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We studied the coupled beam motion in a storage ring between the transverse and longitudinal directions
introduced by crab cavities. The analytic form of the linear decoupling transformation is derived. The
equilibrium bunch distribution in an electron storage ring with a crab cavity is given, including contribution
to the eigenemittance induced by the crab cavity. Application to the short pulse generation scheme using
crab cavities is considered.
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I. INTRODUCTION

Crab cavities (also known as transverse deflecting
cavities) have found major applications in storage rings.
In colliders, they are used to rotate the colliding bunches at
the collision point to create head-on collisions while the
trajectories of the two beams cross at an angle (crab
crossing) [1]. In electron storage rings, it has been proposed
to use crab cavities to tilt a long bunch in the y-z plane in
order to select a short x-ray pulse from the radiation
generated by the beam with a vertical slit [2,3].
The newly proposed two-frequency crab cavity scheme

[3] differs from the original scheme [2] in several aspects.
In particular, the crab cavity kicks on the short pulse
generating bunches are not canceled within every revolu-
tion and hence these bunches are tilted everywhere in the
ring in an equilibrium state. The equilibrium phase space
distribution of these tilted bunches at the photon beam
source points is critical for predicting the performance of
the new short pulse scheme, which requires a thorough
understanding of the beam dynamics with crab cavities.
A crab cavity gives the beam a time-dependent trans-

verse kick. The kick is typically in the horizontal plane for
the crab crossing application and in the vertical plane for
the short pulse application. By virtue of the Panofsky-
Wenzel theorem, the crab cavity also gives the beam a
longitudinal kick that is dependent on the transverse offset.
Naturally the crab cavity couples the transverse direction to
the longitudinal direction. The nature of the linear coupled
motion between the y-z or x-z directions is the same as
the linear x-y coupling introduced by a skew quadrupole.
Therefore it can be likewise studied.
In some earlier work, the effects of the crab cavity on the

beam are described as creating a z-dependent closed orbit

[3,4]. This concept is valid when synchrotron motion is not
included in the consideration. It can lead to useful results as
synchrotron motion is usually slow for storage rings.
However, a general analysis of particle motion with crab
cavity should include synchrotron motion.
In this paper we study the coupled motion due to crab

cavities in a storage ring through the transfer matrix. A
matrix perturbation method is applied to find the linear
transformation that block diagonalizes the one-turn transfer
matrix. Analytic formulas for the decoupling linear trans-
formation are derived. By applying the matrix perturbation
technique to the Ohmi envelope equation [5] and consid-
ering the quantum diffusion of the beam with a tilted
distribution on the y-z directions, the equilibrium phase
space distribution in an electron storage ring with crab
cavities is also obtained. These results are applied to the
short pulse generation scheme [3]. The short pulse perfor-
mance is calculated and its functional dependence on crab
cavity and lattice parameters is revealed. It is shown that
the vertical eigenemittance due to the crab cavity induced
tilt in bending magnets is a dominant factor that limits the
achievable minimum pulse duration. Numeric example and
simulation results for the short pulse generation application
for SPEAR3 are presented.
In Sec. II we study the decoupling transformation for a

vertical crab cavity. In Sec. III we first show the connection
between the second order moment matrix of the original
and decoupled coordinates. Then we derive the changes to
the equilibrium distribution due to the crab cavity and
calculate the short pulse performance for the short pulse
generation scheme. A brief description of the procedure for
decoupling the motion by a horizontal crab cavity is given
in Sec. IV. Numeric examples and particle tracking are
shown in Sec. V. The conclusion is given in Sec. VI.

II. LINEAR COUPLING BY A VERTICAL
CRAB CAVITY

For a conventional crab cavity working at the TM110
mode, assuming the transverse deflection is on the vertical
direction, the E-M fields are given by
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Ez ¼ E0ky cosωt; cBx ¼ E0 sinωt; ð1Þ

where E0=c gives the amplitude of the magnetic induction,
k ¼ ω=c the angular wave number, ω ¼ 2πf the angular
frequency, and c the speed of light. In crab cavity
applications, the beam arrives at around t ¼ 0, where
kick-to-time slope is the maximum. Correspondingly the
kicks to the beam in linearized form are

Δy0 ¼ eV
E

kz; Δδ ¼ eV
E

ky; ð2Þ

where δ is the momentum deviation of the particle, E is the
beam energy and V ¼ R

gap E0 sinðωtÞcdt is the deflecting
voltage. The linear motion through a crab cavity can be
expressed via a transfer matrix of the coordinates
X ¼ ðx; x0; y; y0; z; δÞT . For a thin vertical crab cavity, the
transfer matrix is given by

Tc ¼

0
B@

I 0 0

0 I ϵW

0 ϵW I

1
CA; ð3Þ

where I in this paper is the identity matrix of the
appropriate size, 2 × 2 in this case, ϵ ¼ eVk

E , and

W ¼
�
0 0

1 0

�
: ð4Þ

When a crab cavity is inserted into the ring lattice, the
one-turn transfer matrix will be changed. Assuming the
crab cavity is located at point 2, the one-turn transfer matrix
at point 1 is

T1 ¼ T12TcT21; ð5Þ

where T21 is the transfer matrix from point 1 to 2 and T12

the transfer matrix from point 2 to 1. Using notations as
defined in Ref. [6], the transfer matrix T21 can be written

T21 ¼

0
B@

Mx;21 0 E21

0 My;21 0

F21 0 L21

1
CA; ð6Þ

where each element is a 2 × 2matrix block. Transfer matrix
T12 can be likewise expressed. Working out Eq. (5), we
found

T1 ¼ Tð0Þ
1 þ ϵ ~T1; ð7Þ

with

~T1 ¼

0
B@

0 E12WMy;21 0

My;12WF21 0 My;12WL21

0 L12WMy;21 0

1
CA; ð8Þ

where Tð0Þ
1 is the one-turn matrix at point 1 without the crab

cavity,

Tð0Þ
1 ¼ T12T21 ¼

0
B@

Mx 0 E

0 My 0

F 0 L0

1
CA: ð9Þ

In writing Eq. (9) we have neglected the synchrobetatron
coupling effect that would be present if the rf cavity is
located in a dispersive region [6]. This should not impact
the results below as it usually only causes a small
correction. The usual dispersion decoupling matrix is

U ¼

0
B@

I 0 D1

0 I 0

−Dþ
1 0 I

1
CA; ð10Þ

where D1 ¼ ð0;d1Þ, d1 ¼ ðD1; D0
1ÞT , and the symplectic

conjugate of matrix D1 is Dþ
1 ¼ JT2D

T
1J2, with

J2 ¼
�

0 1

−1 0

�
: ð11Þ

Applying the transformation U to T1, we get a new
transfer matrix for the betatron coordinates X ¼
ðxβ; x0β; y; y0; z; δÞT ,

T1;n ¼ U−1T1U

¼ Tð0Þ
1;n þ ϵ ~T1;n; ð12Þ

where xβ ¼ x −D1δ, x0β ¼ x0 −D0
1δ, Tð0Þ

1;n is a block-
diagonal matrix,

Tð0Þ
1;n ¼

0
B@

Mx 0 0

0 My 0

0 0 L

1
CA ð13Þ

and

~T1;n ¼

0
B@

0 ~Txy 0

~Tyx 0 ~Tyz

0 ~Tzy 0

1
CA: ð14Þ

It has been shown that
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~Txy ¼ −Mx;12D2WMy;21; ð15Þ

~Tyx ¼ My;12DT
2 ðM−1

x;21ÞTJ2; ð16Þ

~Tyz ¼ My;12WL21;n; ð17Þ

~Tzy ¼ L12;nWMy;21; ð18Þ

whereL21;n is longitudinal transfer matrix from point 1 to 2
with the (1, 2) element replaced with η̄21 as defined in
Eq. (19) of Ref. [6] and likewise for L12;n.
From Eqs. (14)–(18) it is seen that the longitudinal

motion and the vertical motion are coupled through the
vertical crab cavity via the off-diagonal blocks ~Tyz and ~Tzy.
In addition, when the vertical crab cavity is located at a
dispersive region [with nonzero horizontal dispersion
D2 ¼ ðD2; D0

2ÞT], the horizontal and vertical motion are
also coupled through the crab cavity.
The x-y coupling and the y-z coupling in Eq. (12) can be

simultaneously diagonalized. The analytic form of the
decoupling transformation can be derived with a matrix
perturbation approach. Let the transformation be denoted
by the matrix V, i.e., V−1T1;nV is block diagonal. Because
the matrix T1;n deviates from the block diagonal matrix

Tð0Þ
1;n by only a small amount that is proportional to ϵ, we

expect the deviation of V from the identity matrix to be
proportional to ϵ, too, i.e.,

V ¼ Iþ ~V; ð19Þ

with ~V ∝ ϵ. We use a trial form of ~V,

~V ¼

0
B@

0 C1 0

−Cþ
1 0 C2

0 −Cþ
2 0

1
CA: ð20Þ

It is easy to verify that the symplecticity of the matrix V is
satisfied to first order of ϵ with ~V as given in Eq. (20). The
transfer matrix after applying the V transformation is

V−1T1;nV≈ðI− ~VÞðTð0Þ
1;nþϵ ~T1;nÞðIþ ~VÞ

¼Tð0Þ
1;nþðϵ ~T1;n− ~VTð0Þ

1;nþTð0Þ
1;n

~VÞþOðϵ2Þ: ð21Þ

For the transfer matrix V−1T1;nV to be block diagonal to
first order of ϵ, we can require

ϵ ~T1;n − ~VTð0Þ
1;n þ Tð0Þ

1;n
~V ¼ 0; ð22Þ

because the diagonal blocks of the left-hand side of
Eq. (22) are calculated to be all zeros. In fact, Eq. (22)
is equivalent to

ϵ ~Txy −C1My þMxC1 ¼ 0; ð23Þ

ϵ ~Tyx þ Cþ
1 Mx −MyC

þ
1 ¼ 0; ð24Þ

ϵ ~Tyz −C2LþMyC2 ¼ 0; ð25Þ

ϵ ~Tzy þ Cþ
2 My −LCþ

2 ¼ 0: ð26Þ

From Eqs. (23) and (24) one can solve forC1, and similarly
from Eqs. (25) and (26) for C2. The solutions are

C1 ¼ −
ϵð ~Txy þ ~Tþ

yxÞ
TrðMx −MyÞ

; ð27Þ

C2 ¼ −
ϵð ~Tyz þ ~Tþ

zyÞ
TrðMy −LÞ ; ð28Þ

where Trð·Þ denotes taking the trace of a matrix. The
solution for C2 would be the same if we had block
diagonalized the y-z plane only, ignoring the x-y coupling
in Eq. (12). This indicates that the indirect x-z coupling in
Eq. (12) is a second order effect. It is worth noting that
Eqs. (27) and (28) agree with the result of Ref. [7] to first
order of ϵ.
Inserting Eqs. (17) and (18) into Eq. (28), and expressing

the related vertical and longitudinal transfer matrices in
terms of the beta functions and phase advances, the four
elements of

C2 ¼
�
C11 C12

C21 C22

�
ð29Þ

can be calculated and the results are

C11 ¼
1
2
ϵ

ffiffiffiffiffiffiffiffiffi
β1β2

p
cos 2πνs − cos 2πνy

½cosΨs;12 sinð2πνy −Ψ12Þ

þ cosð2πνs −Ψs;12Þ sinΨ12�; ð30Þ

C12 ¼
1
2
ϵβs

ffiffiffiffiffiffiffiffiffi
β1β2

p
cos 2πνs − cos 2πνy

½sinð2πνs −Ψs;12Þ sinΨ12

− sinΨs;12 sinð2πνy −Ψ12Þ�; ð31Þ

C21 ¼
1
2
ϵ

ffiffiffiffiffiffiffiffiffiffiffiffi
β2=β1

p
cos 2πνs − cos 2πνy

fcosð2πνs −Ψs;12Þ

× ðcosΨ12 − α1 sinΨ12Þ
− cosΨs;12½cosð2πνy −Ψ12Þþ α1 sinð2πνy −Ψ12Þ�g;

ð32Þ

COUPLED BEAM MOTION IN A STORAGE RING … PHYS. REV. ACCEL. BEAMS 19, 024001 (2016)

024001-3



C22¼
1
2
ϵβs

ffiffiffiffiffiffiffiffiffiffiffiffi
β2=β1

p
cos2πνs−cos2πνy

fsinð2πνs−Ψs;12Þ

×ðcosΨ12−α1 sinΨ12Þ
þsinΨs;12½cosð2πνy−Ψ12Þþα1 sinð2πνy−Ψ12Þ�g;

ð33Þ

where Ψs;12 is the synchrotron phase advance from point 2
to 1, βs is the longitudinal beta function, νs is the
synchrotron tune, νy is the vertical tune, α1 and β1 are
the vertical Courant-Snyder functions at point 1, Ψ12 is the
vertical betatron phase advance from point 2 to 1, and β2 is
the vertical beta function at point 2. Because the longi-
tudinal motion is slow, it can be ignored to simplify the
results. The results under this assumption can be obtained
from the exact formulas by using the approximations
cos 2πνs ≈ 1 and βs sin 2πνs ≈ η̄, with η̄ ¼ −

H
D=ρds.

The simplified expressions for the C2 matrix elements
are found to be

C11 ¼ ϵ

ffiffiffiffiffiffiffiffiffi
β1β2

p
2 sin πνy

cosðπνy −Ψ12Þ; ð34Þ

C12 ¼ ϵ
η̄

ffiffiffiffiffiffiffiffiffi
β1β2

p
2 sin πνy

�
sinΨ12

2 sin πνy
−
η̄12
η̄

cosðπνy −Ψ12Þ
�
; ð35Þ

C21 ¼ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffi
β2=β1

p
2 sin πνy

½sinðπνy −Ψ12Þ − α1 cosðπνy −Ψ12Þ�;

ð36Þ

C22 ¼ ϵ
η̄

ffiffiffiffiffiffiffiffiffiffiffiffi
β2=β1

p
2 sin πνy

�
1

2 sin πνy
ðcosΨ12 − α1 sinΨ12Þ

−
η̄12
η̄

½sinðπνy −Ψ12Þ − α1 cosðπνy −Ψ12Þ�
�
: ð37Þ

It is worth noting that

∥C2∥ ¼ 1

8

ϵ2β2η̄

sin2πνy tan πνy
; ð38Þ

which is a constant all around the ring.
In the above we showed that a vertical crab cavity causes

y-z coupling, and additionally x-y coupling if it is located
at a dispersive region. The coupled motioned can be
decoupled with a linear transformation. The transformation
for the y-z coupling is given by Eqs. (19), (20), and
(34)–(37).

III. EQUILIBRIUM DISTRIBUTION
IN AN ELECTRON STORAGE RING

WITH CRAB CAVITY

A. Beam distribution changes due to a crab cavity

The decoupled coordinates Xd are related to the original
coordinates X through X ¼ UVXd. The second order
moment matrices of a particle distribution in X and Xd
coordinates, defined as

Σ ¼ hXXTi; Σd ¼ hXdXT
di; ð39Þ

are related through

Σ ¼ UVΣdVTUT; ð40Þ

where h·i denotes taking the average over the particle
distribution and we have assumed the distribution is
centered on the reference orbit. The moment matrices
are symmetric. Matrix Σd is block diagonal. The two
matrices Σ and Σd may be written as

Σ ¼

0
B@

Σxx Σxy Σxz

ΣT
xy Σyy Σyz

ΣT
xz ΣT

yz Σzz

1
CA ð41Þ

and

Σd ¼

0
B@

Σx 0 0

0 Σy 0

0 0 Σz

1
CA: ð42Þ

Inserting Eqs. (10), (19), and (20) into Eq. (40), the block
matrices in Eqs. (41) and (42) are related. It is found that the
changes to the diagonal blocks of Σ due to the crab cavity
are second order effects, i.e., of the order Oðϵ2Þ, for
example

Σyy ¼ Cþ
1 ΣxðCþ

1 ÞT þ Σy þ C2ΣzCT
2 : ð43Þ

Therefore, it may be inferred that the deviation of the
diagonal block matrices in Σd from the case when the crab
cavity is off (e.g., assuming it was adiabatically turned on)
is also a second order effect. In other words, we assume

Σx ≈ Σx0 ¼ ϵx

�
βx −αx
−αx γx

�
; ð44Þ

Σy ≈ Σy0 ¼ ϵy

�
βy −αy
−αy γy

�
; ð45Þ

Σz ≈ Σz0 ¼
�
σ2z 0

0 σ2δ

�
; ð46Þ
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where ϵx;y are original horizontal and vertical emittances,
αx;y, βx;y, and γx;y are the Courant-Snyder functions for the
horizontal and vertical directions, with γx;y¼ð1þα2x;yÞ=βx;y,
and σz and σδ are original bunch length and momentum
spread, respectively. This assumption is validated in the
next subsection with the Ohmi envelope approach. In
Eq. (46) we have assumed αs ¼ 0, i.e., there is no tilt
between the z-δ directions. The deviation of matrix block
Σxz from the original case without crab cavity is also of the
second order. Only Σxy and Σyz have first order dependence
over the crab cavity strength parameter ϵ,

Σxy ¼ −ΣxðCþ
1 ÞT þ ðC1 − D1C

þ
2 ÞΣy þ D1ΣzCT

2 ; ð47Þ

Σyz ¼ Cþ
1 ΣxðDþ

1 ÞT − Σy½ðCþ
2 ÞT þ CT

1 ðDþ
1 ÞT �

þC2Σz: ð48Þ

We are interested in the tilt across the y-z planes
introduced by the crab cavity. In an electron storage ring,
if originally there is no horizontal to vertical coupling,
typically Σy0 ≈ 0. Also, because the horizontal emittance is
typically much smaller than the longitudinal emittance,
unless the horizontal and vertical motions are near a
resonance, normally the contribution from the Σx term in
Eq. (48) is much smaller than the last term. Keeping only
the last term, we obtain

Σyz ¼
�
σyz σyδ

σy0z σy0δ

�
≈C2Σz ¼

�
C11σ

2
z C12σ

2
δ

C21σ
2
z C22σ

2
δ

�
: ð49Þ

From Eq. (49) we see that the crab cavity causes a tilt of
the beam distribution between the vertical and longitudinal
directions. The tilt is not only between the vertical
coordinates and the z-coordinate, but also the δ-coordinate.

B. First order perturbation to the equilibrium
distribution by a crab cavity

In an electron storage ring, the beam reaches an
equilibrium distribution determined by the balance between
quantum excitation and radiation damping. The equilib-
rium distribution at a location of the ring can be found by
solving Ohmi’s envelope equation [5],

T0Σ0TT
0 þ B̄0 ¼ Σ0; ð50Þ

where T0 is the one-turn transfer matrix (including damp-
ing), Σ0 is the second order moment matrix as defined in
Eq. (41), and B̄0 is the one-turn integrated diffusion matrix

B0ðs0Þ ¼
Z

s0þC

s0

Ts0þC;s0Bðs0ÞTT
s0þC;s0ds

0; ð51Þ

where Ts0þC;s0 is the transfer matrix from s0 to s0 þ C, C is
the ring circumference, and Bðs0Þ is the diffusion matrix at

location s ¼ s0. In Eqs. (50) and (51) subscript 0 indicates
the case without the crab cavity.
When the crab cavity is introduced to the ring, all

quantities in Eq. (50) are changed. Suppose we are
concerned of a point immediately downstream of the crab
cavity, the envelope equation becomes

TΣTT þ B̄ ¼ Σ; ð52Þ

with the new one-turn transfer matrix and new integrated
diffusion matrix being

T ¼ TcT0; ð53Þ

B̄ ¼ TcB̄0TT
c : ð54Þ

Multiplying T−1
c and ðTT

c Þ−1 from the left and right sides
to Eq. (52), respectively, and inserting B̄0 from Eq. (50),
we get

T0ðΣ − Σ0ÞTT
0 ¼ T−1

c ΣðTT
c Þ−1 − Σ0: ð55Þ

Rewriting Tc from Eq. (3) as

Tc ¼ Iþ ϵ ~W; ~W ¼

0
B@

0 0 0

0 0 W

0 W 0

1
CA; ð56Þ

the inverse matrices of Tc and its transpose are

T−1
c ¼ I − ϵ ~W; ð57Þ

ðTT
c Þ−1 ¼ I − ϵ ~WT; ð58Þ

with which Eq. (55) becomes

T0ΔTT
0 − Δ ¼ −ϵð ~WΣþ Σ ~WTÞ þ ϵ2ð ~WΣ ~WTÞ; ð59Þ

where we have used the definition

Δ ¼ Σ − Σ0: ¼

0
B@

Δxx Δxy Δxz

ΔT
xy Δyy Δyz

ΔT
xz ΔT

yz Δzz

1
CA: ð60Þ

Changes of the equilibrium distribution caused by the crab
cavity can be found by solving Eq. (59) for Δ.
For results to first order of the strength parameter ϵ, on

the right-hand side (rhs) of Eq. (59) Σ can be replaced by
the original second order moment matrix, Σ0 ¼ UΣd0UT ,
with Σd0 a block diagonal matrix as in Eq. (42), and the ϵ2

term can be dropped. In this case, among the 2 × 2 sub-
blocks of the rhs of Eq. (59), only the x-y and y-z blocks
and their symmetric counterparts are nonzero. Therefore
the elements in the sub-blocks Δxx, Δyy, Δzz, and Δxz are

COUPLED BEAM MOTION IN A STORAGE RING … PHYS. REV. ACCEL. BEAMS 19, 024001 (2016)

024001-5



solutions of a linear homogeneous equation set. In general
this equation set is nondegenerate (the T0 matrix includes
damping). Therefore these blocks are all zeros to the first
order of ϵ, which verifies the assumption we made in the
previous subsection.
When the crab cavity is located in a dispersion region,

the elements of Δxy and Δyz blocks are coupled in an
inhomogeneous linear equation set,

MyΔT
xyMT

x þMyΔyzET − ΔT
xy

¼ ð−ϵÞð−Σx0ðDþ
1 ÞTWT þD1Σz0WTÞ; ð61Þ

MxΔT
xyFT þMyΔyzLT − Δyz

¼ ð−ϵÞðWΣz0 þWDþ
1 Σx0ðDþ

1 ÞT þ Σy0WTÞ; ð62Þ

where Σx0, Σy0, and Σz0 are diagonal blocks of Σd0. For
electron storage rings initially without x-y coupling, the
original vertical emittance is zero and hence Σy0 ¼ 0.
Equations (61) and (62) can be solved for elements of
Δxy and Δyz. The coupling terms due to dispersion are on
the order of OðHx=βsÞ, which is usually very small, where
Hx ¼ ½D2 þ ðαxDþ βxD0Þ2�=2βx is the dispersion invari-
ant. For example, SPEAR3 has βs ≈ 6.2 m and at the
standard straight sections Hx ¼ 1.0 mm. Ignoring the
coupling terms, the solution for elements of Δyz is

Σyz ¼ Δyz ¼ C2Σz0

≈
ϵσ2z

2 sin πνy

� βy cos πνy 0

sin πνy − αy cos πνy
η̄γ2s

2 sin πνy

�
; ð63Þ

where γs ¼ σz=σδ. This result is the same as given by
Eqs. (34)–(37) and (49) for the location just downstream of
the crab cavity.

C. Vertical eigenemittance due to crab cavity

When solving the Ohmi envelope equation, Eq. (52), for
the equilibrium beam distribution with first order pertur-
bation, we found that normal mode distributions do not
change. However, because the longitudinal dimension of
bunched beams in storage rings is usually much larger than
the transverse dimensions, second order terms involving
the longitudinal dimension may also be important. In fact,
numeric solutions of Eq. (52) show that the normal mode
distributions do have changes of order ϵ2. Notably, there is a
finite vertical normal mode emittance (i.e., eigenemittance)
and the bunch length changes.
Because coupling with the horizontal direction is small,

we can consider only the vertical and longitudinal direc-
tions. Assuming the original vertical emittance is zero,
Σy0 ¼ 0, and using

Δzz ¼
�Δσzz Δσzδ
Δσzδ Δσδδ

�
; Δyz ¼

�
σyz σyδ

σy0z σy0δ

�
;

Δyy ¼
�
σyy σyy0

σyy0 σy0y0

�
; ð64Þ

the coupled matrix equations from Eq. (59) are given by

LΔzzLT − Δzz ¼ ð−ϵÞ
�

0 σyz

σyz 2σyδ − ϵσyy

�
ð65Þ

MyΔyzLT − Δyz ¼ ð−ϵÞ
�

0 σyy

σzz σzδ þ σyy0 − ϵσyz

�
ð66Þ

MyΔyyMT
y − Δyy ¼ ð−ϵÞ

�
0 σyz

σyz 2σy0z − ϵσzz

�
; ð67Þ

where σzz ¼ σ2z ¼ σ2z0 þ Δσzz, σzδ ¼ Δσzδ, and σz0 is the
original bunch length.
In principle, solving Eqs. (65)–(67) for matrix elements

in Eq. (64) gives the equilibrium distribution, from which
one can calculate the eigenemittances. Although the gen-
eral solution has not been found, approximate results can be
derived from these equations. From Eqs. (65) and (66) we
obtain

Δσzz − β2sΔσδδ ¼ σyzϵβs cotψ s; ð68Þ

σyz ≈ σzz
ϵ

2

βy
cosψ s − cosψy

: ð69Þ

Numeric solutions indicate that β2sΔσδδ ≪ Δσzz. Ignoring
the β2sΔσδδ term, we obtain

σz ≈ σz0

�
1 −

ϵ2

2
βsβy cotψ s

sinψy

cosψ s − cosψy

�
−1=2

: ð70Þ

The projected distribution on the (z, δ) plane, Σzz, and the
longitudinal normal mode distribution, Σz, are approxi-
mately equal (their difference is a small term ∝ ϵ2ϵy, where
ϵy is the vertical eigenemittance). Therefore, the longi-
tudinal eigenemittance is

ϵz ≈ σzσδ0; ð71Þ

where σz is given in Eq. (70) and σδ0 is the original
momentum spread.
A different approach has been taken to obtain the vertical

eigenemittance due to the crab cavity. In an electron storage
ring, the source of finite emittances is the stochastic photon
emission in magnetic fields. The crab cavity causes a tilt
across the longitudinal and vertical planes. Consequently,
the energy loss of an electron due to photon emission will
cause a random shift of vertical coordinates relative to its
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“ideal orbit,” which gives rise to the vertical
eigenemittance.
From Eq. (49) we find the average slope of the y, y0

coordinates with respect to momentum deviation δ,

ryδ ¼
Δy
Δδ

¼ C12; ry0δ ¼
Δy0

Δδ
¼ C22: ð72Þ

The equivalent vertical coordinate displacements for an
energy loss Δδ are thus

Δy ¼ C12Δδ; Δy0 ¼ C22Δδ; ð73Þ

and the quadratic term of the Courant-Snyder invariant
change is

ΔJy ¼ HcΔδ2; ð74Þ

where we defined crab cavity dispersion invariant,

Hc ¼
1

βy
½C2

12 þ ðαyC12 þ βyC22Þ2�: ð75Þ

The increase of vertical emittance due to photon emission
in a tilted bunch is the same as due to vertical dispersion,
except here the vertical dispersion invariant is replaced with
the quantity Hc.
Using Eqs. (31) and (33), and integrating Hc over the

ring, we obtain the average crab cavity dispersion invariant,

hHci ¼
ϵ2η̄2β2
12

2þ cos 2πνy
ðcos 2πνs − cos 2πνyÞ2

; ð76Þ

where we have assumed the synchrotron phase advance is
linearly proportional to distance traveled in bending mag-
nets. Similar to vertical emittance due to the usual vertical
dispersion [8], the vertical eigenemittance for an isomag-
netic storage ring due to crab cavity is given by

ϵy ¼ Cq
γ2hHci
Jyρ

; ð77Þ

where Cq ¼ 3.83 × 10−13 m, γ is the Lorentz energy factor,
Jy ¼ 1 is the vertical damping partition, and ρ is bending
radius.

D. Prediction of short pulse performance

For the crab cavity application of generating short
pulses, an important task is to estimate the expected short
pulse performance, such as the minimum pulse duration
and the fraction of flux accepted by a slit with certain
aperture. This can be done if we know the beam distribution
at the source point and the photon beam optics between the
source point and the slit.

The normal mode distributions for the longitudinal and
vertical planes are Gaussian. Their projections onto the y-z
plane or y0-z plane are hence also Gaussian. Because the slit
is usually placed far away from the source point, the tilt of
the photon beam is primarily determined by the y0-z tilt at
the source point. The distribution function for the y0-z
projection can be written as

ρðy0; zÞ ¼ 1

2πϵy0z
exp

�
−
σ2zy02 − 2σy0zy0zþ σ2y0z

2

2ϵ2y0z

�
; ð78Þ

where ϵy0z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2zσ

2
y0 − σy0z

q
is the projected emittance. An

ellipse that represents the y0-z distribution is shown in
Fig. 1. The intercept with the z-axis signifies the minimum
bunch length. It is given by

σzm ¼ ϵy0z
σy0

¼ σz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

σ2y0z
σ2zσ

2
y0

s
: ð79Þ

With a finite vertical eigenemittance, the y-z and y-y
blocks of the sigma matrix are related to the normal mode
distribution through

Σyz ¼ C2Σz − ΣyðCþ
2 ÞT; ð80Þ

Σyy ¼ C2ΣzCT
2 þ Σy: ð81Þ

For simplicity we assume that at the source point αy ¼ 0, as
this is usually the case. From Eqs. (80) and (81), we obtain

σy0z ¼ C21σ
2
z þ C12

ϵy
βy

; ð82Þ

σy0y0 ¼ C2
21σ

2
z þ C2

22σ
2
δ þ

ϵy
βy

þ σ2θ; ð83Þ

FIG. 1. The projected y0-z ellipse.
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where we have added the contribution of radiation diver-
gence, σθ, to σy0y0 , such that Eqs. (82) and (83) are for the
photon beam distribution at the source point.
Ignoring small terms, the projected emittance on the y0-z

plane is given by

ϵy0z ¼ σz

�
C2
22σ

2
δ þ

ϵy
βy

þ σ2θ

�
1=2

: ð84Þ

The minimum pulse duration is thus

σzm ¼ σz

� C2
22σ

2
δ þ ϵy

βy
þ σ2θ

C2
21σ

2
z þ C2

22σ
2
δ þ ϵy

βy
þ σ2θ

�
1=2

≈
1

C21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵy
βy

þ σ2θ

r
; ð85Þ

where the approximate equality is equivalent to Eq. (8) of
Ref. [3] and is valid when the σ2δ term is negligible. For hard
x-ray sources, the radiation divergence term may also be
negligible. In this case, if there are no other sources of
vertical emittance, the minimum pulse duration is inde-
pendent of the strength of the crab cavity. With a low
deflecting voltage, the y-z tilt of the photon beam at the slit
is small, which requires a small slit aperture for a given
accepted flux. Of course, in reality a reasonable deflecting
voltage is needed to overcome the contribution of the finite
vertical emittance due to spurious vertical dispersion and
horizontal to vertical coupling and the finite radiation
divergence. An optimal deflecting voltage is probably
achieved when the term of the crab cavity induced
eigenemittance is a few times of the contributions of
original vertical emittance and radiation divergence. The
longitudinal distribution of the short pulse accepted by a
given slit aperture is calculated from the distribution
function ρðy0; zÞ with

λðz; yaÞ ¼
Z

ya=La

−ya=La

dy0ρðy0; zÞ; ð86Þ

where ya is the half aperture, La is the distance from the slit
to the source point, and we have ignored the finite vertical
size of the electron beam at the source point. The
percentage of total flux in the accepted pulse can be
calculated with

FðyaÞ ¼
Z

dzλðz; yaÞ; ð87Þ

and the pulse duration σzp can be obtained from

σ2zpðyaÞ ¼
R
dzz2λðz; yaÞR
dzλðz; yaÞ

: ð88Þ

IV. COUPLED MOTION BY A HORIZONTAL
CRAB CAVITY

Because of the lack of vertical dispersion, the coupling
due to a horizontal crab cavity generally does not involve
the vertical plane. Therefore we only need to study the 4D
phase space coordinates, ðx; x0; z; δÞ. The transfer matrix for
the crab cavity is

Tc ¼ Iþ ϵWx; ~Wx ¼
�

0 W

W 0

�
: ð89Þ

Assuming the crab cavity is located at point 2, the one-turn
transfer matrix at point 1 is

T1 ¼ T12TcT21 ¼ Tð0Þ
1 þ ϵ ~T1; ð90Þ

with

~T1¼
�
E12WM21þM12WF21 E12WE21þM12WL21

L12WM21þF12WF21 L12WE21þF12WF21

�
;

ð91Þ

where we dropped subscript x for M12 and M21. Then the
dispersion decoupling transformation (the U matrix) can be
applied, followed by a second decoupling transformation
V. The same procedure can be carried out as for the vertical
crab cavity case. It is noted that if the crab cavity location
(point 2) is dispersion free, then the decoupling transfer
matrix V is the same as the y-z plane for the vertical case.
Equations (28)–(37) are valid with the y-plane parameters
replaced by the horizontal counterparts.

V. NUMERIC EXAMPLE AND SIMULATION

We use the SPEAR3 storage ring lattice to work out a
numeric example in order to illustrate the results derived in
the previous sections. Table I lists a few related parameters
of the machine. The method of using two crab cavities with
different frequencies to tilt the beam in the y-z plane for the
generation of short x-ray pulse is considered [3]. For
example, if the frequencies of the two crab cavities are 6
and 6.5 times of the rf frequency of the ring, respectively,

TABLE I. Selected parameters of SPEAR3.

Parameters Value Unit

Energy 3 GeV
Circumference 234.1 m
Tune νx;y 14.106, 6.177
rf frequency frf 476.3 MHz
Bunch length σz 6.0 mm
Momentum spread σδ 0.001
Momentum compaction αc 1.62 × 10−3

Synchrotron tune νs 0.010
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and the deflecting voltages are properly matched, the tilting
effects of the two crab cavities cancel for half of the
buckets. For the other half buckets, the tilting effects add
up. For a bunch in a tilted bucket, the linear dynamics is not
different from the case with one crab cavity—only that the
strength parameter now is the sum of the two crab cavities,
ϵ ¼ eðV1k1 þ V2k2Þ=E0, where V1;2 and k1;2 are the
deflecting voltage and angular wave number for the two
crab cavities, respectively.
In the following we consider only one crab cavity, with a

deflecting voltage of V ¼ 2 MV and the frequency is
f1 ¼ 6frf ¼ 2857.8 MHz. The strength parameter is thus
ϵ ¼ −0.0399, where there is a negative sign due to the
choice of crab cavity phase. The crab cavity is located in
one of the matching straight sections, where βy ¼ 2.803 m,
αy ¼ −0.348, Dx ¼ 0.085, and D0

x ¼ −0.001.
We consider an observation point at the center of a

standard straight section (13S), where βy ¼ 4.860 m,
αy ¼ 0.0, Dx ¼ 0.10, D0

x ¼ 0.0, and the vertical betatron
phase advance from the crab cavity to 13S is ΔΨy ¼
5.3761 rad modulo 2π. The one-turn transfer matrix at this
point is

T13S

¼

0
BBBBBBBB@

0.7860 5.4926 0.002 −0.0213 0.001 0.019

−0.0699 0.7838 0.000 −0.0007 0.000 0.007

0.0010 −0.0137 0.439 4.3579 0.116 −0.014
−0.0002 0.0022 −0.189 0.4430 −0.019 0.002

−0.0067 −0.0224 −0.003 0.0346 0.997 −0.379
0.0 −0.0008 0.013 −0.1329 0.010 0.999

1
CCCCCCCCA
:

Following the equations in Sec. II, the matrices C1 and C2

are calculated as

C1 ¼ ϵ

�−0.0452 −0.2162
0.0083 0.0109

�
;

C2 ¼ ϵ

�
0.3799 1.0904

0.7146 0.0268

�
;

and the new transfer matrix is

V−1U−1T13SUV

¼

0
BBBBBBBB@

0.7860 5.4926 0.0 0.0 0.0001 0.0

−0.0699 0.7838 0.0 0.0 0.0 0.0

0.0 0.0 0.440 4.3526 0.0002 0.0

0.0 0.0 −0.185 0.4439 −0.0002 0.0

0.0 0.0 0.0 0.0002 0.9963 −0.379
0.0001 0.0 −0.0 −0.0008 0.0138 0.998

1
CCCCCCCCA
:

The off-diagonal blocks of the new transfer matrix are
substantially reduced toward zero, which verifies the results
in Sec. II.
We also performed a particle tracking simulation to

determine the equilibrium distribution with the crab cavity
in the lattice. There is no x-y coupling in the model
originally without the crab cavity. Sextupoles in the lattice
are set to correct both the horizontal and vertical chroma-
ticities to 2. Simulation is done with the tracking code
ACCELERATOR TOOLBOX [9], with new functions added to
model the crab cavity and quantum excitation. The code
ELEGANT [10] is also used for tracking and good agreement
is found between the two codes. All particles are launched
with zero coordinate offsets and tracked for 30000 turns,
which are 7.5 times of the longitudinal damping time and
4.4 times of the vertical damping time.
The projection of the phase space volume onto the y-z

and y0-z planes are shown in Fig. 2 for the 13S observation
point. Also plotted in the figure are ellipses calculated with
Ohmi envelope (“Ohmi”) and with the corresponding
second order moments calculated with Eqs. (80) and
(81) and Eqs. (70) and (77) (“Formulas”). The area of
the ellipses are 6 times of the respective projected emit-
tances. Ellipses derived with Ohmi envelope calculation
overlap almost exactly with the ones calculated with
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m
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0.2

0.4
Track
Ohmi
Formulas
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-20 -10 0 10 20
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m
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FIG. 2. The projection of equilibrium particle distribution (blue
dots) at 13S onto the y-z plane (top) and y0-z plane (bottom) are
compared to ellipses from numeric Ohmi envelope calculation
(Ohmi) and calculations with Eqs. (80) and (81) and Eqs. (70) and
(77) (Formulas). The ellipses cover 6σ of the Gaussian distribu-
tion for the corresponding projected emittances.
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formulas. Table II compares the tilts and projected emit-
tances in y-z and y0-z planes, which serves as a numeric
characterization of the tracking data and calculations shown
in Fig. 2.
Figure 2 and Table II show excellent agreement between

numeric Ohmi envelope calculation and the analytic
calculation. Both calculations generally agree with particle
tracking data while there are some small differences. It is
worth noting that the analytic results are based on a linear
theory of the crab cavity and storage ring optics. The linear
theory approaches the numeric Ohmi envelope calculation
at its best, a goal that appears to be nearly achieved. The
differences between the calculations and particle tracking
may come from the nonlinearity of the sinusoidal wave of
the crab cavity and the nonlinearity in the storage ring
optics, which are to be investigated.
To check the formulas for bunch length [Eq. (70)] and

vertical eigenemittance [Eq. (77)], we did numeric

calculation of the Ohmi envelope while varying the vertical
tune of the lattice. The results are compared to calculations
by the formulas and are shown in Fig. 3. It is seen that the
semiempirical formula, Eq. (70), agrees with numeric
calculations for large tune separation between the vertical
and longitudinal directions, but deviates from numeric
results as the vertical tune approaches the synchrotron
tune. However, the analytic formula, Eq. (77), agrees with
numeric results excellently in the entire parameter range.
The minimum pulse duration is typically dominated by

the vertical eigenemittance term in Eq. (85). The percentage
of flux for short pulses accepted by a slit as a function of
pulse duration is plotted in Fig. 4 for various deflecting
voltages. No original vertical emittance or radiation diver-
gence is assumed. In this case, indeed a higher deflecting
voltage does not reduce the minimum pulse duration,
although it helps reduce the pulse duration for a given
percentage of flux.
Because the vertical eigenemittance due to the crab

cavity is strongly dependent on the momentum compaction
factor [see Eqs. (76) and (77)], the minimum pulse duration
is expected to be sensitive to momentum compaction factor
changes. Figure 5 compares the minimum pulse duration vs
vertical tune for two SPEAR3 lattices with crab cavity
parameters, crab cavity and source point locations as given
in the above example. Parameters for the “low emittance”
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FIG. 3. Bunch length (top) and vertical eigenemittance (bot-
tom) from numeric Ohmi envelope calculation is compared to
formulas [Eq. (70) for bunch length and Eq. (77) for vertical
eigenemittance].
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FIG. 4. Percentage of flux vs pulse duration for various
deflecting voltages.
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FIG. 5. Minimum pulse duration vs vertical tune for the low
emittance lattice and the achromat lattice of SPEAR3. Filled
markers indicate nominal tunes for the lattices.

TABLE II. Tilts and projected emittances at 13S for the
numeric example as shown in Fig. 2.

Parameters Formulas Ohmi Track Unit

Δy=Δz −0.0152 −0.0151 −0.0136
Δy0=Δz −0.0285 −0.0287 −0.0270 rad/m
ϵyz 0.3668 0.3696 0.3620 mm2

ϵy0z 0.0610 0.0615 0.0709 mm-mrad

XIAOBIAO HUANG PHYS. REV. ACCEL. BEAMS 19, 024001 (2016)

024001-10



lattice are listed in Table I. The “achromat” lattice has a
nominal vertical tune νy ¼ 6.22, a momentum compaction
factor αc ¼ 1.18 × 10−3, and a nominal bunch length of
σz ¼ 5.0 mm. Clearly lowering the momentum compaction
factor helps reduce the pulse duration, by a factor more than
the reduction of nominal bunch length. Increasing the
vertical tune reduces the minimum pulse duration, although
the return diminishes as the tune shifts up.

VI. CONCLUSION

We studied the linear coupling between the transverse
and longitudinal directions introduced by a crab cavity in a
storage ring. A matrix perturbation method is applied to
derive the transformation that decouples the 6D one-turn
transfer matrix. Analytic formulas are given for the coef-
ficients of the decoupling transformation. The equilibrium
particle distribution in an electron storage ring is also
derived by applying the perturbation method to the Ohmi
envelope equation [5]. Considering the quantum excitation
in bending magnets for a beam distribution with tilt across
the y-z directions, we derived the vertical eigenemittance
due to crab cavities. Application to the short pulse gen-
eration scheme using crab cavities is considered. Numeric
example and particle tracking are shown to demonstrate the
analytic results.
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