function of applied
H fields. Figure 14 indicates the rf loss increasing with field
due to the expansion of the small normal conducting zones.
The losses from the individual strips (shown in blue) are

calculated from Eq. (12). The averaged rf loss from these
32 strips is taken as representative of that due to the typical
surface topography of a fine grain Nb surface that has been
etched by BCP. Note that all losses in the superconducting
zones have been neglected here.

Figure 15 shows the average loss from an EP surface
derived from the same analysis method as that shown in
Fig. 14 for the BCP’d surface. Note the dramatic difference
in calculated field-dependent losses from Nb surfaces
etched by BCP and EP. These losses are collected from
microscopic thermally stabilized normal conducting
regions. Comparison of these two surfaces suggests that
a significant density of small normal conducting zones is
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— 14} @ &cr -
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FIG. 15.
applied H field. Superconducting state losses are ignored.

Average topography-induced power dissipation on 100 ym x 100 ym BCP and EP surfaces plotted as a function of peak
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FIG. 16. Simulated effective rf surface resistance with peak H
field of BCP- and EP-treated fine grain Nb surfaces, including
representative constant-temperature superconducting state losses.

generated on BCP surfaces, while few normal zones are
generated on EP-treated surfaces. The additional heat
generated on the EP-treated surface in this simulation is
not significantly different from an ideally flat surface.

If the sum of rf losses on the 32 strips is represented by

Q, the effective surface resistance is then

20

s (16)

Rurface =

This effective surface resistance is therefore proportion-

ally related to the loss and density of microscopic field-

induced normal zones. Now adding a small superconducting

state resistance of ~13 nf), we obtain the resulting effective
surface resistance as illustrated in Fig. 16.

IV. DISCUSSION

We now consider how such nonlinear surface resistance
would be reflected in the performance of a typical SRF
accelerating cavity. Allowing that the local effective surface
resistance has field dependency as described in Fig. 16, we
integrate the rf loss of a resonator cavity by Eq. (17):

p— % « / R(H|) x H(r.2)%dS(r.2).  (17)

Cavity
Surface

—— Normalized H
12
T
o 08
2 g
g 04
o 02
g o--ZJ ]
920 10 20 30 %0

= = Simplified Normalized H

In a representative elliptical f = 1 accelerating cavity,
taking the approximation that the amplitude of surface H
field is zero in the regions near irises and maximum along
the equators, we can derive the effective surface resistance
from the integration in Eq. (17). Then, the quality factor can
be calculated from the simple expression of Eq. (18):

wU Tawopo [, H*dv
Qure(H) = —5= =1 ;
P ERRS{J_rf‘Zcev (|H|) X sz ds
G
~ 18
R Surface (H) ( )

Resistance

The “low loss” cell geometry used in the CEBAF
12 GeV upgrade seven-cell C100 cavity has been simulated
in SUPERFISH [30]. The normalized surface H field ampli-
tude profile obtained is illustrated in Fig. 17. In Fig. 17,
the blue curve is the cavity profile, the red curve is the
surface H field, and the dashed curve is our simplified
surface field.

The geometry factor for this structure in this accelerating
mode is ~280 0 and Bpey/E,. value is 3.74 mT/
(MV/m). The quality factor of such a cavity with a
correction for the interior surface topographic effect is
given in Eq. (19),

G B G
R surface (H) RBCS + RtOpO (H> ’

resistance

Qcalc = ( 19)

where the surface resistance comprises Ry, (H) from
Fig. 16 and BCS resistance. The BCS surface resistance
is presumed to have no field dependency for first order
simplicity. At 1.5 GHz, Rgcg is commonly ~13 nf) at
2 K, while the topographically induced surface resistance
is zero below some threshold field level. Consequently,
the quality factor, O, is dominated by BCS resistance at
low fields. Figure 18 shows the quality factors, Q, as a
function of surface H field predicted by this analysis that
would correspond to a low loss shaped cavity having Nb
surface topography represented by the sampled two
different surface treatments, BCP and EP. Note that
thermal feedback on the surface resistance of the super-
conducting material has not been included; this would, of
course, result in even further nonlinear reduction of Q.

— R(cm)

Ry Y 70 80 %0

Z{cm)

FIG. 17. Surface magnetic field on CEBAF C100 seven-cell cavity from SUPERFISH.
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FIG. 18. Comparison of the calculated effective cavity quality

factor simulated for representative fine grain Nb BCP’d and EP’d
surfaces at different peak H fields in a C100 geometry cavity.
Thermal feedback effects are not included.

As the normal conducting zones grow, some of the
simplifying assumptions in our present analysis break
down, the superconducting material losses become non-
negligible, and the Q decreases even faster than has been
modeled here.

The model calculation results for the representative
BCP-etched surface are in Fig. 19 plotted together with
2 K performance test data for a Jefferson Lab upgrade
prototype seven-cell cavity having this low loss geometry
(LL0O02), both heavily BCP etched and subsequently
electropolished [31,32]. Although one will certainly seek
higher resolution from future model calculations, there is
rough quantitative agreement between the calculation
predictions and observed cavity performance in this case

® > 300 micron BCP
=+ 30 micron EP
—o—Simulated BCP Topographic Losses

10
]
g L Coupler
£ breakdown
) Typical Q-

drop for fine-
grain BCP
cavities
10” !
0 8 10 15 20 25 30 35 40
Gradient (Mv/m) 2.00K

FIG. 19. Comparison of model-predicted Q, having represen-
tative BCP surface topography with experimental data for
CEBAF prototype cavity LL0O02 having heavily BCP etched
and subsequent electropolished surfaces. No evidence of field
emission loading was observed in either test.

of a heavily etched cavity. This is consistent with the
interpretation that topographical field enhancements are the
cause of these enhanced nonlinear losses on BCP-etched
fine grain niobium, i.e. Q-drop from fine-scale roughness.
Such field enhancements are absent from appropriately
electropolished surfaces, so that this Q-drop mechanism is
absent for EP-treated cavities.

Since the specific details of the surface structure of
etched Nb surfaces (in contrast to electropolished surfaces)
depend strongly on residual strains and defect densities, as
well as the amount of etching removal from an otherwise
smooth surface [33,34], one should not be surprised to
encounter significant variation of the topography-induced
rf losses in different circumstances, though the phenome-
non should be universal. One may, for example, interpret
the small but significant systematic Q-drop reported at the
high-field limit of the subset of XFEL cavities which
received a final light BCP etch [35] as attributable to the
low-amplitude sharpening of crystallographic edges creat-
ing widely dispersed local field enhancements.

V. SUMMARY

Extending the analysis begun by [5], simplified electro-
magnetic and thermal simulations have been developed to
analyze the microscopic scale geometric surface field
enhancement and the normal/superconducting material
interface when the local field exceeds H,.. The location
of this interface phase front is a function of the exciting
magnetic field and the specific topography. The thermally
stable normal zone areas contribute significantly to the rf
power loss. Each normal zone initiates its expansion based
on the local geometric field enhancement factor. More
accurate normal zone phase front modeling is obtained
considering the critical field’s temperature dependence.
The volume of the normal zone on the surface expands
nonlinearly with increasing external magnetic field. Such
nonlinearity and the corresponding increase in dissipative rf
power can be represented by an effective nonlinear surface
resistance. Additional superconducting rf loss is also
induced as a result of thermal feedback. The total rf power
loss contribution thus induced solely by topographic
roughness may be calculated. Initial results of this analysis
using representative topographic profile data from typical
BCP etched and EP fine grain Nb surfaces yield a nonlinear
loss character, and the Q dependence with field is quite
similar to that typically observed with L-band SRF accel-
erating cavities with the corresponding surface treatments.
This suggests that an adequate explanation for the field-
dependent differences in BCP’d and EP’d fine grain Nb
cavities is now in hand. Opportunities to improve the
precision of this model calculation have been identified, but
physical insight into the phenomenon linking microscopic
surface topography to high-field loss character of niobium
SRF cavities for accelerators has been significantly
enhanced.
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