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A novel algorithm for self-consistent simulations of long-range wakefield effects has been developed
and applied to the study of both longitudinal and transverse coupled-bunch instabilities at NSLS-II. The
algorithm is implemented in the new parallel tracking code SPACE (self-consistent parallel algorithm for
collective effects) discussed in the paper. The code is applicable for accurate beam dynamics simulations in
cases where both bunch-to-bunch and intrabunch motions need to be taken into account, such as chromatic
head-tail effects on the coupled-bunch instability of a beam with a nonuniform filling pattern, or
multibunch and single-bunch effects of a passive higher-harmonic cavity. The numerical simulations have
been compared with analytical studies. For a beam with an arbitrary filling pattern, intensity-dependent
complex frequency shifts have been derived starting from a system of coupled Vlasov equations. The
analytical formulas and numerical simulations confirm that the analysis is reduced to the formulation of an
eigenvalue problem based on the known formulas of the complex frequency shifts for the uniform filling
pattern case.
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I. INTRODUCTION

Beam dynamics simulations of collective effects can be
computationally very demanding, and often numeric codes
require powerful computer clusters to alleviate the compu-
tational load. This is evident when the code has to model
the self-consistent dynamics of a large number of bunches
interacting simultaneously via short- and long-range wake-
fields. In particular, time domain calculations of arbitrary
long-range wakefield effects can be, besides time consum-
ing, very memory demanding, since the algorithm requires
to store the “history” of the bunches for several revolutions
in order to calculate the wake forces at the present time. In
many applications, such as passive higher-harmonic cavity
operations, one cannot rely on point bunch approximations
and has to follow the dynamics of the internal structure of
the bunches and take into account transient effects. Another
important application that requires efficient computational
algorithms is the study of the coupled-bunch instability
induced by the long-range interaction of bunches in
arbitrary filling patterns. The accurate and efficient model-
ing of the aforementioned effects has motivated the devel-
opment of the parallel tracking code SPACE discussed in this
paper, where a novel self-consistent algorithm for the
simulation of long-range effects induced by arbitrary
wakefields is described in detail, and applied to the study

of the coupled-bunch instability in the NSLS-II storage ring
for nonuniform filling patterns.
Several codes are available to simulate self-consistently

single-bunch collective effects, however the availability of
codes that simulate accurately multibunch effects is scarce,
due to the complexity of the algorithm required to model
long-range effects, and to the heavy computational load and
memory requirements involved. Single-bunch numeric
codes can have computational issues as well, when applied,
for example, to dedicated studies such as the longitudinal
microwave instability, where a large number of simulation
particles is needed to study the response of small-scale
bunch structures to high frequency wakefield components;
if not equipped with suitable algorithms (i.e., smoothing/
filtering techniques if based on particle methods, fine grids,
parallel algorithms, etc.), single-bunch numeric codes can
fail to produce reliable results. Coupled-bunch algorithms
to various degree of self-consistency are implemented in
[1–8]. Here we would like to mention MBTRACK, the code
developed by Nagaoka et al. [4,5]. The idea behind our
coupled-bunch algorithm, first discussed in our seminal
paper [9], has been implemented in MBTRACK to model
passive higher-harmonic cavity effects [10]. For a detailed
description of the most recent method implemented in
MBTRACK see [5].

SPACE has already accomplished some of its goals, such
as the capability to simulate transient beam loading, passive
higher-harmonic cavity effects, and coupled-bunch insta-
bilities in arbitrary filling patterns, with the implementation
of algorithms to model ion effects, low level rf and
transverse feedback systems in progress. The first part of
this paper is devoted to a detailed description of the
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algorithms implemented in SPACE. A short outline of the
algorithm for the calculation of long-range wakefield
effects has been given first in [9], followed by a more
detailed description presented in [11,12]. Numerical sim-
ulations with SPACE have been performed for the NSLS-II
storage ring in the study of the longitudinal microwave
instability [14], in the study of passive higher-harmonic
cavity effects [9,15], and in the analysis of coupled bunch
instabilities driven by the higher order modes (HOMs) of a
seven-cell PETRA-III rf cavity structure [11,16]. The
analysis, based on self-consistent simulations of the slow
head-tail damping to cure the coupled-bunch instability, has
helped the transition to the next commissioning phase of
the NSLS-II storage ring [11]. The coupled bunch insta-
bilities, observed during commissioning with a gap in the
filling patterns, have been analyzed theoretically and
numerically assuming a uniform filling pattern. To inves-
tigate the validity of this assumption, we present an
analytical treatment of the coupled-bunch instability for
arbitrary filling patterns. The treatment is based on the
formulation of an eigenvalue problem defined by the
complex frequency shifts of the uniform filling pattern
case. The numerical solution of the eigenvalue problem
allows the study of instability thresholds via the determi-
nation of the eigenvalue with the largest imaginary part. As
an application of the eigenvalue formulation, we foresee
very fast schemes for the analysis of stable multibunch
configurations, however, we believe that self-consistent
numerical simulations add further robustness to the analy-
sis, particularly if there is interest in the study of regimes far
away from stability.
The paper is organized as follows. In Sec. II we describe

the model used by SPACE for single and coupled-bunch
instability simulations, and its method of solution, with
particular emphasis on the novel algorithm for the calcu-
lation of the long-range wakefield interaction. In Sec. III we
discuss the analytical treatment of the coupled-bunch
instability that leads to the formulation of the eigenvalue
problem for arbitrary filling patterns, and in Sec. IV we
benchmark the analytical results against SPACE simulations,
with application to the coupled-bunch instability in the
NSLS-II storage ring. As a complementary tool to the
computation of the eigenvalue spectrum, we discuss and
apply the Gerschgorin circle theorem, useful for a rapid
localization of the eigenvalues in the complex plane, and
very effective for perturbative studies of uniform filling
patterns.

II. SPACE CODE

SPACE is a parallel code for beam dynamics simulations
of collective effects driven by short- and long-range wake-
fields. It is a Vlasov-Fokker-Planck solver based on a
particle method, where M bunches, each with Np simu-
lation particles, to be distinguished from the actual number
of particles in the bunch Nm (m ¼ 0;…;M − 1) [17], are

tracked according to a system of M-coupled Vlasov-
Fokker-Planck equations. The terminology simulation par-
ticles is used, instead of macroparticles, since SPACE is
based on a mean-field theory or Vlasov approach. Two
distinct methods of solution of the Vlasov-Fokker-Planck
equation are the particle method, implemented in SPACE,
and the method based on the direct evolution of the phase
space density, often called direct Vlasov solver [18,19]. For
a discussion in the context of a two-dimensional Vlasov-
Maxwell system see [20,21]. In a particle method, a
condition for the numerical convergence to the solution
of the Vlasov-Fokker-Planck system is achieved in the limit
Np → ∞. For the determination of the wake forces, our
particle method requires the estimation of one-dimensional
(longitudinal) distribution densities, obtained via projection
from the scattered phase space coordinates of the simu-
lation particles. We therefore achieve numerical conver-
gence by adding the limitΔ → 0, whereΔ is the step size of
the longitudinal grid used to construct the wake forces. We
call it “weak” numerical convergence. A “strong” numeri-
cal convergence is achieved when the numerical accuracy is
demanded on the phase-space densities Ψm, solution of
the Vlasov-Fokker-Planck system of equations, a feature
required by direct Vlasov solvers. Of course, particle
methods can as well achieve a strong numerical conver-
gence at the cost of suitably increasing the number of
simulation particles Np. To this end, powerful density
estimation techniques should be employed [21].

SPACE has the capability to solve the single particle
equations of motion via uploading a general 6 × 6 transfer
map or by the use of a symplectic integrator. For dedicated
studies such as the influence of the slow head-tail damping
on the decoherence with amplitude process [22], the single
particle dynamics is modeled with the addition of tune shift
with amplitude coefficients. Wakefields can be modeled
analytically or uploaded as input files if calculated
numerically.
In many applications of interest, such as the study of the

slow head-tail damping to cure coupled-bunch instabilities
[11], it is a good approximation to model the single particle
dynamics with a linear one-turn map defined by the
knowledge on the betatron tunes and linear chromaticity,
and to model collective effects via perturbing the particle
momentum at each turn with kicks proportional to the local
beta function for localized wakefields or impedances, and
proportional to a constant beta function defined by the
betatron tune for a global impedance distributed along the
ring. We will discuss this case as an example of the model
implemented in SPACE to study short- and long-range
wakefield effects.

A. Vlasov-Fokker-Planck system

We consider M equidistant bunches with Nm particles
(m ¼ 0;…;M − 1), circulating in the storage ring and
satisfying the condition M ≤ h, where h is the number
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of rf buckets, with the reference particles of the bunches
separated by the distance d ¼ C=M, where C is the ring
circumference. We assume the longitudinal motion of the
bunches bounded around their reference particle position
over a distance much shorter than d. For the evolution of
the phase space densityΨm associated to themth bunch, we
consider the following system of M-coupled Vlasov-
Fokker-Planck equations,

∂Ψm

∂t þ ðLH þ LFP þ LCÞΨm ¼ 0;

m ¼ 0;…;M − 1; ð1Þ

where

LH ¼ −ηδ
∂
∂τ þ

eVrf

T0E0

½sinðωrfτ þ ϕsÞ − sinϕs�
∂
∂δ

þ ðωβ þ ξω0δÞp
∂
∂x − ðωβ þ ξω0δÞx

∂
∂p ; ð2Þ

LFP ¼ αr
∂
∂δ δþDr

∂2

∂δ2 ;þαx
∂
∂ppþDx

∂2

∂p2
; ð3Þ

LC ¼ Fτ;mðτ; tÞ
∂
∂δþ Fx;mðτ; tÞ

∂
∂p ð4Þ

and

Fτ;mðτ; tÞ ¼ −Aτ

Xþ∞

k¼0

XM−1

m0¼0

Nm0

Z
D
dτ0W0

0ðτ − τ0 þ akmm0T0Þ

× λ0mðτ0; t − akmm0T0Þ; ð5Þ

Fx;mðτ; tÞ ¼ −Ax

Xþ∞

k¼0

XM−1

m0¼0

Nm0

Z
D
dτ0W1ðτ − τ0 þ akmm0T0Þ

× dx;mðτ0; t − akmm0T0Þ; ð6Þ

akmm0 ¼ kþm −m0

M
; ð7Þ

λmðτ; tÞ ¼
Z þ∞

−∞
dδdxdpΨmðτ; δ; x; p; tÞ; ð8Þ

dx;mðτ; tÞ ¼
Z þ∞

−∞
dδdxdpxΨmðτ; δ; x; p; tÞ; ð9Þ

where LH and LFP are, respectively, the Hamiltonian and
Fokker-Planck operators for single particle dynamics, LC is
the collective (effects) operator, with contributions from the
longitudinal Fτ;m and transverse Fx;m wake forces, and p ¼
px=ωβ is the transverse momentum normalized to the
betatron frequency ωβ. Here the phase space coordinates
ðτ; δ; x; pÞ are arrival time τ, relative energy deviation
δ ¼ ðE − E0Þ=E0, where E0 is the energy of the reference

particle in electron volts, transverse position x and trans-
verse momentum p; η is the momentum compaction, T0 the
revolution period, e is the electron charge, Vrf the rf
voltage, ωrf the angular rf frequency, ϕs the synchronous
phase, ω0 ¼ 2π=T0 the angular revolution frequency, ξ the
linear chromaticity, and ατ and Dτ are the longitudinal, and
αx and Dx the transverse, radiation damping and diffusion
coefficients; Aτ ¼ eη=ðcT0E0Þ, where c is the speed of
light, Ax ¼ ec=ðT0E0Þ, W0

0 is the longitudinal wake func-
tion and W1 is the transverse dipole wake function [23]. In
the definition of the wake functions we use the causality
condition W0

0ðτÞ ¼ W1ðτÞ ¼ 0 if τ < 0. D ¼ ½−L=2∶L=2�
is the region of integration over the longitudinal densities
λm and dx;m; D is therefore assumed to be bounded,
with length L shorter than T0=M. The term with k ¼ 0
and m0 ¼ m gives the short-range wake force, and the
extension of the upper limit of integration to L=2 is justified
by the causality condition satisfied by the wake functions.

B. Method of solution

To solve the system of Eq. (1) we adopt a splitting
method according to the Baker-Campbell-Hausdorff
formula,

Ψmðtþ ΔtÞ ¼ e−ðLHþLFPþLCÞΔtΨmðtÞ
¼ e−LCΔte−LFPΔte−LHΔteOððΔtÞ2ÞΨmðtÞ; ð10Þ

with Δt equal to the revolution period T0. This is usually a
good approximation when the collective force can be
treated as a perturbation to the one-turn single particle
dynamics. The validity of this approximation can be tested
either analytically, by estimating the remainder in the
Baker-Campbell-Hausdorff formula, or numerically via
simulation convergence studies. Within this approximation,
the kick in the particle momentum due to the operator LC is
applied via multiplying the impedance with the average
beta function (global impedance) or with the local beta
function (local impedance). In case of several local imped-
ances we clump them together and kick the particle
momentum according to the sum of the local impedances,
each weighted with its own beta function. We therefore
update the position of the particles of the mth bunch
from turn n to nþ 1 first by the single particle dynamics
operator LH,

δnþ1 ¼ δn þ
eVrf

E0

½sinðωrfτn þ ϕsÞ − sinϕs�; ð11Þ

τnþ1 ¼ τn − T0ηδnþ1; ð12Þ

xnþ1 ¼ xn cos 2πðνx þ ξδnÞ þ pn sin 2πðνx þ ξδnÞ; ð13Þ

pnþ1 ¼ −xn sin2πðνx þ ξδnÞ þpn cos2πðνx þ ξδnÞ; ð14Þ
then by a kick due to the Fokker-Planck operator LFP,
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δnþ1 ¼ δn − αrT0δn þ
ffiffiffiffiffiffi
Dr

p
ζn

ffiffiffiffiffi
T0

p
; ð15Þ

pnþ1 ¼ pn − αxT0pn þ
ffiffiffiffiffiffi
Dx

p
ζn

ffiffiffiffiffi
T0

p
; ð16Þ

followed by a kick due to the collective operator LC,

δnþ1 ¼ δn þ Fτ;mðτn; nT0ÞT0; ð17Þ

pnþ1 ¼ pn þ Fx;mðτn; nT0ÞT0; ð18Þ

where, with an abuse of notation, the subscript n is
used prior to the update to turn nþ 1 of the following
operator. Here νx is the betatron tune, and ζðtÞ is a Gaussian
white noise [hζðtÞζðt0Þi ¼ 2δðt − t0Þ] to take into account
quantum random excitations.
The parallel algorithm implemented in SPACE to solve

Eq. (1) is the following.M bunches, each with the same Np
simulation particles [17] randomly generated according to
the initial phase space density, are distributed to M
processors. The generation of an arbitrary initial distribu-
tion is accomplished with the use of the acceptance-
rejection method [24]. At turn n, from the scattered particle
positions, the longitudinal density λm and the instantaneous
transverse dipole density dx;m are constructed on a longi-
tudinal grid τl ¼ lΔ (l ¼ 0;…; Ng, where Ng is the number
of grid points and Δ the grid step) of length L with the use
of a particle-in-cell deposition scheme. To facilitate the
discussion of the algorithms for the computation of the
wake forces at t ¼ nT0, we rewrite them in a form to
separate the short- and long-range contributions,

Fx;mðτ; tÞ ¼ FS
x;mðτ; tÞ þ FL

x;nðτ; tÞ; ð19Þ

where

FS
x;mðτ; tÞ ¼ −Ax

Z
D
dτ0W1ðτ − τ0Þdx;mðτ0; tÞ; ð20Þ

FL
x;mðτ; tÞ ¼ −Ax

Xþ∞

k¼0

XM−1

m0¼0

cm0k

Z
D
dτ0W1ðτ − τ0 þ akmm0T0Þ

× dx;mðτ0; t − akmm0T0Þ; ð21Þ

and the superscripts S and L indicate the short- and long-
range wake forces respectively, and cm0k ¼ 1 − δmm0δ0k,
where δij is the Kronecker delta (δij ¼ 1 if i ¼ j, 0
otherwise). A similar expression holds for the longitudinal
wake force Fτ;m.
The parallel algorithm to simulate together short- and

long-range wakefield effects consists of a kick given by FS

calculated in serial (locally) by each processor, and a kick
from FL calculated in parallel (globally) via master-to-slave
processor communications, by storing the history of
moments of the bunches. For dedicated studied of short-
range wakefield effects such as high precision simulations

of the microwave instability [14], where a large number of
simulation particles is required to study the evolution of
microstructures in the bunch, SPACE has the capability to
calculate the single-bunch interaction in parallel by dis-
tributing the total number of simulation particles between
M processors. Parallel algorithms for the calculation of the
short-range interaction based on Fourier methods and
wavelets, successfully applied to the study of coherent
synchrotron radiation in bunch compressors with a two-
dimensional Vlasov-Maxwell solver [20,21], are under
consideration, as well as algorithms for parallel fast
Fourier transform (FFT) calculations.

C. Computation of the short-range wake force

The calculation of the short-range kick FS uses the FFT
method implemented by Blaskiewicz [2] in the TRANFT

code, where the application of the convolution theorem
allows one to express the Fourier transform of FS as the
product of the Fourier transform of the wake function and
the density. For FS

x;m, for example, we have

F̂S
x;mðω; tÞ ¼

Z
∞

−∞
dτe−iωτFS

x;mðτ; tÞ

¼ iAxZ⊥
1 ð−ωÞd̂mðω; tÞ; ð22Þ

where the following Fourier transform pairs,

Z⊥
1 ðωÞ ¼ i

Z
∞

−∞
dτeiωτW1ðτÞ; ð23Þ

W1ðτÞ ¼ −
i
2π

Z
∞

−∞
dωe−iωτZ⊥

1 ðωÞ; ð24Þ

and

d̂mðω; tÞ ¼
Z

∞

−∞
dτe−iωτdmðτ; tÞ; ð25Þ

dmðτ; tÞ ¼
1

2π

Z
∞

−∞
dωeiωτd̂mðω; tÞ; ð26Þ

hold for the wake function W1 and the impedance Z⊥
1 , and

for the transverse dipole density dm and its transform d̂m.
High frequency components of F̂S

x;m, induced by numerical
noise in the constructed dipole density dm, can be smoothly
suppressed below a cutoff frequency ω ¼ ωc by multiply-
ing F̂S

x;m by an exponential function g with a suitable
smoothing parameter αs,

F̂S;smooth
x;m ðω; tÞ ¼ F̂S

x;mðω; tÞe−αsω2

: ð27Þ

By an inverse Fourier transformation, a smooth wake force
can be calculated on the longitudinal grid, and the position
of the simulation particles updated from a polynomial
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interpolation according to their arrival time τ. The Fourier
transformations are done efficiently with the use of an FFT.
Other than the use of the Fourier method described above,
alternative algorithms for noise removal and density esti-
mation from particles are implemented in SPACE, with the
goal, besides the calculation of smooth wake forces, to
monitor the evolution of distribution densities [21].

1. Computational load

The computational load of the wake force calculation
with the FFT is OðNglog2NgÞ, where Ng is the number of
points of the longitudinal grid. This should be compared
with the computational load of the particle tracking and
particle deposition scheme, which is OðNpÞ, where Np is
the number of simulation particles.
When comparing the computational load of different

algorithms, we would like to point out that only orders of
magnitude are meaningful, since the ultimate comparison
should rely on computer simulations. This is discussed, for
FFT algorithms, in [25], where it is stated that the
performance of FFTs is determined by many factors
besides pure arithmetic counts or flops (floating-point
operations). At the same time, precise estimates of the
number of flops required by FFT algorithms are important
not only for performance optimization but for a theoretical
understanding as well. For a discrete Fourier transform of
size N ¼ 2m, the classic “radix-2” FFT algorithm intro-
duced by Cooley and Tukey [26], which is implemented in
SPACE, has a number of flops ∼5N log2N. For a discussion
of improved FFT algorithms with a lower number of flops
see [25], where the result number of flops ∼3.8 log2N has
been achieved with a modified version of the “split-radix”
FFT algorithm introduced by Yavne in 1968 [27].
In standard applications, such as bunch lengthening

studies below the microwave instability threshold,
or studies of the head-tail effects, a typical grid has
Ng ¼ 100, and with Np ≥ 10000 (on average 100 simu-
lation particles per grid cell) the computational load is
dominated by the particle tracking. For simulations above
the microwave instability threshold, where microstructures
in the beam are studied in response to wakefields with high
frequency components, a large number of grid points is
used, and, consequently, a large number of simulation
particles. In such a case the particle tracking and charge
deposition are done in parallel by distributing Np simu-
lation particles between M processors. Assuming simula-
tions with M ¼ 100, Ng ¼ 10000 and Np ¼ 100Ng, the
computational load of the wake force calculation dominates
over the computational load of the particle tracking. As an
example of the computational load required in the study of
the microwave instability, in [14] high resolution simu-
lations with SPACE, with parameters of the NSLS-II storage
ring, have been done at NERSC [28] with 15M simulation
particles distributed over 1000 processors, with a CPU
time of approximately 20 min. To further optimize the

simulations, the use of a parallel FFT can be considered, or
the use of wavelets or alternative Fourier methods [20,21].

D. Computation of the long-range wake force

The general algorithm for the calculation of the long-
range wake force is as follows. Considering the transverse
long-range force FL

x;n, for example, given by Eq. (21), we
have

FL
x;mðτ; tÞ ¼ −Ax

Xkc
k¼0

XM−1

m0¼0

cm0k

Z
D
dτ0W1ðτ − τ0 þ akm0mT0Þ

× dx;m0 ðτ0; t − akm0mT0Þ

¼ −Ax

Xkc
k¼0

XM−1

m0¼0

cm0k

Z
D
dτ0W1ðτ − τ0 þ akm0mT0Þ

× dx;m0 ðτ0; t − kT0Þ; ð28Þ

where in the last equality we used the approximation
dx;mðτ; tþ T0Þ ≈ dx;mðτ; tÞ, i.e., we assumed dx;m is slowly
varying over one revolution, and we introduced the cutoff
kc in the summation over k determined by the decay rate of
W1. Here we remind that akm0m ¼ kþ ðm0 −mÞ=M and
D ¼ ½−L=2;L=2�, with L the length of the longitudinal
grid. If we now assume that the wake function W1ðτÞ is
slowly varying for τ ∈ ½akm0mT0 − L=2; akm0mT0 þ L=2�, we
can conveniently calculate Eq. (28) by expanding W1 in
Taylor series at akm0mT0:

FL
x;mðτ; tÞ ¼ −Ax

Xkc
k¼0

XM−1

m0¼0

cm0k

XNTL

n¼0

W1
ðnÞðakm0mT0Þ

n!

×
Xn
l¼0

ð−1Þl
�
n
l

�
τn−lhτlxikm0 ; ð29Þ

where hτnxikm ¼ R
dττndx;mðτ; t − kT0Þ, NTL is the number

of Taylor terms and we made use of the binomial theorem
ðaþ bÞn ¼ P

n
k¼0ðnkÞan−kbk. The calculation of the wake

force FL
x;mðτ; tÞ can therefore be done by storing the

moments hτnxikm of the mth bunch over previous kc turns.
An equation similar to (29) holds for the longitudinal wake
force FL

τ;mðτ; tÞ in terms of the stored moments
hτnikm ¼ R

dττnλmðτ; t − kT0Þ. For point bunch simula-
tions, only the first term in the rhs of Eq. (29) is calculated.
Equation (29) requires the evaluation of the NTL derivatives

WðnÞ
1 on the longitudinal grid. This can be done upfront,

before the beginning of the temporal evolution. In case the
wake functions are given numerically as input files, the

derivatives WðnÞ
1 can be calculated efficiently with high-

order finite difference schemes. As an illustrative example
of the application of Eq. (29), in Fig. 1 we discuss the
construction of a longitudinal wake function that decays
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over less than a revolution period, as shown in Fig. 1(a).
Only a fraction of the bunches filling the ring are coupled
(here we consider M ¼ h bunches filling uniformly the
NSLS-II booster with harmonic number h ¼ 264). The
wake function shows a large variation over the length σ of
the bunches, thus making the wake function reconstruction
difficult. This example shows an extreme case, delimiting
the transition from short- to long-range interaction. For an
accurate reconstruction of the wake function to study, for
example, dipole oscillations up to �σ, 25 terms in the
Taylor expansion must be calculated, as shown in Fig. 1(b).
In such a case one may consider if it is more efficient to
calculate directly the wake function without Taylor expand-
ing. A similar expansion of the longitudinal wake function
up to few Taylor terms allows one to take into account finite
bunch length effects, as discussed in [9] and [15]. This
method is general and applicable to arbitrary long-range
wakefields. In the case of a resonator wake, the integration
over history can be avoided by the use of invariance

properties under translation of the resonator wake function
[15,29,30]. The idea to express a general wake function as a
sum of resonators has been implemented recently by
Migliorati et al. [1] in the tracking code MUSIC to simulate
multibunch effects. The comparison of the computational
efficiency of this method with our method based on a
Taylor expansion is the subject of a future investigation.

1. Computational load

The integration of Eq. (28) to compute the wake force on
the longitudinal grid with Ng grid points requires a
computational load of OðkcMNglog2NgÞ with the FFT
method, to be compared with the computational load given
by the application of Eq. (29), which is OðkcMNTLNgÞ,
where NTL is the number of terms in the Taylor
expansion. Using for the FFT method the number of flops
∼5Nglog2Ng we define the ratio of the two computational
loads K ¼ 5log2Ng=NTL. In Fig. 2 we plot K as a function
of Ng for a different number of Taylor terms NTL. In many
applications of interest NTL < 10 thus K > 3.5
with Ng ¼ 128.

III. ANALYTICAL TREATMENT OF THE
COUPLED-BUNCH INSTABILITY FOR
ARBITRARY FILLING PATTERNS

The theory of the coupled-bunch instability for uniform
filling patterns is well known and formulas for the complex
frequency shifts of oscillation modes are available in the
general case of nonzero chromaticity and for finite bunch
length [23,30–32]. A complete analysis for arbitrary filling
patterns, with formulas for the complex frequency shifts, is
not available, despite some effort being put to characterize
the coupled-bunch instability in this regime [33–35]. In this
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FIG. 1. Construction of the longitudinal wake force from the
Taylor expansion of the wake function shown by the red line.
(a) The points in blue represent the wake function evaluated at
the position of bunches, separated by 2 ns. (b) Reconstruction of
the wake function, shown by the dashed blue line, around the
centroid of bunch m ¼ 2 with 25 terms in the Taylor expansion,
necessary for the study of bunch dipole oscillations up to �10σ,
where σ is the bunch length (here σ ¼ 50 ps).
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FIG. 2. Comparison of the computational load for the FFT
method with the computational load for the method based
on Taylor expansion. The ratio of the computational loads
K ¼ 5log2Ng=NTL as a function of number of grid points Ng
is shown for a different number of Taylor terms NTL.
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section, we discuss a theoretical treatment of the coupled-
bunch instability for arbitrary filling patterns, which leads
to the formulation of an eigenvalue problem defined in
terms of the complex frequency shifts of the uniform filling
pattern case. A similar result, for point bunches and in the
longitudinal case, has been derived by Prabhakar [35]. The
solution of the eigenvalue problem allows the determina-
tion of the eigenvalue with the largest imaginary part, thus
characterizing the growth rate of the fastest coupled bunch
instability. We restrict our analysis to the dipole mode of
oscillation, and to the case of zero chromaticity. The
analysis of higher head-tail modes and the discussion of
chromaticity effects will be addressed elsewhere [22]. The
starting framework of our formulation is defined by the
system of M-coupled Vlasov equations defined by Eq. (1),
which give the time evolution of the phase space densities
Ψm associated with the mth bunch. We assume linearized
longitudinal equations of motion and neglect quantum
radiation effects. For the evolution of the dipole moment,
the last assumption has the effect to neglect an exponential
decay determined by the radiation damping constant. The
equation for the evolution of the dipole moment is found by
integrating by parts the Vlasov equations, by using the
boundary conditions satisfied by the phase space density
Ψm, and the eigenvalue problem is formulated with respect
to the complex frequency shifts of the uniform filling
pattern case.

A. Transverse eigenanalysis

The transverse phase space densities Ψmðτ; δ; x; px; tÞ,
associated to the mth bunch with Nm particles, satisfy the
following system of M-coupled Vlasov equations for
0 ≤ m ≤ M − 1:

∂Ψm

∂t − ηδ
∂Ψm

∂τ þω2
s

η
τ
∂Ψm

∂δ þpx
∂Ψm

∂x −ω2
βx

∂Ψm

∂px

−Ax

Xþ∞

k¼0

XM−1

m0¼0

Nm0

�Z
τ

−∞
dτ0W1ðτ− τ0 þ akm0mT0Þ

×
Z þ∞

−∞
dx0x0ρm0 ðτ0; x0; t− akm0mT0Þ

�∂Ψm

∂px
¼ 0; ð30Þ

where akm0m ¼ kþ m0−m
M and

ρmðτ; x; tÞ ¼
Z þ∞

−∞

Z þ∞

−∞
dδdpxΨmðτ; δ; x; px; tÞ;

η ¼ α − 1=γ2 is the slippage factor, α is the momentum
compaction factor, and ωs the synchrotron frequency,W1 is
the transverse wake function, and

P
M−1
m¼0 Nm ¼ NM ¼ NT

is the total number of particles in the filling pattern, with N
the number of particles per bunch in the uniform filling
pattern case. We neglect longitudinal wakefields, so for the
longitudinal equations of motion we consider _τ ¼ −ηδ,

_δ ¼ ω2
sτ=η, · ≡ d=dt. The equation for the evolution

of the dipole moments hxmi ¼
R
dτdδdxdpxxΨm and

hpxmi ¼
R
dτdδdxdpxpxΨm can be found by integrating

by parts the Vlasov equations using the boundary con-
ditions for Ψm. Multiplying the Vlasov equation by x and
integrating we obtain

d
dt

hxmi ¼
Z þ∞

−∞
dτdδdxdpxx

∂Ψm

∂t
¼ −

Z þ∞

−∞
dτdδdpxpx

�
xΨmjx¼þ∞

x¼−∞ −
Z þ∞

−∞
dxΨm

�

¼ hpxmi: ð31Þ

For hpxmi we proceed similarly obtaining the result

d2

dt2
hxmi þ ω2

βhxmi

¼ −Ax

Xþ∞

k¼0

XM−1

m0¼0

Nm0

×
Z þ∞

−∞
dτ

Z þ∞

−∞
dτ0W1ðτ − τ0 þ akm0mT0Þλmðτ; tÞ

×
Z þ∞

−∞
dx0x0ρm0 ðτ0; x0; t − akm0mT0Þ; ð32Þ

where λmðτ; tÞ ¼
R
dxρmðτ; x; tÞ is the longitudinal distri-

bution density of the mth bunch, and we have extended the
upper limit of integration in τ0 to þ∞, due to the causality
property of W1. Using the approximation ρmðτ; x; tÞ ¼
λðτÞμmðx; tÞ in the rhs of Eq. (32), where μmðx; tÞ ¼R
dτρmðτ; x; tÞ is the transverse distribution density of

the mth bunch, we have

d2

dt2
hxmi þ ω2

βhxmi ¼ −Ax

Xþ∞

k¼0

XM−1

m0¼0

fðakm0mT0Þ

× Nm0 hxm0 iðt − akm0mT0Þ; ð33Þ

where

fðxÞ≡
Z þ∞

−∞
dτ

Z þ∞

−∞
dτ0W1ðτ − τ0 þ xÞλðτÞλðτ0Þ:

Clearly in the point bunch limit λðτÞ ¼ δðτÞ, where δ is the
Dirac delta function, and fðxÞ ¼ W1ðxÞ, the equations for
point bunches are recovered.
We proceed now by omitting the brackets in the

equations, i.e., xm should be understood as hxmi. We notice
that the equations of motion, Eq. (33), can be cast in the
form
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ẍmðtÞ þ ω2
βxmðtÞ ¼ −Ax

Xþ∞

k¼0

f

�
k
T0

M

�
N½mþk�x½mþk�

×

�
t − k

T0

M

�
; ð34Þ

where ½mþ k� ¼ mþ k −M⌊ðmþ kÞ=M⌋. Here ⌊x⌋ is the
floor function, also called greatest integer value, which
gives the largest integer less or equal to x [36]. Defining the
mode ~xμ by

~xμðtÞ ¼
XM−1

m¼0

xmðtÞe−i2πmμ=M; ð35Þ

xmðtÞ ¼
1

M

XM−1

μ¼0

~xμðtÞei2πmμ=M; ð36Þ

it follows that the modes ~xμ are coupled and satisfy the
equations of motion,

̈~xμðtÞ þ ω2
β ~xμðtÞ ¼ −

Ax

M

X∞
k¼0

f

�
k
T0

M

�
ei2πμk=M

×
XM−1

μ0¼0

~xμ0
�
t − k

T0

M

�

×
XM−1

m¼0

Nmei2πmðμ0−μÞ=M: ð37Þ

The proof of Eq. (37) is given in Appendix A. By usingP
M−1
m¼0 ¼ NM, Eq. (37) can be equivalently written as

~̈xμðtÞþω2
β ~xμðtÞ ¼−AxN

X∞
k¼0

f

�
k
T0

M

�
ei2πkμ=M ~xμ

�
t− k

T0

M

�

−
Ax

M

X∞
k¼0

f
�
k
T0

M

�
ei2πμk=M

×
XM−1

μ0¼0
μ0≠μ

~xμ0
�
t− k

T0

M

�

×
XM−1

m¼0

Nmei2πmðμ0−μÞ=M: ð38Þ

In the uniform filling pattern case, Nm ¼ N and the second
term in the rhs of Eq. (38) vanishes, as follows from the
orthogonality condition,

XM−1

m¼0

ei2πmðμ0−μÞ=M ¼ Mδμ0μ; ð39Þ

where δμ0μ is the Kronecker delta. Thus in the uniform
filling pattern case the modes ~xμ are uncoupled.

1. Eigenvalue problem

The general solution of the noncollective equations of
motion ̈~xμðtÞ þ ω2

β ~xμðtÞ ¼ 0 is

~xμðtÞ ¼ A1eiωβt þ A2e−iωβt ¼ 1

2

��
~xμð0Þ −

i
ωβ

_~xμð0Þ
�
eiωβt

þ
�
~xμð0Þ þ

i
ωβ

_~xμð0Þ
�
e−iωβt

�
: ð40Þ

Since xm ∈ R, it follows that ~xμ ¼ ~x⋆M−μ, thus we define the
multibunch mode

xðμÞm ðtÞ ¼ 1

M
½~xμðtÞei2πmμ=M þ ~xM−μðtÞe−i2πmμ=M�

¼ 1

M
½~xμðtÞei2πmμ=M þ ~x⋆μðtÞe−i2πmμ=M�

¼ 2

M

�
Re~xμðtÞ cos

2πμm
M

− Im~xμðtÞ sin
2πμm
M

�
:

ð41Þ

We now look for a perturbative solution of Eq. (37), where
we identify the perturbation by multiplying the rhs of
Eq. (37) with the parameter ϵ. Without loss of generality,
we assume for the perturbative solution the form

~xμðtÞ ¼ A1eiðωβþϵΩÞt þ A2e−iðωβþϵΩÞt

¼ aμe−iðωβþϵΩÞt; Ω ∈ C; ð42Þ

where aμ ¼ ~xμð0Þ and we chose A1 ¼ 0. Defining
τ−1 ≡ ImΩ, ωr ≡ ReΩ and assuming Im~xμð0Þ ¼ 0, the

multibunch mode xðμÞm takes the form

xðμÞm ðtÞ ¼ ae
t
τ

�
cos

2πμm
M

cosðωβ þ ωrÞt

þ sin
2πμm
M

sinðωβ þ ωrÞt
�
; ð43Þ

where a ¼ 2Re~xμð0Þ=M and we set the perturbation
parameter ϵ ¼ 1.
By inserting Eq. (42) in Eq. (37) we obtain, to first order

in ϵ,

Ωaμ ¼
Ax

2ωβM

XM−1

μ0¼0

aμ0
X∞
k¼0

f

�
k
T0

M

�
ei2πμk=MeiωβkT0=M

×
XM−1

m¼0

Nmei2πmðμ0−μÞ=M: ð44Þ

Using Eq. (38), we can rewrite Eq. (44) in the form
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�
AxN
2ωβ

X∞
k¼0

f

�
k
T0

M

�
ei2πμk=MeiωβkT0=M −Ω

�
aμ

þ
XM−1

μ0¼0
μ0≠μ

�
Ax

2ωβM

X∞
k¼0

f
�
k
T0

M

�
ei2πμk=MeiωβkT0=M

×
XM−1

m¼0

Nmei2πmðμ0−μÞ=M
�
aμ0 ¼ 0: ð45Þ

Equation (45) defines an eigenvalue equation for the
matrix B:

ðB −ΩIÞa ¼ 0;

Bμμ0 ¼
ΩU

μ

NM

XM−1

m¼0

Nmei2πmðμ0−μÞ=M;

a ¼ ½a0;…; aM−1�T; ð46Þ

where ΩU
μ are the eigenvalues of the uniform filling pattern

case (Bμμ0 ¼ ΩU
μ if μ0 ¼ μ, 0 otherwise) and are given by

(see Appendix B)

ΩU
μ ¼ AxN

2ωβ

X∞
k¼0

f

�
k
T0

M

�
ei2πμk=MeiωβkT0=M

¼ −i
IbMc

4πðE0=eÞνβ
Xþ∞

p¼−∞
j~λðpMω0 þ μω0 þ ωβÞj2

× Z⊥
1 ½pMω0 þ μω0 þ ωβ�; ð47Þ

where Ib ¼ eN=T0 and νβ ¼ ωβ=ω0. Solving for the
characteristic polynomial pðΩÞ ¼ jB −ΩIj ¼ 0 and
assuming M distinct eigenvalues Ωm, the general solution
~xgμðtÞ is given by1

~xgμðtÞ ¼
XM−1

m¼0

cmaμme−iðωβþΩmÞt; ð48Þ

where am ¼ ½a0m;…; aM−1m�T are the eigenvectors asso-
ciated to the eigenvalues Ωm. Since the sum of the
eigenvalues of B is equal to the trace of B, it follows that
the sum of the complex frequency shifts Ωμ for arbitrary
filling patterns is equal to the sum of the complex frequency
shifts ΩU

μ for uniform filling patterns,

XM−1

μ¼0

Ωμ ¼ TrB ⇒
XM−1

μ¼0

Ωμ ¼
XM−1

μ¼0

ΩU
μ : ð49Þ

B. Longitudinal eigenanalysis

In the longitudinal case we use path length s as
independent variable and 0 ≡ d=ds, and as phase space
coordinates we use ðz; δÞ, where z ¼ βrcτ, with βr ¼ vr=c
and vr is the velocity of the reference particle. Here we
assume βr ¼ 1. The set of M-coupled Vlasov equations
satisfied by the phase space densities gmðz; δ; sÞ reads

∂gm
∂s − ηδ

∂gm
∂z þ ω2

s

ηc2
z
∂gm
∂δ − Az

Xþ∞

k¼0

XM−1

m0¼0

Nm0

×
Z

z

−∞
dz0W0

0ðz − z0 þ akm0mCÞ

× λm0 ðz0; s − akm0mCÞ
∂gm
∂δ ¼ 0; ð50Þ

where akm0m ¼ kþ m0−m
M and λmðz; sÞ ¼

Rþ∞
−∞ dδgmðz; δ; sÞ,

and Az ¼ eη=ðcT0E0Þ. As in the transverse case we neglect
radiation damping and diffusion. The equation for the
evolution of the dipole moments hzmi ¼

R
dzdδzgmðz; δ; sÞ

and hδmi ¼
R
dzdδδgmðz; δ; sÞ can be found by integrating

by parts the Vlasov equations using the boundary con-
ditions for gm. Multiplying the Vlasov equations by z and
integrating we obtain

d
ds

hzmi ¼
Z þ∞

−∞
dzdδz

∂gm
∂s

¼ η

Z þ∞

−∞
dzdδ δ

�
zgmjz¼þ∞

z¼−∞ −
Z þ∞

−∞
dzgm

�

¼ −ηhδmi; ð51Þ

where we assume that the longitudinal phase space den-
sities have a finite integration range in z, much shorter than
the distance between bunches d ¼ C=M. For hδmi we
proceed similarly obtaining the result

d2

ds2
hzmi þ

ω2
s

c2
hzmi ¼ −Az

Xþ∞

k¼0

XM−1

m0¼0

Nm0

Z þ∞

−∞
dz

×
Z þ∞

−∞
dz0W0

0ðz − z0 þ akm0mCÞ

× λmðz; sÞλm0 ðz0; s − akm0mCÞ; ð52Þ

where we have extended the upper limit of integration in z0
to þ∞, due to the causality property of W0

0. We now
assume small rigid dipole oscillations

λmðz; sÞ ¼ λ0½z − hzmiðsÞ� ð53Þ

1In deriving Eq. (44) we considered only one root of Eq. (37).
To construct the complete solution, in Eq. (48) a term propor-
tional to exp iðωβ þΩmÞt should be added. This is important to
explicitly study the modes of oscillations defined by the solution
of the eigenvalue problem. In the present work we limit our
analysis to the characterization of the eigenvalue spectrum, and
will investigate the modes of oscillations in a separate companion
paper.
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for a given initial distribution λ0ðzÞ. It follows that Eq. (52) reads

d2

ds2
hzmi þ

ω2
s

c2
hzmi ¼ −Az

Xþ∞

k¼0

XM−1

m0¼0

Nm0

Z þ∞

−∞
dz

Z þ∞

−∞
dz0W0

0ðz − z0 þ akm0mCÞλ0½z − hzmiðsÞ�

× λ0½z0 − hzm0 iðs − akm0mCÞ�: ð54Þ
Changing integration variable u ¼ z0 − hzm0 iðs − akm0mCÞ, Eq. (54) reads

d2

ds2
hzmi þ

ω2
s

c2
hzmi ¼ −Az

Xþ∞

k¼0

XM−1

m0¼0

Nm0

Z þ∞

−∞
dz

Z þ∞

−∞
duW0

0 ½z − hzm0 iðs − akm0mCÞ þ akm0mC − u�λ0½z − hzmiðsÞ�λ0ðuÞ:ð55Þ

Expanding next W0
0 in Taylor series for small hzm0 i we have

d2

ds2
hzmi þ

ω2
s

c2
hzmi ¼ −Az

Xþ∞

k¼0

XM−1

m0¼0

Nm0

Z þ∞

−∞
dz

Z þ∞

−∞
duW0

0ðzþ akm0mC − uÞλ0½z − hzmiðsÞ�λ0ðuÞ

þ Az

Xþ∞

k¼0

XM−1

m0¼0

Nm0

Z þ∞

−∞
dz

Z þ∞

−∞
duW00

0ðzþ akm0mC − uÞ

× λ0½z − hzmiðsÞ�λ0ðuÞhzm0 iðs − akm0mCÞ þ � � � : ð56Þ

The first term in the rhs of Eq. (56) gives a static term that leads to a synchronous phase shift, and a dynamic term that leads
to a synchrotron frequency shift. To show it, by changing integration variable v ¼ z − hzmiðsÞ and expanding in Taylor
series for small hzmi we have

−Az

Xþ∞

k¼0

XM−1

m0¼0

Nm0

Z þ∞

−∞
dv

Z þ∞

−∞
duW0

0½vþ hzmiðsÞ þ akm0mC − u� × λ0ðvÞλ0ðuÞ

¼ −Az

Xþ∞

k¼0

XM−1

m0¼0

Nm0

Z þ∞

−∞
dv

Z þ∞

−∞
duW0

0ðvþ akm0mC − uÞλ0ðvÞλ0ðuÞ

− Az

Xþ∞

k¼0

XM−1

m0¼0

Nm0

Z þ∞

−∞
dv

Z þ∞

−∞
duW00

0ðvþ akm0mC − uÞλ0ðvÞλ0ðuÞhzmiðsÞ þ � � � : ð57Þ

With the same change of integration variable applied to the second term in the rhs of Eq. (56), and by dropping the static
term [first term in the rhs of Eq. (57)], it follows that Eq. (56), to leading order in hzmi reads

d2

ds2
hzmi þ

ω2
s

c2
hzmi ¼ Az

Xþ∞

k¼0

XM−1

m0¼0

Nm0hðakm0mCÞhzm0 iðs − akm0mCÞ; ð58Þ

where hðxÞ≡ R
dz

R
dz0W00

0ðz − z0 þ xÞλ0ðzÞλ0ðz0Þ and the synchrotron frequency ωs has been redefined according to

ω2
s → ω2

s − Azc2
Xþ∞

k¼0

XM−1

m0¼0

Nm0hðakm0mCÞ: ð59Þ

Clearly in the point bunch limit λðzÞ ¼ δðzÞ and hðzÞ ¼ W00
0ðzÞ, and the equations of motion for point bunches are

recovered.
Similarly to the transverse case, we proceed by omitting the brackets in the equations of motion, i.e., zm should be

understood as hzmi, and cast the equations of motion (58) in the form

z00mðsÞ þ
�
ωs

c

�
2

zmðsÞ ¼ Az

Xþ∞

k¼0

h

�
k
C
M

�
N½mþk�z½mþk�

�
s − k

C
M

�
;
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where ½mþ k� ¼ mþ k −M⌊ðmþ kÞ=M⌋. Defining the mode ~zμ by

~zμðsÞ ¼
XM−1

m¼0

zmðsÞe−i2πmμ=M;

zmðsÞ ¼
1

M

XM−1

μ¼0

~zμðsÞei2πmμ=M; ð60Þ

the modes ~zμ are coupled and satisfy the equations of motion

~z00μðsÞ þ
ω2
s

c2
~zμðsÞ ¼

Az

M

X∞
k¼0

h

�
k
C
M

�
ei2πμk=M

XM−1

μ0¼0

~zμ0
�
s − k

C
M

�XM−1

m¼0

Nmei2πmðμ0−μÞ=M: ð61Þ

The proof of Eq. (61) is analogous to the proof of Eq. (37) given in Appendix B. As in the transverse case, by usingP
M−1
m¼0 ¼ NM, Eq. (61) can be equivalently written as

~z00μðsÞ þ
ω2
s

c2
~zμðsÞ ¼ AzN

X∞
k¼0

h

�
−k

C
M

�
ei2πkμ=M ~zμ

�
s − k

C
M

�
þ Az

M

X∞
k¼0

h

�
k
C
M

�
ei2πμk=M

×
XM−1

μ0¼0
μ0≠μ

~zμ0
�
s − k

C
M

�XM−1

m¼0

Nmei2πmðμ0−μÞ=M; ð62Þ

and in the uniform filling pattern case Nm ¼ N the second term in the rhs of Eq. (62) vanishes, as follows from the
orthogonality condition given by Eq. (39), implying that the modes ~zμ are uncoupled.

1. Eigenvalue problem

The eigenvalue problem for the longitudinal case is defined as in the transverse case. We look for a perturbative solution
of Eq. (61), where we identify the perturbation by multiplying the rhs of Eq. (61) with the parameter ϵ. We assume the
perturbative solution has the form

~zμðsÞ ¼ aμe−iðωsþϵΩÞsc; Ω ∈ C: ð63Þ

By inserting Eq. (63) in Eq. (61) we obtain, to first order in ϵ,

Ωaμ ¼ −
Azc2

2ωsM

XM−1

μ0¼0

aμ0
X∞
k¼0

f

�
−k

C
M

�
ei2πμk=MeiωskT0=M

XM−1

m¼0

Nmei2πmðμ0−μÞ=M: ð64Þ

Using Eq. (62), we can rewrite Eq. (64) in the form

�
−
AzNc2

2ωs

X∞
k¼0

h

�
k
C
M

�
ei2πμk=MeiωskT0=M −Ω

�
aμ þ

XM−1

μ0¼0
μ0≠μ

�
−

Azc2

2ωsM

X∞
k¼0

h

�
k
C
M

�
ei2πμk=MeiωskT0=M

×
XM−1

m¼0

Nmei2πmðμ0−μÞ=M
�
aμ0 ¼ 0: ð65Þ

Equation (65) defines an eigenvalue equation for the matrix D
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ðD −ΩIÞa ¼ 0;

Dμμ0 ¼
ΩU

μ

NM

XM−1

m¼0

Nmei2πmðμ0−μÞ=M;

a ¼ ½a0;…; aM−1�T; ð66Þ

where ΩU
μ are the eigenvalues of the uniform filling pattern

case (Dμμ0 ¼ ΩU
μ if μ0 ¼ μ, 0 otherwise) and are given by

(see Appendix B)

ΩU
μ ¼ −

AzNc2

2ωs

X∞
k¼0

h

�
k
C
M

�
ei2πμk=MeiωskT0=M ð67Þ

¼ i
IbMη

4πðE0=eÞνs
Xþ∞

p¼−∞
ðpMω0 þ μω0 þ ωsÞ

× j~λðpMω0 þ μω0 þ ωsÞj2Z∥
0ðpMω0 þ μω0 þ ωsÞ;

ð68Þ
where Ib ¼ eN=T0 and νs ¼ ωs=ω0. Solving for the
characteristic polynomial pðΩÞ ¼ jD −ΩIj ¼ 0 and
assuming M distinct eigenvalues Ωm, the general solution
~zgμðsÞ is given by

~zgμðsÞ ¼
XM−1

m¼0

cmaμme−iðωsþΩmÞsc; ð69Þ

where am ¼ ½a0m;…; aM−1m�T are the eigenvectors asso-
ciated to the eigenvalues Ωm. Since the diagonal terms of D
are the eigenvalues of the uniform filling pattern case, as in
the transverse case, the same property given by Eq. (49)
holds for the eigenvalues of D:

XM−1

μ¼0

Ωμ ¼ TrD ⇒
XM−1

μ¼0

Ωμ ¼
XM−1

μ¼0

ΩU
μ : ð70Þ

IV. APPLICATION OF THE EIGENVALUE
FORMULATION FOR ARBITRARY

FILLING PATTERN

A. Benchmarking theory and simulations

To validate the analysis of the coupled bunch instability
for arbitrary filling patterns discussed in the previous
section, we benchmark the solution of the eigenvalue
equation (46) against SPACE simulations, with the parameter
of the transverse coupled bunch instability driven by the
HOMs of a seven-cell PETRA-III rf cavity discussed in
[11], where a detailed benchmark of SPACE simulations
against the analytical theory for uniform filling patterns can
be found. The parameters of the NSLS-II storage ring are
listed in Table I and HOMs parameters in Table II. As

discussed in the previous sections, withM we represent the
number of bunches filling the ring uniformly. The number
of possible uniform configurations is determined by the
harmonic number h, which corresponds to the total number
of rf buckets. For the NSLS-II storage ring, as shown in
Table I, h ¼ 1320 ¼ 23 × 3 × 5 × 11, with the prime fac-
torization determining the possible uniform configurations,
thus the possible values of M. A given M determines
therefore the number of rf buckets filled, with arbitrary
multibunch configurations defined by the number of
particles per bunch (per rf bucket) Nm satisfyingP

M−1
m¼0 Nm ¼ NM, where N ¼ NT=M is the number of

particles per bunch in the uniform filling pattern case and
NT is the total number of particles in the beam. Of course
configurations with missing bunches can be created by
filling themth rf bucket with Nm ¼ 0. The cases of two and
three bunches (M ¼ 2 and M ¼ 3) are discussed analyti-
cally, with the case of M ¼ 2 solved for an arbitrary
number of particles per bunch N0, N1, and the case of
M ¼ 3 solved for N0 ¼ N1 ¼ 3N=2, N2 ¼ 0, thus describ-
ing a configuration with a missing bunch. For an arbitrary
number of bunches M, the eigenvalue problem is solved
numerically. The numerical growth rates are found by
fitting with an exponential the envelope of the betatron

TABLE I. Parameters for NSLS-II bare lattice.

Parameter Symbol Value Unit

Energy E0 3 GeV
Revolution period T0 2.64 μs
Harmonic number h 1320
Average currenta Iav 25 mA
Momentum compaction α 0.00037
Synchrotron tune νs 0.007
Horizontal tune νx 33.22
Vertical tune νy 16.26
Transverse damping time τx;y 54 ms
Longitudinal damping time τs 27 ms
Energy spread σδ 0.0005
Bunch length σt 10 ps

aCommissioning stage up to 25 mA.

TABLE II. Transverse HOMs of the seven-cell PETRA-III rf
cavity.

fr, MHz Rsh;⊥, MΩ=m Q⊥ Rsh;⊥=Q⊥, Ω=m
860.25 14.7 55 700 263.91
867.12 17.5 56 800 308.1
869.55 56.1 58 200 963.92
870.96 19.7 59 400 331.65

1043.53 83.6 40 400 2069.31
1047.44 26.2 40 900 640.59
1089.13 17.0 49 400 344.13
1465.13 15.5 54 600 283.88
1545.34 26.8 44 300 604.97
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oscillations of the bunch centroids. From the definition of

the multibunch mode xðμÞm ðtÞ given in Eq. (41), it follows
that an arbitrary multibunch configuration can be expressed
as a sum of multibunch modes

xmðtÞ ¼
1

2

XM−1

μ¼0

xðμÞm ðtÞ: ð71Þ

In the uniform filling pattern case, the modes xμ are

uncoupled and the multibunch xðμÞm ðtÞ is determined by
the real and imaginary parts of xμ:

xðμÞm ðtÞ ¼ 2

M

�
Re~xμðtÞ cos

2πμm
M

− Im~xμðtÞ sin
2πμm
M

�
:

ð72Þ

We therefore calculate the growth rate of mode xμ via

configuring the initial state in the multibunch xðμÞm ðtÞ. In the
arbitrary filling pattern case, the modes xμ are coupled and
their expression is given by Eq. (48). All modes are affected
by the eigenvalue with the largest imaginary part, with the
degree of coupling given by the initial conditions deter-
mined by the eigenvectors. Our procedure to the determine
the growth rate in such a case consists of calculating the
time evolution xμ for μ ¼ 0;…;M − 1. After a transient,
the exponential increase determined by the eigenvalue with
the largest imaginary part becomes dominant, and allows
the calculation of the numerical growth rate by exponential
fitting. The analysis of the independent modes of oscil-
lation can be done via transforming to the coordinate
system defined by the eigenvectors. A detailed investiga-
tion of the modes of oscillation for arbitrary filling patterns
will be the subject of a future publication. The effect of a
gap g in the uniform filling pattern case is studied for
M ¼ h ¼ 1320, where the number of bunches in the
nonuniform filling pattern is Mg ¼ M − g, and the number
of particles per bunch is Ng ¼ NM ¼ NT=Mg. We show
that the imaginary part of the fastest eigenvalue (with the
largest positive imaginary part) is very close to the growth
rate of the fastest unstable mode of the uniform filling
pattern case, over a large range of the gap g.

1. Elementary case 1: Two bunches

For M ¼ 2, and with 2N ¼ NT , the eigenvalue problem
given by Eq. (46),

����Ω
U
0 −Ω N−ΩU

0

N−ΩU
1 ΩU

1 −Ω

���� ¼ 0; N− ¼ N0 − N1

N0 þ N1

;

N0 þ N1 ¼ 2N;

is easily solved, with eigenvalues

Ω0;1 ¼
ΩU

0 þ ΩU
1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩU

0 − ΩU
1 Þ2 þ 4N2

−ΩU
0 ΩU

1

q
; ð73Þ

Ω0 þ Ω1 ¼ ΩU
0 þ ΩU

1 ; ð74Þ

and corresponding eigenvectors

a0 ¼
�
1;−

2ΩU
1 N−

ΩU
1 −ΩU

0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΩU

0 −ΩU
1 Þ2 þ 4N2

−ΩU
0 ΩU

1

p
�
T

a1 ¼
�

2ΩU
0 N−

ΩU
1 − ΩU

0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΩU

0 −ΩU
1 Þ2 þ 4N2

−ΩU
0 ΩU

1

p ; 1

�
T

:

ð75Þ

The real and imaginary parts of Ω0 and Ω1, giving the
frequency shift and growth rate respectively, are shown in
Figs. 3(a) and 3(b), for the case where the coupled-bunch
instability is driven by the HOMs listed in Table II, where
ΩU

0 ¼ ð78.4; 589.5Þ s−1 andΩU
1 ¼ ð−237.9;−21.8Þ s−1. In

Fig. 3(c), the comparison of the growth rates of mode 0
given by Eq. (73) as a function of N0=N with SPACE

simulations shows good agreement. The numerical growth
rate is found by fitting the envelope of the betatron
oscillations of the bunch centroids with an exponential
function. For a discussion in the uniform filling pattern case
see [11]. In the uniform filling pattern case, N0 ¼ N1 ¼ N,
thus N− ¼ 0 and Eq. (48) reads

�
~xg0ðtÞ
~xg1ðtÞ

�
¼ c0

�
1

0

�
e−iðωβþΩU

0
Þt þ c1

�
0

1

�
e−iðωβþΩU

1
Þt:

In the case N0 ¼ 0 and N0 ¼ 2N we recover the single
bunch case (M ¼ 1) with 2N particles per bunch observing
that one eigenvalue is zero and the other equal to
ΩU

0 þ ΩU
1 ¼ ΩU, where ΩU is the complex frequency shift

of a single circulating bunch.

2. Elementary case 2: Three bunches

In the case M ¼ 3 we discuss the configuration
N0 ¼ N1 ¼ 3N=2, N2 ¼ 0, with 3N ¼ NT , which
describes a configuration with a missing bunch. The
corresponding eigenvalue problem defined by Eq. (46)
reads

jB − ΩIj ¼

��������

ΩU
0 − Ω aΩU

0 a�ΩU
0

a�ΩU
1 ΩU

1 −Ω aΩU
1

aΩU
2 a�ΩU

2 ΩU
2 − Ω

��������
¼ 0;

a ¼ 1þ ffiffiffi
3

p
i

2
;

where � denotes complex conjugate. It follows that
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jB −ΩIj ¼ −Ω
�
Ω2 − TrBΩþ 3

4
ðΩU

0 ΩU
1 þ ΩU

0 ΩU
2

þ ΩU
1 ΩU

2 Þ
�
¼ 0; ð76Þ

where TrB ¼ ΩU
0 þ ΩU

1 þ ΩU
2 . Thus the eigenvalues read

Ω0;1 ¼
TrB
2

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTrBÞ2 − 3ðΩU

0 ΩU
1 þΩU

0 ΩU
2 þ ΩU

1 ΩU
2 Þ

q
:

Ω2 ¼ 0: ð77Þ

We notice that with the above configuration of one missing
bunch, one of the eigenvalue is zero, thus there are two
independent modes of oscillations. However, since the
multibunch configuration is not symmetric, the eigenvalues
differ from the eigenvalues of the uniform filling pattern
case withM ¼ 2. For comparison with the parameters used
in the M ¼ 2 case, the values of Ω0 and Ω1 in Eq. (77) are
Ω0¼ð743.3;−517.8Þ s−1 and Ω1 ¼ ð−905.7; 1085.5Þ s−1,
to be compared with ΩU

0 ¼ ð78.4; 589.5Þ s−1 and ΩU
1 ¼

ð−237.9;−21.8Þ s−1 of the M ¼ 2 case. The case M ¼ 3
with N0 ¼ 3N;N1 ¼ N2 ¼ 0, degenerates, as for M ¼ 2,
in the case of one circulating bunch (M ¼ 1), by observing
that Ω0¼TrB¼ΩU

0 þΩU
1 þΩU

2 ¼ΩU, and Ω1 ¼ Ω2 ¼ 0,
where ΩU is the complex frequency shift for M ¼ 1.
Extending this result to the case of arbitrary M, we
conclude that

XM−1

μ¼0

Ωμ ¼ TrB ¼ ΩU: ð78Þ

This result can be proved from Eq. (47) by observing that

XM−1

μ¼0

Ωμ¼
XM−1

μ¼0

ΩU
μ

¼−i
Iavc

4πðE0=eÞνβ
Xþ∞

p¼−∞

XM−1

μ¼0

j~λðpMω0þμω0þωβÞj2

×Z⊥
1 ½pMω0þμω0þωβ�

¼−i
Iavc

4πðE0=eÞνβ
Xþ∞

p¼−∞
j~λðpω0þωβÞj2Z⊥

1 ðpω0þωβÞ

¼ΩU; ð79Þ

where we used Ib ¼ Iav=M, since the average current Iav is
assumed to be independent of M. We conclude by
observing that Ω1 is the eigenvalue with largest positive
imaginary part, thus driven the fastest coupled-bunch
instability of the configuration with N0 ¼ N1 ¼ 3N=2,
N2 ¼ 0. Its imaginary part is ImΩ1 ¼ 1085.5 s−1. On
the other hand, the complex frequency shifts ΩU

μ for the
uniform filling pattern case with M ¼ 3 are

ΩU
0 ¼ ð−1168.7; 1041.6Þ s−1;

ΩU
1 ¼ ð238.7; 401.3Þ s−1;

ΩU
2 ¼ ð767.6;−875.2Þ s−1:
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FIG. 3. (a) Imaginary part (growth rate) and (b) Real part
(frequency shift) of the modes Ω0 and Ω1, given by Eq. (73), for
the case of two bunches (M ¼ 2). N0 and N1 are the number of
particles per bunch, and satisfy N0 þ N1 ¼ 2N, where N is the
number of particles per bunch in the uniform filling pattern case
(N0 ¼ N1 ¼ N). For N0 ¼ 0 and N0 ¼ 2 the system of two
bunches degenerates in the system describing one bunch with 2N
particles. The most unstable configuration is the configuration
with the uniform filling pattern. (c) Comparison of the growth
rates of mode 0 given by Eq. (73) as a function of N0=N with
SPACE self-consistent simulations, showing close agreement.
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We can therefore state that the fastest instability
driven by the uniform filling pattern case, given by
ImΩ0 ¼ 1041.6 s−1, is slower than the fastest instability
driven by the configuration with N0¼N1¼3N=2, N2 ¼ 0.

3. Practical case 1: Uniform bunch train with a gap

We now consider the effect of a gap g in the uniform
filling pattern with M ¼ h ¼ 1320, where h is the har-
monic number. The number of bunches in the nonuniform
filling pattern is Mg ¼ M − g, and the number of particles
per bunch is Ng ¼ NT=Mg, where NT ¼ NM is the total
number of particles in the train. The growth rate of bunch
mode μ for the uniform filling case (g ¼ 0) is plotted in
Fig. 4. The blue circles show the analytical result, while the
red squares show the numerical result obtained with SPACE

for the modes μ ¼ 1170, 944 and 316 with the largest
(absolute) growth rate value. In Fig. 5(a) we plot bunch
trains for different gaps. Notice that the area of the
rectangles is constant and equal to the total number of
particles NT . In Fig. 6 we plot the eigenvalue with the
largest imaginary part, found by solving numerically the
eigenvalue problem defined by Eq. (46), as a function of
the number of bunches Mg. The comparison of the result
with SPACE simulations shows a close agreement in this
case as well. The eigenvalue with the largest imaginary part
shown in Fig. 6 is very close to the growth rate of the fastest
unstable mode ð1=τÞUμ ¼ 1119 s−1, μ ¼ 1170, over a large
range of the gap g.

4. Practical case 2: Uniform bunch train
with fluctuations in the bunch population

We now consider the effect of fluctuations in the
bunch population Nm on a uniform bunch train with
M ¼ h ¼ 1320. The bunch population Nm is generated
assuming Nm ¼ Nð1þ XmÞ, where Xm is a random
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FIG. 5. (a) Bunch trains for different gaps g with number of
bunches Mg ¼ M − g, where M ¼ 1320. The area of the rec-
tangles equals the total number of particles in the uniform bunch
train NT ¼ NM. (b) Single realization of a bunch train with
bunch population Nm ¼ Nð1þ XmÞ, where Nm is the bunch
population of the uniform bunch train and Xm is a random
variable with zero mean and variance σX ¼ 0.2, corresponding to
fluctuations in the bunch population of 20%.
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FIG. 4. Growth rates of bunch modes μ for the uniform filling
pattern case with M ¼ h ¼ 1320, calculated analytically (blue
circle) and numerically with SPACE (red square) showing close
agreement. The numerical results are shown only for the three
modes, μ ¼ 1170, 944 and 316, with the largest absolute value of
the growth rate.
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FIG. 6. Comparison of the eigenvalue with the largest imagi-
nary part found by solving numerically the eigenvalue problem
defined by Eq. (46) as a function of the number of bunches
Mg ¼ M − g, with SPACE numerical simulations, showing close
agreement. Here g is the gap in the uniform filling pattern with
M ¼ h ¼ 1320. The growth rate defined by the eigenvalue with
the largest imaginary part is very close to the growth rate of the
fastest unstable mode ð1=τÞUμ ¼ 1119 s−1, μ ¼ 1170 of the uni-
form filling pattern case over a large range of the gap g.

SELF-CONSISTENT SIMULATIONS AND ANALYSIS … PHYS. REV. ACCEL. BEAMS 19, 024401 (2016)

024401-15



variable with zero mean and variance σX. Here we assume
σX ¼ 0.2, i.e., fluctuations in the bunch population of
20%. In Fig. 5(b) is shown one realization of the bunch
configuration. The average value of the eigenvalue with the
largest imaginary part, found by solving numerically the
eigenvalue equation (46) is ImΩμ ¼ ð1122� 0.1Þ s−1,
where NX ¼ 10 is the number of realizations of the random
configurations. Notice the small value of the sample
variance, σs ¼ 0.1 s−1, in the estimation of the average.

B. Fast eigenvalue estimation:
The Gerschgorin circle theorem

For a rapid and efficient analysis of the eigenvalue
problem, the application of the Gerschgorin circle theorem
[37,38] offers a powerful method for the localization of the
eigenvalues in the complex plane. The determination of the
eigenvalue spectrum is very accurate in the limit of
eigenvalue problems defined by strictly diagonally domi-
nant matrices, where off-diagonal terms are small with
respect to diagonal terms. More precisely, a n × n complex
matrix A ¼ ðaijÞ is diagonally dominant if each diagonal
element in absolute value is greater than the sum of the
absolute values of the off-diagonal elements in that row,
i.e., the element of A satisfies

jaiij >
Xn
j¼1
j≠i

jaijj; 0 ≤ i ≤ n: ð80Þ

The application of Gerschgorin’s theorem to a diagonally
dominant matrix allows to state that each eigenvalue may
not be too far from a diagonal element when the off-
diagonal entries are small in norm [38]. In our case, since
we look for perturbations around a uniform bunch train, we
deal with matrices that are not far to be diagonally
dominant. Gerschgorin’s theorem precisely states that if
λ is an eigenvalue of an n × n matrix A ¼ ðaijÞ, then, for
some index i,

jλ − aiij ≤
Xn
j¼1
j≠i

jaijj; 0 ≤ i ≤ n: ð81Þ

The Gerschgorin row disks are accordingly defined as

GiðAÞ ¼
�
z∶z ∈ C and jz − aiij ≤

Xn
j¼1
j≠i

jaijj≡ ri

	
;

ð82Þ

that is, for each row i, a Gerschgorin row disk is a closed
disk in the complex plane with center at the diagonal
element aii, and with radius ri equal to the sum of the
absolute values of the off-diagonal entries in the ith row.
The notation GiðAÞ½aii; ri� can be used to denote the ith

Gerschgorin row disk with center aii and radius ri. A
number of corollaries follow from Gerschgorin’s theorem,
such as (1) every eigenvalue of A lies within at least one of
the Gerschgorin row disks ofA, (2) the eigenvalues ofA lie
within the Gerschgorin column disks of A and, in the
special case of diagonal matrices, (3) the Gerschgorin disks
ofA coincide with the eigenvalue spectrum if and only ifA
is a diagonal matrix. Corollary (2) follows from the fact that
the eigenvalues of a matrix A are the same of its transpose
AT , since they have the same characteristic equation
jA − λIj ¼ jAT − λIj. The Gerschgorin column disks are
defined similarly to the row case

GiðATÞ ¼
�
z∶z ∈ C and jz − aiij ≤

Xn
j¼1
j≠i

jajij≡ ci

	
;

ð83Þ

for each column i, for 1 ≤ i ≤ n, with GiðATÞ½aii; ci�
denoting the ith Gerschgorin column disk with center aii
and radius ci. Since Gerschgorin’s theorem states that all of
the eigenvalues of the matrix A are contained both in the
union of the row disks and in the union of the column disks,
it follows that they must be in the intersection of the two
regions,

λ ∈
�
∪n
i¼1

GiðAÞ
�
∩
�
∪n
i¼1

GiðATÞ
�
: ð84Þ

As a consequence of corollary (3), if a Gerschgorin disk is
disjoint from the other Gerschgorin disks, then it contains
precisely one of the eigenvalues of A, and, if the union of k
Gerschgorin disks does not intersect any of the other n − k
disks, then there are exactly k eigenvalues (counting
multiplicities) in the union of the k disks.
We are now in a position to apply the Gerschgorin circle

theorem to the eigenvalue equation (46) defined by the
matrix B. In Fig. 7(a) we show the Gerschgorin column
disks GμðBTÞ, for the case of a gap in the uniform filling
pattern discussed in Fig. 6, where only the disks centered
around ΩU

μ with μ equal to 1170, 944 and 316 are shown,
which correspond to the three eigenmodes of the uniform
filling case with the largest growth rates, as shown in Fig. 4.
Given the structure of the matrix B, where each row μ is
multiplied by ΩU

μ , for the modes μ equal to 1170, 944 and
316, the radius of the Gerschgorin row disk is much larger
than the radius of the Gerschgorin column disk, with the
Gerschgorin column disks disjoint from each other for the
cases with number of bunches Mg ¼ M − g equal to 1200,
1000, 800 and 600 shown by circles in blue, red, gray and
green respectively in Fig. 7(a). Thus the circles represent
the regions in the complex plane GμðBTÞ½ΩU

μ ; cμ�, centered
atΩU

μ with radius cμ, where the eigenvalues of the matrix B
are located. By continuity [39] we can assert that the
eigenvalues of B with the largest absolute value of the
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imaginary part are located inside the circles centered at ΩU
μ

with μ equal to 1170, 944 and 316. The fastest instability is
determined by the eigenvalue inside the circle centered at
ΩU

1170 ¼ ð−1304; 1119Þ s−1. The circle corresponding to
Mg ¼ 600 has the largest radius c1170 ¼ 202 s−1, with the
imaginary part of the fastest unstable mode thus in the
interval ½917; 1321� s−1. This should be compared with
the result 1122 s−1 from the numerical solution of the
eigenvalue equation. Of course, the estimate is more
precise for smaller values of the gap g. It is clear that
the Gerschgorin circle theorem is particularly effective for
the study of perturbations around the uniform filling pattern
case. We remind here that computation of the radius of one
Gerschgorin’s disk is very fast, requiring M operations
(sum over a row or a column of a M ×M matrix).
The effectiveness of the Gerschgorin circle theorem is

evident when applied to the practical case 2 studied in
Sec. IVA, i.e., the case of a uniform bunch train with
fluctuations in the bunch populationNm. Figure 7(b) shows
the Gerschgorin column disks with center at ΩU

μ , with μ
equal to 1170, 944 and 316. The average radius and sample
variance of each disk for NX ¼ 100 realizations of the
random fluctuations is shown in Table III. The average

value of the radius of the disks is ≈40 s−1, with a sample
variance of ≈5 s−1. We can therefore conclude that, in this
case, the eigenvalues of B can be quickly estimated with
very good accuracy, without the need to solve numerically
the eigenvalue problem. This can be of great help for
parametric scans or studies over a large number of
realizations of the random fluctuations.

V. CONCLUSIONS

We discussed the SPACE, a parallel code for self-
consistent beam dynamics simulations of collective effects
driven by short- and long-range wakefields. For multibunch
simulations, the long-range interaction is efficiently com-
puted by a novel algorithm based on the expansion of the
long-range wake function in Taylor series, allowing the
calculation of the coupled-bunch interaction via storing few
moments of the bunch densities. We presented an analytical
treatment of the coupled-bunch instability for arbitrary
filling patterns based on the formulation of an eigenvalue
problem defined by the complex frequency shifts of the
uniform filling pattern case. The numerical solution of the
eigenvalue problem allows the study of instability thresh-
olds via the determination of the eigenvalue with the largest
imaginary part. The analysis is general and can be applied,
for example, to study the stability of perturbations to a
desired filling pattern due to fluctuations in the number
of particles per bunch, or to find the most stable multibunch
configuration by varying the number of particles per
bunch under suitable constrains. As an application, we
benchmarked theory and simulations for the case with a gap
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FIG. 7. Gerschgorin circle theorem applied to: (a) a nonuniform filling pattern with Mg ¼ M − g bunches, where g is the gap in the
uniform filling M ¼ 1320, and (b) the case with fluctuations in the bunch population Nm on a uniform filling pattern with M ¼ 1320.
The regions determined by the intersection of the Gerschgorin disks, which, by the continuity of the eigenvalues [39], contain the three
eigenvalues with the largest imaginary part, are shown with colored circles for the three fastest growing modes μ ¼ 1170, 944, 316 of the
uniform filling case. In (a) the cases withMg ¼ 1200 (blue circle),Mg ¼ 1000 (red circle),Mg ¼ 800 (gray circle) andMg ¼ 800 (green
circle) are shown. The radius of the Gerschgorin disks goes to zero in the limit of zero gap. In (b) the Gerschgorin disks for the same
modes μ ¼ 1170, 944, 316 are shown with filled circles. Here the bunch population Nm is generated with a fluctuation of 20%.

TABLE III. Gerschgorin column disks for practical case 2.

Mode (μ) Center (ΩU
μ ), s−1

Average
radius, s−1

Sample
variance, s−1

1170 (−1304, 1119) 38.1 4.1
944 (877, −878) 40.1 5.3
316 (1.7, 547.2) 43.3 5.5
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in the uniform filling pattern, with parameters of the NSLS-
II storage ring, and found that the coupled-bunch instability
growth rate is weakly dependent on the gap, if the number
of bunches is greater than 5 of the total 1320 rf buckets. For
the case of a uniform filling pattern with fluctuations in the
bunch population, we found that the numerical solution of
the eigenvalue problem gives as well a result very close to
the uniform filling pattern case, for a fluctuation in the
bunch population of 20 percent. Lastly, we discussed the
application of the Gerschgorin circle theorem, as a power-
ful tool for a rapid estimation of the eigenvalue spectrum,
effective in particular for an accurate estimation of the
eigenvalues in perturbative studies of uniform filling
patterns.
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APPENDIX A: PROOF OF EQ. (37)

Multiplying Eq. (34) by expð−i2πmμ=MÞ and summing
over m, Eq. (37) is obtained with the use of Eqs. (35) and
(36), the relation

x½mþk�ðtÞ ¼
1

M

XM−1

μ0¼0

~xμ0 ðtÞei2πðmþkÞμ0=M; ðA1Þ

and the identity

ei2πkμ
0=M

XM−1

m¼0

N½mþk�ei2πmðμ0−μÞ=M

¼ ei2πkμ=M
XM−1

m¼0

N½mþk�ei2π½mþk�ðμ0−μÞ=M

¼ ei2πkμ=M
XM−1

m¼0

Nmei2πmðμ0−μÞ=M: ðA2Þ

APPENDIX B: COMPLEX FREQUENCY SHIFTS
FOR UNIFORM FILLING PATTERNS

Here we drop the superscriptU in the complex frequency
shifts ΩU

μ , referring implicitly to the uniform filling
pattern case.

1. Transverse case

In terms of the transverse impedance Z⊥
1 ,

Z⊥
1 ðωÞ ¼ i

Z
∞

−∞
dτeiωτW1ðτÞ; ðB1Þ

W1ðτÞ ¼ −
i
2π

Z
∞

−∞
dωe−iωτZ⊥

1 ðωÞ; ðB2Þ

the complex frequency shift Ωμ given by Eq. (47) reads

Ωμ ¼ −i
AxN
4πωβ

Z
∞

−∞
dωj~λðωÞj2Z⊥

1 ðωÞ

×
Xþ∞

k¼−∞
eik½−

ωT0
M þ2πμ

M þωβT0
M �; ðB3Þ

where we used the fact that W1ðτÞ ¼ 0 for τ < 0 and
T0 ¼ C=c. Using the identity

Xþ∞

k¼−∞
eikz ¼ 2π

Xþ∞

p¼−∞
δðz − 2πpÞ; ðB4Þ

it follows

Ωμ ¼ −i
AxN
2ωβ

Xþ∞

p¼−∞

Z
∞

−∞
dωj~λðωÞj2Z⊥

1 ðωÞ

× δ

�
−
ωT0

M
þ 2πμ

M
þ ωβT0

M
− 2πp

�
: ðB5Þ

Changing integration variable ω̄¼ωT0=M, dω¼M=T0dω̄,
we have

Ωμ ¼ −i
IbMc

4πðE0=eÞνβ
Xþ∞

p¼−∞
j~λðpMω0 þ μω0 þ ωβÞj2

× Z⊥
1 ½pMω0 þ μω0 þ ωβ�; ðB6Þ

where we used ω0 ¼ 2π=T0, Ax ¼ ec=½γT0ðE0=eÞ�, Ib ¼
eN=T0 and νβ ¼ ωβ=ω0. Thus the mode frequency shift ωr
and growth rate 1=τ read

ωr;μ ¼
IbMc

4πðE0=eÞνβ
Xþ∞

p¼−∞
j~λðpMω0 þ μω0 þ ωβÞj2

× ImZ⊥
1 ðpMω0 þ μω0 þ ωβÞ; ðB7Þ

τ−1μ ¼ −
IbMc

4πðE0=eÞνβ
Xþ∞

p¼−∞
j~λðpMω0 þ μω0 þ ωβÞj2

× ReZ⊥
1 ðpMω0 þ μω0 þ ωβÞ: ðB8Þ

2. Longitudinal case

In terms of the longitudinal impedance Z∥
0,

Z∥
0ðωÞ ¼

Z
∞

−∞

dz
c
eiωz=cW0

0ðzÞ; ðB9Þ
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W0
0ðzÞ ¼

1

2π

Z
∞

−∞
dωe−iωz=cZ∥

0ðωÞ; ðB10Þ

W00
0ðzÞ ¼ −

i
2πc

Z
∞

−∞
dωωe−iωz=cZ∥

0ðωÞ; ðB11Þ

the complex frequency shift Ωμ given by Eq. (67) reads

Ωμ ¼ i
AzNc
4πωs

Z
∞

−∞
dωωj~λ0ðωÞj2Z∥

0ðωÞ

×
Xþ∞

k¼−∞
eik½−

ωT0
M þ2πμ

M þωsT0
M �; ðB12Þ

where we used the fact that W0
0ðzÞ ¼ 0 for z < 0 and

T0 ¼ C=c. Using the identity given by Eq. (B4) it follows

Ωμ ¼ i
AzNc
2ωs

Xþ∞

p¼−∞

Z
∞

−∞
dωωj~λðωÞj2Z∥

0ðωÞδ

×

�
−
ωT0

M
þ 2πμ

M
þ ωsT0

M
− 2πp

�
: ðB13Þ

Changing integration variable ω̄¼ωT0=M, dω¼M=T0dω̄,
we have

Ωμ ¼ i
IbMη

4πðE0=eÞνs
Xþ∞

p¼−∞
ðpMω0 þ μω0 þ ωsÞ

× j~λðpMω0 þ μω0 þ ωsÞj2Z∥
0ðpMω0 þ μω0 þ ωsÞ;

ðB14Þ

where we used ω0 ¼ 2π=T0, Az ¼ eη=ðcT0E0Þ, Ib ¼
eN=T0 and νs ¼ ωs=ω0. Thus the mode frequency shift
ωr and growth rate 1=τ read

ωr;μ ¼ −
IbMη

4πðE0=eÞνs
Xþ∞

p¼−∞
ðpMω0 þ μω0 þ ωsÞ

× j~λðpMω0 þ μω0 þ ωsÞj2
× ImZ∥

0ðpMω0 þ μω0 þ ωsÞ; ðB15Þ

τ−1μ ¼ IbMη

4πðE0=eÞνs
Xþ∞

p¼−∞
ðpMω0 þ μω0 þ ωsÞj~λðpMω0

þ μω0 þ ωsÞj2ReZ∥
0ðpMω0 þ μω0 þ ωsÞ: ðB16Þ
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