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Coupled beam motion in a storage ring with crab cavities
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We studied the coupled beam motion in a storage ring between the transverse and longitudinal directions
introduced by crab cavities. The analytic form of the linear decoupling transformation is derived. The
equilibrium bunch distribution in an electron storage ring with a crab cavity is given, including contribution
to the eigenemittance induced by the crab cavity. Application to the short pulse generation scheme using

crab cavities is considered.
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I. INTRODUCTION

Crab cavities (also known as transverse deflecting
cavities) have found major applications in storage rings.
In colliders, they are used to rotate the colliding bunches at
the collision point to create head-on collisions while the
trajectories of the two beams cross at an angle (crab
crossing) [1]. In electron storage rings, it has been proposed
to use crab cavities to tilt a long bunch in the y-z plane in
order to select a short x-ray pulse from the radiation
generated by the beam with a vertical slit [2,3].

The newly proposed two-frequency crab cavity scheme
[3] differs from the original scheme [2] in several aspects.
In particular, the crab cavity kicks on the short pulse
generating bunches are not canceled within every revolu-
tion and hence these bunches are tilted everywhere in the
ring in an equilibrium state. The equilibrium phase space
distribution of these tilted bunches at the photon beam
source points is critical for predicting the performance of
the new short pulse scheme, which requires a thorough
understanding of the beam dynamics with crab cavities.

A crab cavity gives the beam a time-dependent trans-
verse kick. The kick is typically in the horizontal plane for
the crab crossing application and in the vertical plane for
the short pulse application. By virtue of the Panofsky-
Wenzel theorem, the crab cavity also gives the beam a
longitudinal kick that is dependent on the transverse offset.
Naturally the crab cavity couples the transverse direction to
the longitudinal direction. The nature of the linear coupled
motion between the y-z or x-z directions is the same as
the linear x-y coupling introduced by a skew quadrupole.
Therefore it can be likewise studied.

In some earlier work, the effects of the crab cavity on the
beam are described as creating a z-dependent closed orbit
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[3,4]. This concept is valid when synchrotron motion is not
included in the consideration. It can lead to useful results as
synchrotron motion is usually slow for storage rings.
However, a general analysis of particle motion with crab
cavity should include synchrotron motion.

In this paper we study the coupled motion due to crab
cavities in a storage ring through the transfer matrix. A
matrix perturbation method is applied to find the linear
transformation that block diagonalizes the one-turn transfer
matrix. Analytic formulas for the decoupling linear trans-
formation are derived. By applying the matrix perturbation
technique to the Ohmi envelope equation [5] and consid-
ering the quantum diffusion of the beam with a tilted
distribution on the y-z directions, the equilibrium phase
space distribution in an electron storage ring with crab
cavities is also obtained. These results are applied to the
short pulse generation scheme [3]. The short pulse perfor-
mance is calculated and its functional dependence on crab
cavity and lattice parameters is revealed. It is shown that
the vertical eigenemittance due to the crab cavity induced
tilt in bending magnets is a dominant factor that limits the
achievable minimum pulse duration. Numeric example and
simulation results for the short pulse generation application
for SPEAR3 are presented.

In Sec. II we study the decoupling transformation for a
vertical crab cavity. In Sec. III we first show the connection
between the second order moment matrix of the original
and decoupled coordinates. Then we derive the changes to
the equilibrium distribution due to the crab cavity and
calculate the short pulse performance for the short pulse
generation scheme. A brief description of the procedure for
decoupling the motion by a horizontal crab cavity is given
in Sec. IV. Numeric examples and particle tracking are
shown in Sec. V. The conclusion is given in Sec. VL.

II. LINEAR COUPLING BY A VERTICAL
CRAB CAVITY

For a conventional crab cavity working at the TM110
mode, assuming the transverse deflection is on the vertical
direction, the E-M fields are given by
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E, = Eyky cos wt, ¢B, = &y sinwt, (1)
where &,/ c gives the amplitude of the magnetic induction,
k = w/c the angular wave number, @ = 2zf the angular
frequency, and c¢ the speed of light. In crab cavity
applications, the beam arrives at around f =0, where
kick-to-time slope is the maximum. Correspondingly the
kicks to the beam in linearized form are

AS = = ky, 2
ky (2)

where 6 is the momentum deviation of the particle, E is the
beam energy and V = fgap Eo sin(wt)cdt is the deflecting
voltage. The linear motion through a crab cavity can be
expressed via a transfer matrix of the coordinates
X = (x,x',y,y',z,6)". For a thin vertical crab cavity, the
transfer matrix is given by

I 0 0
T.=|0 1 €W |, (3)
0 W I

where I in this paper is the identity matrix of the

appropriate size, 2 x 2 in this case, ¢ = <fX, and

w- (‘1) g) 4)

When a crab cavity is inserted into the ring lattice, the
one-turn transfer matrix will be changed. Assuming the
crab cavity is located at point 2, the one-turn transfer matrix
at point 1 is

Tl = TIZTCTZI’ (5)
where T; is the transfer matrix from point 1 to 2 and T,

the transfer matrix from point 2 to 1. Using notations as
defined in Ref. [6], the transfer matrix T,; can be written

Mx,21 0 E21
Ty=( 0 M, 0], (6)
F21 0 L21

where each element is a 2 x 2 matrix block. Transfer matrix
T, can be likewise expressed. Working out Eq. (5), we
found

T, =T\” + €T, (7)

with

0 E 12WMy’21 0
T, = M, 1, WF;, 0 M, LWL, |, (8)
0 L, WM, ,, 0
where TEO) is the one-turn matrix at point 1 without the crab
cavity,
M, 0 E
0
T =TTy =| 0 M, 0 [. (9)
F 0 L

In writing Eq. (9) we have neglected the synchrobetatron
coupling effect that would be present if the rf cavity is
located in a dispersive region [6]. This should not impact
the results below as it usually only causes a small
correction. The usual dispersion decoupling matrix is

I 0 D
u=| 0o 1 0| (10)
D} 0 I

where D; = (0,d,), d; = (D;, D), and the symplectic
conjugate of matrix D; is D] = JID!J,, with

(00 o

Applying the transformation U to T;, we get a new

transfer matrix for the betatron coordinates X =
(xﬂ7'x2f’yaylaz76)T9
T],n == U_lTlU
=T\ + €T (12)
- 1,n 1,n»
where x; =x— D8, xj=x'-Di3, T\ is a block-
diagonal matrix,
M, 0 0
0
TO =0 M, 0 (13)
0 0 L
and
0 T, 0
Tl n = Tyx 0 Tyz (14)
0 T 0

It has been shown that
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T,, = -M, ,D,WM, ;. (15)
T, = M, nDI(M;3)" T, (16)
T,. = M, 1;WLyy ,, (17)
T, = L2, WM, 5, (18)

where L, , is longitudinal transfer matrix from point 1 to 2
with the (1, 2) element replaced with 7,; as defined in
Eq. (19) of Ref. [6] and likewise for L, ,.

From Egs. (14)—(18) it is seen that the longitudinal
motion and the vertical motion are coupled through the
vertical crab cavity via the off-diagonal blocks T, and T,.
In addition, when the vertical crab cavity is located at a
dispersive region [with nonzero horizontal dispersion
D, = (D,, D5)"], the horizontal and vertical motion are
also coupled through the crab cavity.

The x-y coupling and the y-z coupling in Eq. (12) can be
simultaneously diagonalized. The analytic form of the
decoupling transformation can be derived with a matrix
perturbation approach. Let the transformation be denoted
by the matrix V, i.e., V"TlﬁnV is block diagonal. Because

the matrix T, deviates from the block diagonal matrix
T(1?z)1 by only a small amount that is proportional to €, we
expect the deviation of V from the identity matrix to be

proportional to e, too, i.e.,

V=I1+YV, (19)
with V o €. We use a trial form of \7,
0 (O 0

v=|-Ccf 0 (20)
0 -C; 0

It is easy to verify that the symplecticity of the matrix V is

satisfied to first order of € with V as given in Eq. (20). The
transfer matrix after applying the V transformation is

VoIT,, Va (1= V)(T) +€T,,) (1+V)
=T+ (¢T,,, - VT +TOV) + 0(e?).

1.n (21)
For the transfer matrix V‘ITL,,V to be block diagonal to
first order of €, we can require

T, - VI + TV =0,

1.n R (22)
because the diagonal blocks of the left-hand side of
Eq. (22) are calculated to be all zeros. In fact, Eq. (22)
is equivalent to

T, — C;M, + M,C, =0, (23)
eT,, +C{M, - M,C/ =0, (24)
eTy. — C,L + M,C, =0, (25)
T, +CsM, - LCJ =0. (26)

From Eqgs. (23) and (24) one can solve for C;, and similarly
from Egs. (25) and (26) for C,. The solutions are

e(Tyy +T5)

Cr= T, = M,)’

(27)

e(YN'yZ + ij)

C,=—— 2o
> Tr(M,-L)

(28)

where Tr(-) denotes taking the trace of a matrix. The
solution for C, would be the same if we had block
diagonalized the y-z plane only, ignoring the x-y coupling
in Eq. (12). This indicates that the indirect x-z coupling in
Eq. (12) is a second order effect. It is worth noting that
Egs. (27) and (28) agree with the result of Ref. [7] to first
order of e.

Inserting Eqgs. (17) and (18) into Eq. (28), and expressing
the related vertical and longitudinal transfer matrices in
terms of the beta functions and phase advances, the four

elements of
C C
C, = ( 11 12)
Gy Cyp

can be calculated and the results are

(29)

%5\//51/32

cos 2av; — cos 2av,

Ci [cos Wy 1, sin(2zvy, — Uy,)

+ cos(2av, — W 15) sin Upy), (30)

%€ﬁsv/31/32

cos 2z, — cos 27y,

[Sin(Zﬂl/S — \IIS,IZ) sin \1112

—sin U, 1, sin(2zv, — ¥yy)],

(31)
%6\/,52/,31

G = {COS(27[US - \I]S,IZ)
oS 2z, — cos 27y,

X (cos Wy, — oy sin W)
—cos ¥, jp[cos(27vy — Wy,) + a sin(2zv, — Wyy)]},
(32)
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o 36PN/ Pa/ B

cos2avg —cos2my,

{Sin(ijs — \11.9,12)

X (cos Uiy —aysinWy,)
+sin Wy j5[cos(27vy, — V)5 ) +ay sin(2zv, — ¥y,)] },
(33)

where ¥ |, is the synchrotron phase advance from point 2
to 1, f, is the longitudinal beta function, v, is the
synchrotron tune, v, is the vertical tune, a; and f; are
the vertical Courant-Snyder functions at point 1, ¥, is the
vertical betatron phase advance from point 2 to 1, and 3, is
the vertical beta function at point 2. Because the longi-
tudinal motion is slow, it can be ignored to simplify the
results. The results under this assumption can be obtained
from the exact formulas by using the approximations
cos2nvy ~ 1 and fsin2av, &7, with 77 = — §D/pds.
The simplified expressions for the C, matrix elements
are found to be

VPP

Cn ) sinlmiy cos(mvy — Uyy), (34)
_ i _

Cpp= el VHiP, | sin ¥ T2 sy — )|, (35)

2sinzvy [2sinzv, @

[Sil’l(ﬂ'yy - \Ijlz) - COS(JTl/y - \:[112)],

(36)

Co :eﬁ VBl B 1

2sinzvy |2sinzv,

(COS \IJIZ —ap sin \I/12)

- % [sin(zwy — U1y) — ay cos(av, — Up)]|. (37)

It is worth noting that

2 —
l € Pl
8 sin’zw, tan v, |

1Ca Il = (38)

which is a constant all around the ring.

In the above we showed that a vertical crab cavity causes
y-z coupling, and additionally x-y coupling if it is located
at a dispersive region. The coupled motioned can be
decoupled with a linear transformation. The transformation
for the y-z coupling is given by Egs. (19), (20), and
(34)-(37).

ITI. EQUILIBRIUM DISTRIBUTION
IN AN ELECTRON STORAGE RING
WITH CRAB CAVITY

A. Beam distribution changes due to a crab cavity

The decoupled coordinates X, are related to the original
coordinates X through X = UVX,. The second order
moment matrices of a particle distribution in X and X,
coordinates, defined as

T=(XX"), I, = (X.Xp). (39)

are related through
T =UVEVIUT, (40)

where (-) denotes taking the average over the particle
distribution and we have assumed the distribution is
centered on the reference orbit. The moment matrices
are symmetric. Matrix X4 is block diagonal. The two
matrices £ and X; may be written as

Z“)cx 2‘xy sz
Y= ny DIV 2 (41)
2){1 Z;z zzz
and
. 0 0
=10 % 0 (42)
0 0 X

Z

Inserting Egs. (10), (19), and (20) into Eq. (40), the block
matrices in Egs. (41) and (42) are related. It is found that the
changes to the diagonal blocks of X due to the crab cavity
are second order effects, i.e., of the order 0(62), for
example

z, =CZ,(CHT+2,+C,x.Cl. (43)

Therefore, it may be inferred that the deviation of the
diagonal block matrices in X, from the case when the crab
cavity is off (e.g., assuming it was adiabatically turned on)
is also a second order effect. In other words, we assume

Zx ~ Z“xO = €y < ﬁx — ) > (44)
—Qx Vx
By —a )
X, xZo=¢, . (45)
y Y0 Y <—6¥y 7
2
o; O
naze= (7)) ()
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where €, , are original horizontal and vertical emittances,
Ay Pry» and y, ,, are the Courant-Snyder functions for the
horizontal and vertical directions, with y, ,=(14a3 )/, ,,
and o, and o are original bunch length and momentum
spread, respectively. This assumption is validated in the
next subsection with the Ohmi envelope approach. In
Eq. (46) we have assumed a, = 0, i.e., there is no tilt
between the z-6 directions. The deviation of matrix block
X, from the original case without crab cavity is also of the
second order. Only X, and %, have first order dependence
over the crab cavity strength parameter e,

Ty =-Z,(CH)T+(C, -D|C7)E, + D Z,CI, (47)
¥, = C{Z, (D)’ = Z,[(C3)" + C{(D})’]
+C,2,. (48)

We are interested in the tilt across the y-z planes
introduced by the crab cavity. In an electron storage ring,
if originally there is no horizontal to vertical coupling,
typically X, ~ 0. Also, because the horizontal emittance is
typically much smaller than the longitudinal emittance,
unless the horizontal and vertical motions are near a
resonance, normally the contribution from the X, term in
Eq. (48) is much smaller than the last term. Keeping only
the last term, we obtain

Oy, 0.5 C]]Uz
zyz_<ﬂ y>zCQZZ_< :

2
Oy Oys G0

C‘2”§> (49)
C226§ .

From Eq. (49) we see that the crab cavity causes a tilt of
the beam distribution between the vertical and longitudinal
directions. The tilt is not only between the vertical
coordinates and the z-coordinate, but also the d-coordinate.

B. First order perturbation to the equilibrium
distribution by a crab cavity

In an electron storage ring, the beam reaches an
equilibrium distribution determined by the balance between
quantum excitation and radiation damping. The equilib-
rium distribution at a location of the ring can be found by
solving Ohmi’s envelope equation [5],

T()Z()Tg + EO - 20, (50)
where T is the one-turn transfer matrix (including damp-
ing), ¥, is the second order moment matrix as defined in
Eq. (41), and By, is the one-turn integrated diffusion matrix

so+C
Bo@a>=g/' ToocoB)TT cpds', (51)

So

where T, ¢ ¢ is the transfer matrix from s’ to sy + C, C'is
the ring circumference, and B(s’) is the diffusion matrix at

location s = s’. In Egs. (50) and (51) subscript O indicates
the case without the crab cavity.

When the crab cavity is introduced to the ring, all
quantities in Eq. (50) are changed. Suppose we are
concerned of a point immediately downstream of the crab
cavity, the envelope equation becomes

TZT! + B =%, (52)
with the new one-turn transfer matrix and new integrated
diffusion matrix being

T =T,T,. (53)

Multiplying T;' and (T[)~" from the left and right sides
to Eq. (52), respectively, and inserting B, from Eq. (50),
we get

Ty(Z-Zo)T] =TT -5 (55)
Rewriting T, from Eq. (3) as
0 0 0
T,=1+eW, W=|[0 0 W/[, (56
0 W 0
the inverse matrices of T, and its transpose are
T;' =1 - €W, (57)
(TH)"! = T — W, (58)
with which Eq. (55) becomes
TAT) — A = —¢(WZ 4 =ZW’) + 2(WZW'),  (59)
where we have used the definition
An Ay Ag
A=3-3,.=| A, A, A, (60)

A){z AyT'z Azz

Changes of the equilibrium distribution caused by the crab
cavity can be found by solving Eq. (59) for A.

For results to first order of the strength parameter €, on
the right-hand side (rhs) of Eq. (59) X can be replaced by
the original second order moment matrix, X, = UZ, U7,
with X, a block diagonal matrix as in Eq. (42), and the €?
term can be dropped. In this case, among the 2 x 2 sub-
blocks of the rhs of Eq. (59), only the x-y and y-z blocks
and their symmetric counterparts are nonzero. Therefore
the elements in the sub-blocks A,,, A,,, A, , and A, are

yy» =2z
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solutions of a linear homogeneous equation set. In general
this equation set is nondegenerate (the T matrix includes
damping). Therefore these blocks are all zeros to the first
order of €, which verifies the assumption we made in the
previous subsection.

When the crab cavity is located in a dispersion region,
the elements of Axy and AyZ blocks are coupled in an
inhomogeneous linear equation set,

M,ALM! + M,A BT — A,
= (=€)(=Z,(D])"W" + D2 W7), (61)

M, ALFT + MJA, LT — A

y=oyz

= (—€)(WZ,o+ WD Z,,(D])T + Z,,WT'), (62)

yz

where X9, Z,9, and X, are diagonal blocks of X . For
electron storage rings initially without x-y coupling, the
original vertical emittance is zero and hence X, = 0.
Equations (61) and (62) can be solved for elements of
A,y and A . The coupling terms due to dispersion are on
the order of O(H,/f,), which is usually very small, where
H, = [D?* + (a,D + B.D')?]/2, is the dispersion invari-
ant. For example, SPEAR3 has f;~ 6.2 m and at the
standard straight sections H, = 1.0 mm. Ignoring the
coupling terms, the solution for elements of A, _ is

Zyz = Ayz = C22z0
By cos nv,, 0

2
€0
_ S
s ﬂ'l/y S m/y Ofy COos JTIJy 2sinzw,

where y; = 0,/05. This result is the same as given by
Eqgs. (34)—(37) and (49) for the location just downstream of
the crab cavity.

C. Vertical eigenemittance due to crab cavity

When solving the Ohmi envelope equation, Eq. (52), for
the equilibrium beam distribution with first order pertur-
bation, we found that normal mode distributions do not
change. However, because the longitudinal dimension of
bunched beams in storage rings is usually much larger than
the transverse dimensions, second order terms involving
the longitudinal dimension may also be important. In fact,
numeric solutions of Eq. (52) show that the normal mode
distributions do have changes of order €>. Notably, there is a
finite vertical normal mode emittance (i.e., eigenemittance)
and the bunch length changes.

Because coupling with the horizontal direction is small,
we can consider only the vertical and longitudinal direc-
tions. Assuming the original vertical emittance is zero,
20 =0, and using

A — Ac,, Ao A — Oy, Oys
2z T A ) vz T )
056 Oyz Oys

A615
Oy O\
Ayy _ < yy yy >’ (64)

Oyy  Oyy

the coupled matrix equations from Eq. (59) are given by

- 0 Oy:
LAZZL - Azz = (_6) ) (65)
Gyz 0}'5 - Gny
0 c
M,A, L” — A, = (—e) » (66)
' ) Oz 0z + Oyy €0y,
0 o

MA, M] -A,, = (_€)< 2 >, (67)

oy, 20y,— €0,
where o, = 67 = 62, + Ac
original bunch length.

In principle, solving Egs. (65)—(67) for matrix elements
in Eq. (64) gives the equilibrium distribution, from which
one can calculate the eigenemittances. Although the gen-
eral solution has not been found, approximate results can be
derived from these equations. From Eqs. (65) and (66) we
obtain

2> 0,5 = Aos, and o0, is the

Aazz _ﬂzAdéﬁ = Gyzeﬁs coty, (68)

€ Py

RO, ——————————— 69
e %25 505 W, — cosy, (69)

Oy

Numeric solutions indicate that ?Ac;; < Ao, Ignoring
the 2Ac s term, we obtain
-1/2
> . (70)

The projected distribution on the (z, §) plane, X, and the
longitudinal normal mode distribution, X, are approxi-
mately equal (their difference is a small term « ee,,, where
€, is the vertical eigenemittance). Therefore, the longi-
tudinal eigenemittance is

siny,

2

€
GZ ~ GZO (1 - fﬁsﬁy CO“/’S T
CoSy — Cosyy,

€ZNO'ZO'50, (71)

where o, is given in Eq. (70) and o4 is the original
momentum spread.

A different approach has been taken to obtain the vertical
eigenemittance due to the crab cavity. In an electron storage
ring, the source of finite emittances is the stochastic photon
emission in magnetic fields. The crab cavity causes a tilt
across the longitudinal and vertical planes. Consequently,
the energy loss of an electron due to photon emission will
cause a random shift of vertical coordinates relative to its
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“ideal orbit,” vertical
eigenemittance.
From Eq. (49) we find the average slope of the y, y’

coordinates with respect to momentum deviation &,

which gives rise to the

Ay Ay
Iys = o= Cia,

A6 "= A

(72)
The equivalent vertical coordinate displacements for an
energy loss Ao are thus

Ay = C12A5, Ay/ = szA(s, (73)
and the quadratic term of the Courant-Snyder invariant
change is

AJ, =H A, (74)
where we defined crab cavity dispersion invariant,
1
He = - [Chy + (a,Ciy + ,Cn)’]. (75)

Py

The increase of vertical emittance due to photon emission
in a tilted bunch is the same as due to vertical dispersion,
except here the vertical dispersion invariant is replaced with
the quantity H,.

Using Egs. (31) and (33), and integrating H, over the
ring, we obtain the average crab cavity dispersion invariant,

e by
12 (cos2av, — cos2av,)*’

2+ cos 27y,

<Hc> = (76)

where we have assumed the synchrotron phase advance is
linearly proportional to distance traveled in bending mag-
nets. Similar to vertical emittance due to the usual vertical
dispersion [8], the vertical eigenemittance for an isomag-
netic storage ring due to crab cavity is given by

, (77)

where C, = 3.83 x 107"% m, y is the Lorentz energy factor,
J, = 1 is the vertical damping partition, and p is bending
radius.

D. Prediction of short pulse performance

For the crab cavity application of generating short
pulses, an important task is to estimate the expected short
pulse performance, such as the minimum pulse duration
and the fraction of flux accepted by a slit with certain
aperture. This can be done if we know the beam distribution
at the source point and the photon beam optics between the
source point and the slit.

The normal mode distributions for the longitudinal and
vertical planes are Gaussian. Their projections onto the y-z
plane or y'-z plane are hence also Gaussian. Because the slit
is usually placed far away from the source point, the tilt of
the photon beam is primarily determined by the y'-z tilt at
the source point. The distribution function for the y'-z
projection can be written as

2.2 2.2
;o 03y =20,z + 0}z 29
p(y'.2) = 5_——exp| - 502 . (78)
ﬂeylz ey/z
where ¢,. = /6207, — oy is the projected emittance. An

ellipse that represents the y'-z distribution is shown in
Fig. 1. The intercept with the z-axis signifies the minimum
bunch length. It is given by

oLt (79)

With a finite vertical eigenemittance, the y-z and y-y
blocks of the sigma matrix are related to the normal mode
distribution through

Z“yz =GCx, - Z,\‘(C;)T’ (80)

X, = C,2.CT + 2. (81)
For simplicity we assume that at the source point a, = 0, as
this is usually the case. From Egs. (80) and (81), we obtain

&

B, (82)

_ 2
oy, = Cyo; +Cpp

€,

2 o2 2 2, % |

oyy = Gy 07 + G505 + =+ oy,
:

(83)

FIG. 1. The projected y'-z ellipse.
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where we have added the contribution of radiation diver-
gence, oy, to o, such that Egs. (82) and (83) are for the
photon beam distribution at the source point.

Ignoring small terms, the projected emittance on the y'-z
plane is given by

2 2, & AN
€y/Z = 62 C2265 +_+0-9 . (84)
)

The minimum pulse duration is thus
€,
< C505 +5 + 05 12
Om =0\ 5, 2 2.6, 2
C5 07 + C5,05 + 7 + 0y

1
Ca

942 (85)
y

where the approximate equality is equivalent to Eq. (8) of
Ref. [3] and is valid when the 63 term is negligible. For hard
x-ray sources, the radiation divergence term may also be
negligible. In this case, if there are no other sources of
vertical emittance, the minimum pulse duration is inde-
pendent of the strength of the crab cavity. With a low
deflecting voltage, the y-z tilt of the photon beam at the slit
is small, which requires a small slit aperture for a given
accepted flux. Of course, in reality a reasonable deflecting
voltage is needed to overcome the contribution of the finite
vertical emittance due to spurious vertical dispersion and
horizontal to vertical coupling and the finite radiation
divergence. An optimal deflecting voltage is probably
achieved when the term of the crab cavity induced
eigenemittance is a few times of the contributions of
original vertical emittance and radiation divergence. The
longitudinal distribution of the short pulse accepted by a
given slit aperture is calculated from the distribution
function p(y', z) with

Az B ya/Lad/ , 26
(z3y4) = Vp(y', 2), (86)

_yu/Lu

where y, is the half aperture, L, is the distance from the slit
to the source point, and we have ignored the finite vertical
size of the electron beam at the source point. The
percentage of total flux in the accepted pulse can be
calculated with

Fly,) = / dzA(z: ). (87)

and the pulse duration o¢,, can be obtained from

p

 [dz? Mz y,)

00 = it (85)

IV. COUPLED MOTION BY A HORIZONTAL
CRAB CAVITY

Because of the lack of vertical dispersion, the coupling
due to a horizontal crab cavity generally does not involve
the vertical plane. Therefore we only need to study the 4D
phase space coordinates, (x, x’, z, §). The transfer matrix for

the crab cavity is
- 0 W
T, =1+eW,, W, = w oo/ (89)
Assuming the crab cavity is located at point 2, the one-turn
transfer matrix at point 1 is

T, =TT Ty = T(10) +eT), (90)
with

= _(E12WM21+M12WF21 E12WE21+M12WL21)

11— ’
L ,WM,, +F o WEy Ly WEy +F ), WEy,

o1

where we dropped subscript x for M, and M,;. Then the
dispersion decoupling transformation (the U matrix) can be
applied, followed by a second decoupling transformation
V. The same procedure can be carried out as for the vertical
crab cavity case. It is noted that if the crab cavity location
(point 2) is dispersion free, then the decoupling transfer
matrix V is the same as the y-z plane for the vertical case.
Equations (28)—(37) are valid with the y-plane parameters
replaced by the horizontal counterparts.

V. NUMERIC EXAMPLE AND SIMULATION

We use the SPEAR3 storage ring lattice to work out a
numeric example in order to illustrate the results derived in
the previous sections. Table I lists a few related parameters
of the machine. The method of using two crab cavities with
different frequencies to tilt the beam in the y-z plane for the
generation of short x-ray pulse is considered [3]. For
example, if the frequencies of the two crab cavities are 6
and 6.5 times of the rf frequency of the ring, respectively,

TABLE I. Selected parameters of SPEAR3.

Parameters Value Unit
Energy 3 GeV
Circumference 234.1 m
Tune v, , 14.106, 6.177

rf frequency fy 476.3 MHz
Bunch length o, 6.0 mm
Momentum spread o 0.001

Momentum compaction a, 1.62 x 1073

Synchrotron tune v 0.010
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and the deflecting voltages are properly matched, the tilting
effects of the two crab cavities cancel for half of the
buckets. For the other half buckets, the tilting effects add
up. For a bunch in a tilted bucket, the linear dynamics is not
different from the case with one crab cavity—only that the
strength parameter now is the sum of the two crab cavities,
€ =e(Viky + Vyky)/Ey, where V|, and k;, are the
deflecting voltage and angular wave number for the two
crab cavities, respectively.

In the following we consider only one crab cavity, with a
deflecting voltage of V =2 MV and the frequency is
f1 =06f; =2857.8 MHz. The strength parameter is thus
€ = —0.0399, where there is a negative sign due to the
choice of crab cavity phase. The crab cavity is located in
one of the matching straight sections, where 3, = 2.803 m,
a, = —0.348, D, = 0.085, and D), = —0.001.

We consider an observation point at the center of a
standard straight section (13S), where S, = 4.860 m,
a, = 0.0, D, =0.10, D), = 0.0, and the vertical betatron
phase advance from the crab cavity to 13S is AV, =
5.3761 rad modulo 27z. The one-turn transfer matrix at this
point is

Tiss
0.7860 5.4926 0.002 -0.0213 0.001 0.019
—0.0699 0.7838 0.000 —0.0007 0.000 0.007
0.0010 —-0.0137 0.439 43579 0.116 -0.014
—0.0002 0.0022 —-0.189 0.4430 -0.019 0.002
—0.0067 —-0.0224 —-0.003 0.0346 0.997 -0.379
0.0 -0.0008 0.013 -0.1329 0.010 0.999

Following the equations in Sec. II, the matrices C; and C,
are calculated as

- (—0.0452
L7 00083 0.0109

<0.3799 1.0904)
Cz =€ s
0.7146 0.0268

—0.2162)

and the new transfer matrix is

V-1U~IT, 35UV
0.7860 54926 00 0.0  0.0001 0.0
—0.0699 0.7838 0.0 0.0 00 0.0

0.0 0.0 0440 4.3526 0.0002 0.0
| o0 0.0 —0.185 0.4439 —-0.0002 0.0
0.0 0.0 0.0 0.0002 0.9963 -0.379
0.0001 0.0 -0.0 -0.0008 0.0138 0.998

The off-diagonal blocks of the new transfer matrix are
substantially reduced toward zero, which verifies the results
in Sec. IL.

We also performed a particle tracking simulation to
determine the equilibrium distribution with the crab cavity
in the lattice. There is no x-y coupling in the model
originally without the crab cavity. Sextupoles in the lattice
are set to correct both the horizontal and vertical chroma-
ticities to 2. Simulation is done with the tracking code
ACCELERATOR TOOLBOX [9], with new functions added to
model the crab cavity and quantum excitation. The code
ELEGANT [10] is also used for tracking and good agreement
is found between the two codes. All particles are launched
with zero coordinate offsets and tracked for 30000 turns,
which are 7.5 times of the longitudinal damping time and
4.4 times of the vertical damping time.

The projection of the phase space volume onto the y-z
and y’-z planes are shown in Fig. 2 for the 13S observation
point. Also plotted in the figure are ellipses calculated with
Ohmi envelope (“Ohmi”) and with the corresponding
second order moments calculated with Eqs. (80) and
(81) and Eqgs. (70) and (77) (“Formulas”). The area of
the ellipses are 6 times of the respective projected emit-
tances. Ellipses derived with Ohmi envelope calculation
overlap almost exactly with the ones calculated with

0.4F .
ot + Track
< Ohmi
02r Formulas| 1
€
E 0
>
-0.2 1
-04 L 1 1 1 1 1
-20 -10 0 10 20
z (mm)
04l
Track
; Ohmi
0.2 N Formulas| 1
g N
g Or N
g
il \
_04 L 1 1 1 1 "J.‘ " 1
-20 -10 0 10 20
z (mm)

FIG. 2. The projection of equilibrium particle distribution (blue
dots) at 13S onto the y-z plane (top) and y’-z plane (bottom) are
compared to ellipses from numeric Ohmi envelope calculation
(Ohmi) and calculations with Egs. (80) and (81) and Egs. (70) and
(77) (Formulas). The ellipses cover 6o of the Gaussian distribu-
tion for the corresponding projected emittances.
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TABLE II. Tilts and projected emittances at 13S for the
numeric example as shown in Fig. 2.

Parameters Formulas Ohmi Track Unit
Ay/Az -0.0152 -0.0151 —0.0136

Ay'/Az —0.0285 -0.0287  —0.0270 rad/m
€y; 0.3668 0.3696 0.3620 mm?
€y, 0.0610 0.0615 0.0709  mm-mrad

formulas. Table II compares the tilts and projected emit-
tances in y-z and y'-z planes, which serves as a numeric
characterization of the tracking data and calculations shown
in Fig. 2.

Figure 2 and Table II show excellent agreement between
numeric Ohmi envelope calculation and the analytic
calculation. Both calculations generally agree with particle
tracking data while there are some small differences. It is
worth noting that the analytic results are based on a linear
theory of the crab cavity and storage ring optics. The linear
theory approaches the numeric Ohmi envelope calculation
at its best, a goal that appears to be nearly achieved. The
differences between the calculations and particle tracking
may come from the nonlinearity of the sinusoidal wave of
the crab cavity and the nonlinearity in the storage ring
optics, which are to be investigated.

To check the formulas for bunch length [Eq. (70)] and

vertical eigenemittance [Eq. (77)], we did numeric
6
55f
— 37
IS
E 45
N
S
al
—©— Ohmi envelope
357 —&— Formulas
3 . . . .
6 6.1 6.2 6.3 6.4
1
y
102 T T T T T
—©— Ohmi envelope
1 —+&— Formulas
10" f
€
£ 1%
>
w
107"
10»2 s s s s
6 6.1 6.2 6.3 6.4
14
y
FIG. 3. Bunch length (top) and vertical eigenemittance (bot-

tom) from numeric Ohmi envelope calculation is compared to
formulas [Eq. (70) for bunch length and Eq. (77) for vertical
eigenemittance].

1.4 1.6 1.8 2 2.2 2.4 2.6
s, (ps)

FIG. 4. Percentage of flux vs pulse duration for various
deflecting voltages.

calculation of the Ohmi envelope while varying the vertical
tune of the lattice. The results are compared to calculations
by the formulas and are shown in Fig. 3. It is seen that the
semiempirical formula, Eq. (70), agrees with numeric
calculations for large tune separation between the vertical
and longitudinal directions, but deviates from numeric
results as the vertical tune approaches the synchrotron
tune. However, the analytic formula, Eq. (77), agrees with
numeric results excellently in the entire parameter range.

The minimum pulse duration is typically dominated by
the vertical eigenemittance term in Eq. (85). The percentage
of flux for short pulses accepted by a slit as a function of
pulse duration is plotted in Fig. 4 for various deflecting
voltages. No original vertical emittance or radiation diver-
gence is assumed. In this case, indeed a higher deflecting
voltage does not reduce the minimum pulse duration,
although it helps reduce the pulse duration for a given
percentage of flux.

Because the vertical eigenemittance due to the crab
cavity is strongly dependent on the momentum compaction
factor [see Eqgs. (76) and (77)], the minimum pulse duration
is expected to be sensitive to momentum compaction factor
changes. Figure 5 compares the minimum pulse duration vs
vertical tune for two SPEAR3 Ilattices with crab cavity
parameters, crab cavity and source point locations as given
in the above example. Parameters for the “low emittance”

3
o5t —&— Low emittance| |
’ —&— Achromat
—~ 27
[%2]
e
c15fF
N
©
1+
05f
0 6.1 6.2 6.3 6.4
\
y
FIG. 5. Minimum pulse duration vs vertical tune for the low

emittance lattice and the achromat lattice of SPEAR3. Filled
markers indicate nominal tunes for the lattices.

024001-10



COUPLED BEAM MOTION IN A STORAGE RING ...

PHYS. REV. ACCEL. BEAMS 19, 024001 (2016)

lattice are listed in Table I. The “achromat” lattice has a
nominal vertical tune v, = 6.22, a momentum compaction
factor a, = 1.18 x 1073, and a nominal bunch length of
o, = 5.0 mm. Clearly lowering the momentum compaction
factor helps reduce the pulse duration, by a factor more than
the reduction of nominal bunch length. Increasing the
vertical tune reduces the minimum pulse duration, although
the return diminishes as the tune shifts up.

VI. CONCLUSION

We studied the linear coupling between the transverse
and longitudinal directions introduced by a crab cavity in a
storage ring. A matrix perturbation method is applied to
derive the transformation that decouples the 6D one-turn
transfer matrix. Analytic formulas are given for the coef-
ficients of the decoupling transformation. The equilibrium
particle distribution in an electron storage ring is also
derived by applying the perturbation method to the Ohmi
envelope equation [5]. Considering the quantum excitation
in bending magnets for a beam distribution with tilt across
the y-z directions, we derived the vertical eigenemittance
due to crab cavities. Application to the short pulse gen-
eration scheme using crab cavities is considered. Numeric
example and particle tracking are shown to demonstrate the
analytic results.
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