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In this paper, we present a new two particle model for studying the strong head-tail instabilities in the
presence of the space-charge force. It is a simple expansion of the well-known two particle model for strong
head-tail instability and is still analytically solvable. No chromaticity effect is included. It leads to a formula
for the growth rate as a function of the two dimensionless parameters: the space-charge tune shift parameter
(normalized by the synchrotron tune) and the wakefield strength, Y. The three-dimensional contour plot of
the growth rate as a function of those two dimensionless parameters reveals stopband structures. Many
simulation results generally indicate that a strong head-tail instability can be damped by a weak space-
charge force, but the beam becomes unstable again when the space-charge force is further increased. The
new two particle model indicates a similar behavior. In weak space-charge regions, additional tune shifts by
the space-charge force dissolve the mode coupling. As the space-charge force is increased, they conversely
restore the mode coupling, but then a further increase of the space-charge force decouples the modes again.

This mode coupling/decoupling behavior creates the stopband structures.
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I. INTRODUCTION

In low energy high-intensity hadron machines, the space-
charge tune shift is an important parameter in the design
and operation of the machines. The space-charge force is
also believed to affect the behavior of beam instabilities.
Many theoretical and simulation studies have been made
for a better understanding of their interplay [1-9]. They
generally indicate that beam instability can be damped
when the space-charge force is weak, but the beam
becomes unstable again when it becomes too strong (for
example, see Fig. 1 of Ref [1] and Fig. 10 of Ref. [7]). The
mechanism of this loss of the damping effect due to a strong
space-charge force has not been well understood so far. If
the damping of beam instabilities is caused by the betatron
tune spread (Landau damping) due to the nonlinearity of
the space-charge force, one may naively think that a
stronger space-charge force will be more effective in
damping of beam instabilities. However, many simulation
results show the contrary. This inversion may suggest that
the damping phenomenon of beam instabilities in a weak
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space-charge region may come from a different mechanism
(some possible explanations are proposed in Refs. [10,11]).

The two particle model has been applied to illustrate the
mechanism of the strong head-tail instability (or the
transverse mode-coupling instability [12]) in a very simple
but insightful way (Ref. [13]: Chao, page 179). This two
particle model can provide a superb framework for study of
the space-charge force on beam instabilities just by adding
new space-charge terms on top of the existing wake
potential ones. The crucial points in this new model are
that the resulting equations of motion need to be analyti-
cally solvable and the final form of solutions should be a
continuous expansion from the one-dimensional (the wake
strength only) case to the two-dimensional (the wake
strength and the space-charge strength) case.

The purpose of the present simplified model is not to
explain every effect of space-charge force on beam insta-
bilities with numerical precision, but to suggest a simple
picture of some of the essence of the physics of this
complicated subject. We hope that it will provide a good
starting point for readers to join this effort with their own
models or improved versions of the present model so that
the model becomes more physically accurate.

We briefly summarize Chao’s no space-charge model in
Sec. II to review the premise and the solution techniques of
the original two particle model, and derive some useful
formulas for later use. In Secs. III and IV, we solve the
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equations of motion for the weak and strong space-charge
cases, respectively. The procedure to identify unstable
regions and to compute the growth rate is summarized
in Sec. V. Contour plots of the growth rate are presented in
flat and three-dimensional ways. The paper is concluded
with its findings in Sec. VL.

II. NO SPACE-CHARGE CASE

Let us first review the premise and treatment of Chao’s
original two particle model by closely following his text-
book. We assume that a beam is made of two macroparticles,
each with charge of Ne/2 and each executing smooth
synchrotron and betatron oscillations. We assume that their
synchrotron oscillations have equal amplitude, but opposite
phases. As for the betatron oscillations, we make no such
assumption for the amplitude and the phase. Throughout this
paper, we only deal with the zero chromaticity case.

In what follows, we use s, the distance along the
circumference, as an independent variable of motion.
During the first half of the synchrotron oscillation period,
T, = 2x/w, particle 2 leads particle 1 on the synchrotron
phase space, and only the trailing particle (particle 1 in the
present case) receives transverse kicks from wakefields
created by the leading particle (particle 2 in the present
case), that is a function of the transverse displacement of
the leading particle. For simplicity, we assume that
the wake potential is a constant W, independent of the
distance between the two particles. The property of the
wake potential requires that W, > 0. The equations of
motion for the two particles are

I a)ﬂ 2 NI"()WO
/AN , |
Y1+<C)Y1 2/C »2 (1)
w 2
s + (f) ¥, =0, (2)

where y’ = %, wp is the betatron angular frequency, c is the
speed of light, y is the Lorenz factor, C is the circumference
of the machine, and r is the classical radius of the particle.
Similarly during the second half period of the synchrotron
oscillation, we have the same equations with indices 1 and
2 exchanged.

The solution for y, is simply a free betatron oscillation:

¥2(s) = ¥2(0)ei@n/c, (3)

where
§’2:y2+iiylz- (4)
@p

The solution for y; is simplified when the betatron
frequency is much larger than the synchrotron one,
wp > w,, which is mostly the case. Itis then approximately
given by

5}1 (S) = 91 (O)efim/;s/c + ITS/Q (O)efim/;s/c’ (5)

where we have defined a positive dimensionless parameter
for the wake potential strength

aNroWoc?

T = .
dyCopw,

(6)

We can write the solutions for the equations of motion
during the period 0 < £ < T'/2 in a matrix form as

il TR o
Y2 Js=cr,/2 0 1 Y2 1s=0

The transfer matrix during the second half of the
synchrotron oscillation period, 7'/2 < 2 < T, is obtained
by exchanging the indices 1 and 2 in the above treatment.
The total transfer matrix for one full synchrotron oscillation
period is then given by

IR A 1
Y2 ds=cr, 110 1 Y2 1s=0

A 1 T y
ewn[ TR
T 1-="T"]1ys]

Let us find eigenvalues A of this matrix by equating
it as

The two eigenvalues are found to be

/LT -2) if Y224
A= . (10)
i/ ifr2<4

Let us check the stability of the system for the two
cases. If T? <4, the square of the absolute value of 1
becomes

TZ 2 Tz TZ
2 _ = . _ ) =
1| _(1 2) +3 (2 2) 1. (11)

Namely, the system is stable. If Y2 >4, one of the
solutions,

22 /2
2 2'(

A=1—-" [ — 7—2)3—1 (12)
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with its amplitude larger than one, is unstable. At the
threshold value of Y2 =4, the eigenvalue 1 becomes
exactly minus one (4 = —1). It can be expressed in the
complex phase space as

A= et (13)

It indicates that during the full synchrotron oscillation
period, the coherent betatron frequency shift, Awg, gen-
erates a betatron phase advance by £z. In other words,

It shows that the strong head-tail instability occurs by the
mode coupling between the two solutions when the differ-
ence of their betatron phase advances over one synchrotron
period becomes exactly 2z. This mode coupling condition
is different from the usual one that requires that the two
modes share the same tune. This is because the present two
particle model is dealing with the betatron phase advance
over one synchrotron oscillation period, instead of a
continuous interaction process between the two modes
throughout the synchrotron oscillation.

The growth rate g, when Y2 > 4, is obtained by equating

T ()T o

/’{:gTS:
A =e 2 "\ 2 2

The formula for the growth rate is thus given by

1 T2 /7 T2
- (= —2) =1} @
g TSOg{ 7 (5-2)+3 } (16

III. WEAK SPACE-CHARGE CASE

Now, let us introduce the space-charge force into the two
particle model. Here, we make the following two approx-
imations: (i) The space-charge force is linear in the relative
distance between the two particles (the linear model).
(i1) The two particles interact continuously and coherently
with a space-charge force in the transverse plane (the
continuous interaction model).

At a low energy (the Lorenz y ~ 1) where the space-
charge force is significant, the space-charge fields spread
out angularly with a large spread on the order of 1/y, unlike
a high-energy electron beam where the space-charge fields
are Lorenz contracted into a thin disk. In this sense, two
particles behave like rods, not point charges, each with a
half bunch length of the total beam.

Under this linearized continuous interaction model, we
have additional space-charge terms in the equations of
motion for the period 0 < < 7/2 as

N ) RN % 17
yi + o= (y1 = y2) + Wy, (17)

w 2
vy + <7ﬂ> y2 = K(y, = y1). (18)

Here, we define W as

NI"O WO
W= 19
>,C (19)
and K denotes the space-charge kick strength:
Nr()
= a2ﬂ273C ’ (20)

where a is the transverse beam size and f is the Lorenz /.
The properties of the wake potential and the space-charge
force require that both W and K are always positive:

W.K > 0. (1)

The ratio r = K/W can be expressed in a more familiar
way, using Y [defined by Eq. (6)] and the space-charge tune
shift parameter Av,. (normalized by the synchrotron tune

vy), as
T [(Av
= — . 22
' 2T< I/S > ( )

For convenience, we define the space-charge tune shift
parameter Av,,. as a modulus of the space-charge tune shift.
The equations of motion can be written down in a slightly
different way by moving the space-charge tune shift terms
from the right-hand sides to the left-hand sides as

w 0

o (%) -kl = v e

2
(2

Hereafter, we assume that W > K, namely we deal with
the weak space-charge case. Using the eigenvalue/eigen-
vector technique, the equations of motion can be readily
solved (see Appendix A). The solutions can be written in a
matrix form as

~ . M .
{)’1 ] o cosh 6, i\/*% sinh 6,
s=cT,/2

2

y2 = —Ky;. (24)

cosh 0,
X [y ! } : (25)
s=0

where
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w 1c cT
0, =|~L-—-"kK| ==, 26
NE w,,} ! (26)
and
1c¢ cT.
0, =——\/K(W—-K) —. 27
=5 VW K] 1)

The transfer matrix during the other half period of the
synchrotron oscillation (T;/2 < 2 < T) is given by

cosh 6, —iy /72 sinh 6,
T = e—2i01
i\/"=£sinh 6, cosh 6,
cosh?@, — X+ sinh?6,
_ o200,
i(, JK — /ﬁ) cosh &, sinh 6,

The eigenvalues A of the total matrix T can be obtained
by equating
T = e 29, (30)

where I is the unit matrix. After some mathematical
manipulations and using the relationship

cosh?@, = 1 + sinh?9,, (31)
we can write down the eigenvalues as
D5 G-2) ifr2>4
A= . (32)
~Dxi/S2-5) ifrr<4
Here we have defined I as
2
— = (H — 1)sinh26, > 0, (33)
where
1 K W-—-K
H=-(——%>+—— (34)
2\W-K K

and we have used that fact that H — 1 is always positive:

(W —2K)?

Hol=- "/
2K(W —K)

> 0. (35)

Note the similar structure of the eigenvalues, Eq. (32),
with those for no space-charge solutions, Eq. (10), where I
is just replaced by Y. We can make the exactly same
argument on the stability of the system as in Sec. II for no

cosh 6,
o—i0
i\/¥Ksinh 6,
s=cT,/2

The total transfer matrix T for one full synchrotron
oscillation period is then given by

—iy /g sinh 6,

cosh 6,

Vi

Y2

(28)

cosh 6, i\/*=£sinh 6,
—i\ /52 sinh 6, cosh 6,

i<1 A=K — Vﬁ) cosh 6, sinh 6,

cosh?¢, — WK sinh?6,

(29)

space-charge case and conclude that the stability of the
system requires that

2 <4,

(36)
The growth rate g for I'> > 4 is given by

_.< > } (37)

2

The two eigenvalues for I'> < 4 can be expressed by the
two vectors (green and red arrows) on the complex phase
plane as illustrated in the left part of Fig. 1. The circle has a
radius of one. The angle between each vector and the
positive real axis is the phase advances of the correspond-
ing eigenmode after one synchrotron oscillation period. At

= 4, the difference of the betatron phase advances of the
two eigenmodes over one synchrotron period becomes
exactly 2z and they line up on the negative real axis (the
middle schematic of Fig. 1). That signals the onset of
transverse mode coupling. When I'? >4, one vector
becomes longer than one (unstable mode), while the other
vector becomes shorter than one (stable mode) as shown in
the right part of Fig. 1.

The stability condition I'> <4 can be expressed in a
more convenient way using T defined by Eq. (6) and the
ratio r = K/W between K and W (see Appendix B) as

T
tanh? <2 y> <y

where y is defined by

FZ
——1
+2

— -2
2

(38)
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FZ
1=
‘<4
FIG. 1.
y=2yr(l—r) (39)
and
K
= —. 40
= (40)

Using the two parameters Y and vy, the I'?/2 can be
expressed as
r . 11—y tanh?(% y)

. 41
2 y*  1—tanh’(1y) (41)

As stated before, the ratio r = K/W can be expressed as

7 [Avg,
I'—ﬁ( ” > (42)

The stability criterion and the growth rate are now
functions of the two dimensionless parameters:Y and
Av,./v,. The threshold value of Y as a function of the
ratio r up to r = 1 is plotted in Fig. 2. Unstable regions are
shown shaded.

Without the space-charge force (r = 0), the threshold
value of T for mode-coupling instability is 2. As can be seen
in Egs. (23) and (24), the space-charge force rotates the
betatron phase on the opposite direction to that for the
wakefield. When a small amount of the space-charge force is
introduced, a larger value of T is required to compensate the
counterrotating contributions of the space-charge force so
that the two eigenmode vectors in Fig. 1 will line up on the
negative real axis and couple. That is why the stability
threshold is going up at small r regions in Fig. 2. When the
space-charge force is increased to r = 1, the phase advances
by the space-charge force become exactly =2z (namely, the
two vectors rotate by +27z to line up on the positive real
axis), the threshold value of Y for the mode-coupling
instability becomes 2 again. The white region in Fig. 2
betweenr = 0 and 1 and above T = 2 is a passband created
by decoupling of the modes by the space-charge force.

r’=4

Schematics of the eigenvalues on the complex phase plane: left for I'> < 4, middle for I'> = 4, and right for I'> > 4.

IV. STRONG SPACE-CHARGE CASE

If K>W in the equations of motion for the half
synchrotron oscillation period, 0 < % < T',/2, the solutions
of Egs. (23) and (24) become (see Appendix C)

_ KW -
[)jl] _ i cos 6, i\/5%sinb, [)jl]
Y2 | =ls i\/ 7 sin6, cos 6, Y2 1s=0
(43)
where we define
1c cT
0,=-—VKK—W)-—=.
=, VK=

The transfer matrix during the other half period of the
synchrotron oscillation (T;/2 < $ < T) is given by

. K .
F)l] » cos b, i\/ 7w Sin 6,
~ =e !
Y2 Js=cT, i\/@siné’z cos 6,
x [yl} . (44)
Y2 Js=ct,/2

A N T IR

2 3 4 5

r=K/W

FIG. 2. The stability diagram for the weak space-charge case
(r = K/W < 1). Unstable regions are shown shaded.
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The total transfer matrix T for one full synchrotron oscillation period is given by

cos?0, — 55 sin?6,

T = 6—21'91

i(wﬁ—l— ,/%) cos 6, sin 6,

The eigenvalues A of the total matrix T can be obtained
by equating

T =291 (46)

After some mathematical manipulations and using the
relationship

0820, + sin’0, = 1, (47)

we finally have the eigenvalues as

rZ ]’*2 1—*2 . 2

A= . (48)
~Sai 5 (2-5) ifri<4
Here, we define I" as
l'*2
? = (H -+ l)sin2(92 Z O, (49)

where we define H as

1 K K-W
H=-|7"F%+—— 50
2 <K 4 K ) (50)
and we use the fact that H + 1 is always positive:
10
£ ]
5
FIG. 3. The stability diagram for the strong space-charge case

(r = K/W > 1). The stability diagram for the weak space-charge
case (r=K/W <1) is also plotted for completion. Unstable
regions are shown shaded.

,-(1 [E ,/%) c03 0, in 0

(45)
cos?0, — K sin’6),
(W —2K)?
H4+1=——""2-">0. 1
=k —wy =0 (1)

For the stability of the system, we can make the exactly
same argument as before. The system is stable if

2 <4 (52)

The growth rate g in unstable regions I'> > 4 is given by

1 rz /12 2

The stability condition I'> < 4 can be expressed using T
and the ratio r = K/W (see Appendix D) as

T
tan® <E y> <y? (54)
where y is defined by

y=2r(r—1). (55)

Using the two parameters T and vy, the parameter I'?/2
can be expressed as

r? 1+y?  tan’(L
—=2. +2y . <§ };) . (56)
2 y 1 +tan*(3y)

The threshold value of Y as a function of the ratio r
(r > 1) is plotted in Fig. 3, together with the previous weak
space-charge case (r < 1). Unstable regions are shown
shaded.

V. PROCEDURE TO IDENTIFY UNSTABLE
REGIONS AND GROWTH RATE

We now have the total solution for both the weak and
strong space-charge regions. We can calculate the stability
diagram using the following steps for given T and Av,,. /v;.

1. Calculate the ratio r:

K 7 [Avg
I‘—W—ﬁ<yY ) (57)
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2. If r <1 (the weak space-charge case), calculate y as

y =2y/r(1—r). (58)

2.1 1f
T
tanh? <5 y) < yz, (59)
the beam is stable.
22 1If
T
tanh? (3 y> > y2, (60)

the beam is unstable and the growth rate is given by

1 2 (12 2
— 1 I (N, I 1
g TSOg{ > (3-2) +3 } 1)

where

. . tanh?(Zy)
2 y2  1—tanh’(Zy)’

(62)

3. If r > 1 (the strong space-charge case), calculate y as

y =2y/r(r—1). (63)
3.1 1If
T
tan> (E}/) <y’ (64)
the beam is stable.
32 1If
T
tan? (5 y) > y2, (65)

the beam is unstable and the growth rate is given by

1 ™ /2 R
— 1 R () § IS 66
g TSOg{ 2 (2 >+2 } (66)

where
I‘*2 1 2 t 2(X
—=2. +2y ,_an (33? . (67)
2 y 1 +tan*(5y)

We calculate the growth factor g x 7', as a function of T
and Av,,. /v, and plot it in a flat contour plot in Fig. 4 and in
a three-dimension contour plot in Fig. 5. The three
parameters g x Ty, T and Av,./v, are all dimensionless
parameters and these contour plots are universal.

AVSC /VS

R I I B R S N
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Y

FIG. 4. Flat contour plot for the growth factor g x Ty as a
function of T and %

s

8.0 6.0 4.0 2.0
AVSC / Vs

FIG. 5. Three-dimensional contour plot for the growth factor
g x T, as a function of T and %

VI. FINDINGS AND CONCLUSIONS

Let us investigate how the space-charge force affects the
strong head-tail instability. Take a case of T = 4 where the
beam is unstable without the space-charge force (AD”‘“' =0).
Figure 6 shows the growth factor g x T, as a function of the
space-charge tune shift parameter Av,. /v, (normalized by the
synchrotron tune) at ¥ =4. If we gradually increase
the space-charge force, the beam moves from the unstable
region (the lowest stopband) to the stable region (the lowest
passband). However, if we further increase the space-charge
force, the beam enters another unstable region (the second
lowest stopband). The maximum growth rate in this unstable
region is comparable to that for no space-charge case.
One may conclude that the space-charge force loses its
damping effect when it is too strong. In fact, many theoretical
and simulation studies show similar behaviors. If we further
increase the space-charge force, the beam would be stable
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AVSC/VS

-
o

FIG. 6. The growth factor g x T, as a function of the space-
charge tune shift parameter (normalized by the synchrotron tune)
at YT =4.

again. However, it is not clear if we can achieve this state in
reality or computer simulations since such strong space-
charge force may expand the beam size, with a result of
reduction of the space-charge tune shift by itself.

One can see stopband structures in the stability diagrams
Figs. 4 and 5. The lowest two stopbands are strongest
(namely, very unstable), while other higher-order stop-
bands are considerably weaker. The appearance of the
stopbands can be explained as follows. A mode-coupling
instability takes place when the two eigenvalues line up on
the negative real axis on the complex phase plane (see
Fig. 1), in other words, when the difference of their betatron
phase advances over one synchrotron period is an odd
integer times 2z. When the wakefield is negligibly weak,
the tune shift of one solution is close to —Av,,., while the
other solution has almost no tune shift. The mode-coupling
condition mentioned above corresponds to the case when
Av,, takes values around an odd integer times v,. That is
why the stopbands always start with Av,./v, equal to odd
integers at small T in Fig. 4. Pure space-charge oscillations
are stable, but even slight inclusion of wakefield effects to
them can make such oscillations unstable.

The present two particle model has no tune spread effect,
since the space-charge force is linearized in the transverse
position, and the two particles have identical betatron tunes.
The damping of strong head-tail instabilities with a weak
space-charge force is caused by decoupling of the modes due
to additional tune shifts by the space-charge force, not the
Landau damping due to the nonlinearity of the space-charge
force. As the space-charge force is increased, tune shifts by
the space-charge force conversely restore the mode coupling.
But, a further increase of the space-charge force decuples the
modes again. This mode coupling/decoupling behavior
creates stopband structures as a function of the space-charge
tune shift parameter and Y. This conclusion is consistent
with the work by Ng and Burov [14], though their model
includes many more modes. It is interesting to point out that
in the present two particle model, there are only two modes,

8.0

AVSC/VS

(Ul 1 1 T T T T
0 1.0 2.0 3.0 40 50 6.0 7.0 8.0 9.0 10.0
Y

FIG. 7. Flat contOLAr plot for the growth factor g x T, as a
function of Y and % The cases r=K/W =1/2 and r =
K/W = 1 are shown in red lines.

but they play many different modes as if in a more general
analysis based on the mode expansion method [14]. Very
roughly speaking, it appears that the one mode plays always
the m = 0 mode, while the other mode plays negative odd
integer modes (m = —1,—3,—5,...) depending on the
strength of the space-charge force.

For the sake of explanation, we draw two lines in the
contour plot Fig. 7: one forr = K/W = 1/2 and another for
r =K/W = 1. The narrow passband region between the
two lowest stopbands corresponds to the r = K/W = 1/2
case. In this case, the equations of motion become symmetric
about y; and y,, though the signs of the right-hand sides are
opposite. When K is exactly equal to W/2, this system is
absolutely stable regardless of the strength of K = W/2.
Another absolutely stable case is the W = 0 case, namely, no
wakefield case. Then, the system becomes identical to that
for two pendulums connected with a spring. This system is
also stable regardless of the strength of the spring. In our
case, the system starts to approach this extreme once the
space-charge tune shift exceeds ther = K/W = 1 line. That
may explain why the high-order stopbands are considerably
weaker than the lowest two stopbands.

Although the present new two particle model is a simple
expansion of the existing two particle model, it contains
rich new physics. Further investigation of the present
model and/or inclusion of more effects will help us to
have a better understanding of effects of space-charge force
on beam instabilities. We are planning to include the
chromaticity effect to the present two particle model in
the next report.
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APPENDIX A: SOLUTIONS FOR EQUATIONS
OF MOTION FOR WEAK SPACE-CHARGE
FORCE (W > K)

Let us start with Eqgs. (23) and (24):

A (%) - &ly = vk )
R —

Let us define
2
A2 = <wﬁ> K
c

Then, Eqgs. (A1) and (A2) can be expressed in a matrix form

.
=1 =) e

The eigenvalues A of this matrix are

(A2)

(A3)

1=-A*+i/K(W-K). (A5)
The eigenvectors have to satisfy
A0 -A? W-K x|
(6 2) - W] o
The solutions are given by
Xo K ’
Let us define new coordinates:
. |W—=K
=yt x 2 (A8)
and
. |[W—=K
=y =i T (A9)

Then, the equations of motion can be diagonalized for z;
and z, as

7] + A’z = —i/K(W—K)z, (A10)
and
7y + A%z = i/ K(W — K)z,. (A11)

Let us define

Bi:AZii\/K(W—K). (A12)
Then, solutions of Egs. (A10) and (Al1) are
71(s) = 7,(0)e~ "+ (A13)
and
7)(s) = 7,(0)e"P-*, (Al4)
where
N .c
Z1p =22 12, (A15)
, wy "
Solutions for
- .c
Yip :)’1,2+10)—ﬂy1,2 (Al6)
are given by
ot 1 —iB.s —iB_s\&
J1(s) =5 (718 + e18)5,(0)
1 \W—-K, ... _iB s\~
3T (e e g0), (A7)
and
S 1 1 —iB.s —iB_s\g
Ya(s) = 5 (e = emP)5,(0)
is JW=K
K
1 —iB. s —iB_s\g&
+§(e +5 4 e 8-5)3,(0) (A18)
Let us define
1 —iB.s —iB_s
a+:§(e 5 4 718 (A19)
and
| — —iB
a_ :E(e Bis _ 7By, (A20)

The parameter B2 = A? + i\/K(W — K) can be approxi-
mated when A > W, K as

B. EAii\/K(W—K), (A21)
where A can be also approximated by
A= C g (A22)
¢ 2wy
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Therefore,

LY C

Byx2£__° iiZL\/K(W—K).

¢ 2wy wg (A23)

The error associated with the approximation (A23) is on

the order of the square of the space-charge tune shift

divided by the betatron tune [3], which is very small for any
reasonable accelerator parameters.

The parameters o, and a_ can be more explicitly written

as

R
(A24)

and

a_ = exp {—i (? - él{) s] sinh Liwﬂ \/m.s] .
(A25)

The transfer matrix for the period 0 < ¢ < T';/2 becomes

5 cosh @ iy/¥=Ksinh 0
{yl } = ¢ 0 ’ K :
s=cT,/2

¥2

—iy /2% sinh 6, coshd,
x {y ! ] , (A26)
Y2 ls=0
|
cosh 6, —iy /2% sinh 6,
T = 6721‘9]

. W_K .
1y [*%sinh 6, cosh 8,
cosh?¢, — A% sinh?6,
— 26,

The eigenvalues A of the total matrix T can be obtained
by equating
T = e 29, (A31)

where I is the unit matrix. After some mathematical
manipulations and using the relationship
cosh?6, = 1 + sinh?6,, (A32)

we can write down the eigenvalues as

_i( JUK /W’(K> cosh 6, sinh 0,

where
w; 1 c cT,
0, =|—+——=—— — A27
! [c 2wy } 2 (A27)
and
1 ¢ s cT;
w
b

The transfer matrix during the other half period of the
synchrotron oscillation (T;/2 < $ < T) is given by

cosh 92 —i ﬁ sinh 92

A
Y2 Js=cr, i\/"=£sinh 6,

)
x |7 )
Y2 ls=ct, /2

The total transfer matrix 7 for one full synchrotron
oscillation period is then given by

cosh 6,

(A29)

cosh 6, i\/"=£sinh 6,
—iy /2% sinh 6, cosh 6,

i<\ I — Wﬁ) cosh 6, sinh 6,

(A30)
cosh?@, — WK sinh?6),

~C+ /0 E-2) ifI?>4
A= (A33)

~D+i /D 2-0) ifrr<a.

Here we have defined I" as
1'*2

5 = (H — 1)sinh?6, > 0, (A34)

where

014201-10
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1 K W—-K
= |—+— A35
2 <W "k Kx > (A35)
and we have used the fact that H—1 1is always
positive:
W —2K)?
—1= g >0. (A36)
2K(W — K)

APPENDIX B: STABILITY CONDITION FOR
WEAK SPACE-CHARGE FORCE (W > K)

The stability of the system requires that
I? <4 (BI1)

This stability condition can be expressed more explicitly
as

4K(W - K
tanh292 S % . (BZ)
Since
1 c cTy, 'y
0, ==—+VKW-K) —==T, B3
2=, VEW=K) 2 =30 By
where
1 ¢ cT
T=-W——2-" B4
2/K(W—-K
:4( ):2 r(1—r), (BS)
w
and
K
=_—, B6
r= (B6)
the stability condition can be written as
T
tanh? (5)1) <y (B7)

Using the two parameters Y and y, the I'>/2 can be
expressed as

2 1—y* tanh*(Ly)

—=2- . (B8)
2 y*  1—tanh’(Ly)
The ratio r = K/W can be expressed as
7 [Avg,
=— = ). B9
' 27 < Uy ) ( )

APPENDIX C: SOLUTIONS FOR EQUATIONS
OF MOTION FOR STRONG SPACE-CHARGE
FORCE (K > W)

In this region, the eigenvalues of the matrix

=12 )=
Y3 -K —A? h%) Y2

are given by

—~

Cl1)

A=-A2+ /K(K—-W).

The eigenvectors are given by

)T e

X2
Let us define new coordinates:

K-Ww

- 4
K Y2, (C )

1=y +
and

K—-—Ww
. C5
K Y2 ( )

=Y -

Then, the equations of motion can be diagonalized for z;
and z, as

Z] + A%z = —/K(K — W)z, (C6)
and
Zy + A’z = /K(K — W)z,. (C7)
Let us define
32i =A%+ K(K—W). (C8)
Then, the solutions of Egs. (C6) and (C7) are
z1(s) = 7, (0)e~B+s (C9)
and
7y(s) = 7,(0)e™"-, (C10)
where
N . c
Zip =21 +i—2],. (C11)
@p
The solutions for
- .C
Yip=Yiot1i—Y, (C12)
@p

014201-11
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are given by

1 . s~
J1(s) = 5 (€77 + e 5)3,(0)

1 [K-W

) [ _(a)ﬁ c
a_ =iexp|—i| ——=—
¢ 2wy

)l ]

wp

(C18)

1 ~iB.s _ p—iB_5)3. (0 C13 For the half synchrotron oscillation period, 0 <3 < T /2,
* 2 K (e ¢ )52(0) - (C13) the transfer matrix becomes
and . kW
Pl] e cos 6, i\/5¥sin 60,
~ K 1, _ B s\~ y oI . .
5a(s) = \ [z 5 (5 = e )3,(0) V2 lieg i/ekysind,  cos6,
1, . o y
+ = (e7B+5 + e7B-5)3,(0). (C14) X [i]l } , (C19)
2 Y2 1s=0
Let us define where
L s —iB_s 1 T
ay =5 (e ) (C15) 0, =~ VKK —-W)- 2. (C20)
Zwﬁ
and . . .
The transfer matrix during the other half period of the
1, . . synchrotron oscillation (7;/2 <2 < T) is given b
a =g (e — i), cie) ey
. , 5 cos 6, i/ sin 0,
The parameters o, and a_ can be more explicitly written {y 1 ] e
as Y2 Js=cr, i/5¥ sin 0, cos 6,
o, —expl—i(P__ € C JRK= Y
+ = exp|—i s| cos|>—/K(K—W)s X . (C21)
2(0/j a)ﬂ 5}2 T
s=cT/2
(C17)
The total transfer matrix 7 for one full synchrotron
and oscillation period is given by
cos?0, — A sin%6, i (\ 57+ 4 /%) cos 6, sin 6,
T = 2% (C22)
i<\ [+ 4 /%) cos 6, sin 6, cos?0, — £ sin’0),
) The etigenvalues A of the total matrix T can be obtained . (E T2 4
equatin 2 22 =
Y equating A= (C25)
~C+i /T 2-0) ifrr<a
T = e 201 (C23)
Here, we define I' as
After some mathematical manipulations and using the 2
relationship 5= (H + 1)sin?6, > 0, (C26)
c0s20, + sin20, — 1, (C24) where H is defined as
1 K K-W
H=! <_ ) (c27)
we finally have the eigenvalues as 2\K-W K
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and we use the fact that H+ 1 is always positive: The ratio r = K/W can be expressed as
(W —2K)? n (Avg
H+l=——-->0. C28 == . D6
T Tk —w) Z (C28) oy, (D6)

The system is stable if
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L e T
= —1lo - — = PR
I=7. 8\ 2 \2 2
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