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Engineering quantum correlations for m × n spatially encoded two-photons states
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Discretizing transverse linear momentum of photon pairs, generated by spontaneous parametric down
conversion (SPDC), is one of the simplest methods for producing bipartite entangled states in high dimensions.
So far, it has been employed only to prepare states in dimensions m × m. In this work, we study the generalization
for engineering entangled states in dimensions m × n. Our approach relies on the manipulation of the pump
beam transverse profile and the phase-matching function of the SPDC process to prepare, behind an m- and
n-slit aperture, different m × n spatial entangled states. We demonstrate the technique experimentally for some
2 × 3 states. Compared to previous approaches in producing 2 × n photonic entanglement, which require either
more than two photons or hybrid entanglement, our scheme is less demanding and simpler since we employ only
two photons and a single degree of freedom to encode the states.
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I. INTRODUCTION

Over the past 30 years spontaneous parametric down con-
version (SPDC) has been the main process used to obtain
entangled photonic states. The inherent characteristics of the
phenomenon allows the construction of states correlated in
many degrees of freedom, providing an useful resource for
experimental studies in quantum communications, quantum
information, and in fundamentals of quantum physics [1–3].

When preparing spatially encoded states using SPDC, two
aspects have to be taken into account, namely, the crystal char-
acteristics and the pump beam transverse profile [4,5]. The
influence of the first was already extensively studied in [6–10].
The second aspect, with the intention of engineering entangled
states and controlling twin photons correlations by regulating
the pump beam shape, has been done both manually and elec-
tronically, preparing photonic states encoded in continuous
and discrete variables [11–15]. The possibility to govern the
biphoton state by modifying the pump beam has been studied
over the years and was recently explored in preparing two
qudits states with dimension m × m in an angular momentum
degree of freedom [16,17]. In their useful method two qudits
states of equal dimensions (d = 3, 4, and 5) are prepared
by using two spatial light modulators at the pump beam and
twin photons paths without the need of spatial filtering and
with the possibility of amplitude and phase control. Unlike
these works, we study the possibilities of modifying the pump
profile and the propagated phase-matching function to prepare
bipartite quantum states in linear momentum degree of the
photon pairs. In our work we are interested in preparing two
qudits states in dimension m × n (m �= n), where m and n
define the possible photons’ paths after they cross different slit
sets. The controlling of pump beam has been found useful in
applications as for example to maintain the spatial correlations
when the photons propagate in a turbulent media [18,19].

Bipartite entangled states have been prepared by using
different degrees of freedom of the photons as polarization
[20], angular momentum [14,21–23], frequency [24], and

transverse path [25]. Concerning this last one, different meth-
ods for engineering spatial bipartite states can be found in the
literature. In all of them, multiple slits are placed transver-
sally at photons paths discretizing their linear momentum.
However, until now, only the preparation of m × m spatial
states has been studied [26]. Polarization degree of freedom
has been already explored in preparation of 2 × 3 states by
means of a complex arrangement of four photons in [27], and
in a simpler proposal to preparation of 2 × n states, using
hybrid entanglement, made in [28]. Therefore, to study new
forms to encode these states in spatial variables is important to
decrease experimental complexity and to increase the number
of possible correlations that one can prepare experimentally.

In previous works, involving only spatial states, when
photonic entangled states are generated in path variables, each
photon was intercepted by apertures with the same number of
slits. In this paper, we analyze the use of known methods in
preparation of m × n states introducing some correlations that
arise when a different number of apertures are placed at the
paths of each of the twin photons. We show how to set a two-
photons system needed for an experimental implementation
of theoretical studies involving m × n quantum states.

The preparation of bipartite quantum states of dimension
m × n (m �= n) is, in different contexts, necessary for answer-
ing interesting fundamental questions. Khoury and Oxman
studied the appearance of the fractional topological phase
and its structure for two qudits systems of dimension m × n
in general and for the particular qubit-qutrit system [29].
Ann and Jagger have demonstrated theoretically entanglement
sudden death in a qubit-qutrit system where the systems
are individually incoherent but may still have coherence and
entanglement in the composite system [30]. Karpak and Gedik
studied theoretically the time evolution of the classical and
quantum correlations of qubit-qutrit systems in independent
and common dephasing environments [31] and later extended
for various decoherent channels. An analytical expression
of quantum discord for a class of states in qubit-qutrit sys-
tems was derived and its dynamics was studied for various
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dissipative systems [32]. Increasing the dimension of only one
part of the system is therefore essential in the experimental
implementation of theoretical studies as fundamental tests in
quantum mechanics [33–35], analysis of the dynamic of 2 × 3
quantum states [31,36,37], the measurement of topological
phase of 2 × 3 quantum states [29], and quantum coarse-
graining analyses [38]. In this work we aim to show that these
states can be prepared exploring the linear momentum of twin
photons generated by SPDC, and also discuss their behavior
face to some interference measurements.

The paper is organized as follows. In the next section
we present an overview about the photonic quantum states
prepared on photon path variables, defined by multiple slits. In
Sec. III we analyze the correlations that one can obtain when
different state preparation methods are applied to 2 × 3 and
3 × 4 states. We also analyze, in Sec. IV, the interference pat-
terns resulted from some 2 × 3 states and propose a method
to study spatial correlations in these states by means of
measurement in different bases (position momentum). Later,
in Sec. V, we show that the relation between the conditional
interference and entanglement in 2 × 3 photons states cannot
be made directly. Finally, we conclude in Sec. VI.

II. OVERVIEW ABOUT SPATIAL STATES ENGINEERING
BEHIND MULTIPLE-SLIT APERTURES

Spatial entanglement between photons generated by SPDC
occurs due to the nonseparability of biphoton amplitude,
which is a joint result of the spatial properties of the pump
beam, transferred to the photon pair, and the phase-matching
function (PMF). The photons generated in the SPDC process
are usually named signal (s) and idler (i) photon [39]. Disre-
garding the polarization information and using the formalism
developed in [5,40] to one spatial dimension and degenerated
photons, we can write down the biphoton state at some trans-
verse plane at z as

|ψz〉 ∝
∫∫

�(xs, xi, z)|xs〉|xi〉dxsdxi, (1)

where |xs〉|xi〉 is defined as

|xs〉|xi〉 = 1

4π2

∫
dqse

ixsqs |qs〉
∫

dqie
ixiqi |qi〉, (2)

and |qs〉, |qi〉 are the Fock states that represent photons with
transverse momentum qs and qi.

The function �(xs, xi, z) is a product of two nonseparable
functions in spatial variables E [(xi + xs)/2] and ξ (xi − xs)/2,
namely

�(xs, xi, z) = E

(
xi + xs

2
, z

)
ξ

(
xi − xs

2
, z

)
, (3)

where E ((xi + xs)/2, z) is the pump beam transverse am-
plitude, written in terms of the twin variables, and
ξ ((xi − xs)/2, z) is the PMF propagated to the plane at z which
depends on crystal properties and on the difference of the
photon spatial variables, and for which we do not consider the
Gaussian approximation [9]. Although the Gaussian approxi-
mation for the PMF has been used for some authors [41–46] it
has been shown by Gómez et al. that the spatial state of SPDC
cannot be seen as a two-mode Gaussian entangled state even
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FIG. 1. Graphic layout of a general state preparation setup with
the twin photons generated by SPDC collinearly and then separated
by a beam splitter. The nonlinear crystal and the slits are positioned,
respectively, in the planes at z0 and za. zp is the position of a plane
before the crystal.

when it is pumped by a Gaussian pump beam and for a perfect
phase matching condition [47]. In this work, we discuss the
two-photons state in spatial variables by analyzing it in terms
of both functions E ((xi + xs)/2, z) and ξ ((xi − xs)/2, z). In
this scenario both functions cannot be factorized in a product
of individual functions of xi and xs. When an aperture with
Dα slits (α = i, s) is placed in the path of each photon, the
biphoton state immediately after the apertures is [48]

|ψ f 〉 ∝
�i∑

li=−�i

�s∑
ls=−�s

�in(lid, lsd, za)|li〉|ls〉, (4)

where za is the position of the apertures plane, �α =
(Dα − 1)/2, d is the distance between two slits, �in(xi, xs, za)
is the biphoton amplitude on the plane at za, and |lα〉 (α = i, s)
is the quantum state of a photon α which passes through slit
l . The qudits dimensions, defined by Dα , are independent
from each other, so one could diversify the number of slits
in the multiple slit set for each photon of the pair aiming the
construction of m × n states. So far, only m × m states have
been explored. Regardless of the experimental setup, state
preparation behind the multiple slits seeks the manipulation of
the biphoton amplitude function at specific points, such that it
controls the correlations between each pair of modes |li〉|ls〉.
The main issue in this work is how to manipulate biphoton
amplitude to produce specific m × n photonic entangled path
states. Here, we shall consider two approaches.

(i) Manipulating PMF: when an enlarged image of the
crystal, positioned on a plane at z0, is projected onto a plane
at za (Fig. 1), the biphoton amplitude at the apertures is equal
to the amplitude at the crystal exit, scaled by a magnification
constant and multiplied by a phase factor. In this case, the
pump transverse profile at za is wider than the PMF at this
plane. Thus the transverse pump amplitude is approximately
constant along the slits and the correlations are predominantly
controlled by the PMF width at za [10].

(ii) Manipulating the pump beam transverse profile: if the
image of some plane at zp, before the crystal, is projected on
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za (Fig. 1) in a setup where the thin crystal approximation
is valid, the PMF is approximately constant along the slits.
Then, controlling the pump shape at za (or zp) is equiva-
lent to controlling the correlations between the slits [14,25].
In the next section, we describe in detail the manipulation
of both PMF and pump beam profile, and present possible
correlations that one can achieve in m × n spatially encoded
two-photons states.

III. ENGINEERING OF THE m × n TWO-PHOTONS
SPATIAL CORRELATIONS

In face of Eq. (4) some questions arise. Are the number
of correlations, obtained making photons cross different num-
bers of slits, limited somehow? How do these possible corre-
lations look? Are there maximally entangled states amongst
them? In this section, we aim to answer these questions
discussing possibilities and limitations for the correlations
that one can obtain by means of the methods mentioned in the
last section. To illustrate the problem in a simple manner, we
analyze the specific cases of dimensions 2 × 3 and 3 × 4. We
study specific cases, for illustration, but analogous analyses
can be done for any dimension.

A. Manipulating PMF

If an enlarged image of the crystal is projected on a plane
at za, the state of Eq. (4) can be written as [39]

|ψ〉 ∝
�i∑

li=−�i

�s∑
ls=−�s

eiϕ(l2
i +l2

s )ξ

(
(li − ls)d

2p
, z0

)

× E

(
(li + ls)d

2p
, z0

)
|li〉|ls〉, (5)

where ϕ is a phase acquired along the propagation that de-
pends of the setup characteristics, p is the magnification of
the image, and z0 is the position of the crystal plane. We can
represent a m × n pure state by means of a coefficient matrix
Mm×n. For instance, considering 2 × 3 and 3 × 4 dimensions
in the context of the manipulation of the PMF image we have

(6)

and

(7)

where ξ1 = ξ ( d
4p , z0), ξ2 = ξ ( 3d

4p , z0), ξ3 = ξ ( 5d
4p , z0), E1 =

E ( d
4p , z0), E2 = E ( 3d

4p , z0), E3 = E ( 5d
4p , z0), and the biphoton

amplitude was assumed to be symmetrical.

As described previously, the correlations in Eqs. (6) and
(7) are predominantly controlled by the coefficients ξ j defined
by the PMF image. For example, let us consider 2 × 3 states.
By making the propagated PMF sufficiently narrow at the
multiple slit plane, so that ξ2 ≈ 0 in Eq. (6), the resulting state
will be

|ψI〉 ∝ ∣∣− 1
2

〉
(eiϕE2|−1〉 + E1|0〉) + ∣∣ 1

2

〉
(eiϕE2|1〉 + E1|0〉).

(8)

It is important to highlight that the number of possible
states obtained by manipulating the PMF is limited for two
reasons. First, since PMF shape is determined by the crystal
properties, we can only modify the width of its image at za,
Fig. 1, which implies an intrinsic limitation in the number
of possible prepared two-qudit or qubit-qutrit states. If one
wishes to make some ξ j = 0, all the other terms ξ j′ with j′ > j
will be immediately canceled out. The second limitation can
be observed from color code (shape code) in Eqs. (6) and (7):
different pairs of modes are predominantly controlled by the
same ξ j . It is impossible to prepare a state with, for example,
|0〉|−3/2〉 and without the |−1〉|1/2〉 term in Eq. (7), which
is also a limitation in the type of prepared states related to the
intrinsic spatial correlations of the photon pairs generated in
SPDC [Eq. (5)].

B. Manipulating pump beam transverse profile

When a nonmagnified image of the plane at zp is projected
on za, the state of Eq. (4) can be written as

|ψ〉 ∝
�i∑

li=−�i

�s∑
ls=−�s

eiφ(li−ls )2
E

(
(li + ls)d

2
, zp

)
|li〉|ls〉, (9)

where φ is a phase acquired along the propagation being
dependent of the setup characteristics, and the biphoton is
considered to propagate freely for a distance long enough to
make the propagated PMF constant over all slits. For this case,
we have the following coefficient matrix Mm×n for 2 × 3 and
3 × 4 dimensions, respectively:

(10)

and

(11)

where C1(2) = E (−(+) d
4 , zp), C3(4) = E (−(+) 3d

4 , zp), and
C5(6) = E (−(+) 5d

4 , zp).
In this situation we can “slice” the pump beam profile, at

zp, around the transverse positions indicated in Eqs. (10) and
(11), instead of modifying only its image width. This increases
the number of possible states that can be prepared but the
limitation indicated by the color code (figures with same shape
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FIG. 2. Graphical representation of the profiles that produce the
states |ψII 〉, |ψIII 〉, and |ψIV 〉.

and color tint) remains since different pairs of modes are
controlled by the same Cj . This limitation comes from the
linear momentum conservation in SPDC, which causes the
same region of the pump beam transverse profile to control
the correlations between more than one pair of slit modes.
This feature remains even if different phases were added to
different points of the pump profile, which shows that it is not
a limitation associated with the manipulation method, but with
the SPDC phenomenon itself.

Considering the dimension 2 × 3, we can take as an ex-
ample states prepared by image projection (on za) of a pump
beam profile with two dents as illustrated in Fig. 2. For
instance, if we make these dents at d/4 and −3d/4, as shown
in Fig. 1(a), we get the state

|ψII〉 ∝ ∣∣− 1
2

〉
(C3|−1〉 + e2iφC2|1〉) + C2

∣∣ 1
2

〉|0〉, (12)

which is nonmaximally entangled. If we make the dents in
symmetrical regions with respect to the center of the arrange-
ment, that is, in ±d/4 as shown in Fig. 1(b), we get the state

|ψIII〉 ∝ C3

∣∣− 1
2

〉|−1〉 + C4

∣∣ 1
2

〉|1〉, (13)

which is maximally entangled if the pump profile is symmet-
rical, that is, if C3 = C4 before the manipulation, as in the case
of an initial Gaussian beam.

The state |ψIII〉 in Eq. (13), maximally or nonmaximally
entangled, does not access all the base states, i.e., all the path
states in the qutrit space. Because of that, |ψIII〉 behavior is
similar to a 2 × 2 state.

Moreover, this leads us to ask what shape of the pump
beam would produce maximally entangled states in which
all slits are accessed. For answering this question, we resort
to the Schmidt decomposition [49]: given a bipartite pure
state of dimension m × n, and assuming m � n, a maximally
entangled state in such decomposition would have all Schmidt
coefficients equal to 1/

√
m.

Schmidt coefficients can be obtained from the eigenvalues
of the reduced density operator of the bipartite system. The
non-null eigenvalues are equal to the square of the Schmidt
coefficients. Considering a pure state, such as in Eq. (9),
prepared with a symmetric pump beam transverse profile and
considering �i = 2 and �s = 3, we have that the non-null
eigenvalues of both qubit and qutrit will be equal to 1/

√
2

if

C3 = − C1

2 cos(2φ)
, (14)

with C4 = C3 and C2 = C1.

FIG. 3. Experimental setup for the preparation and detection of
the 2 × 3 photonic spatial states. In (a) the magnified crystal image
is projected on slits by a nonconfocal telescope. In (b), dark stripes
have their images projected on the slits plane.

In the special case where 2φ = π we get the state

|ψIV 〉 = 1√
2

{∣∣∣∣−1

2

〉[
3

2

(
−1

2
|−1〉 + |0〉 + |1〉

)]

+
∣∣∣∣1

2

〉[
3

2

(
|−1〉 + |0〉 − 1

2
|1〉

)]}
, (15)

which can be rewritten in the form

|ψIV 〉 = 1√
2

{∣∣∣∣−1

2

〉
|
1〉 +

∣∣∣∣1

2

〉
|
2〉

}
, (16)

where |
1〉 and |
2〉 are equal to

|
1〉 = 3
2

(− 1
2 |−1〉 + |0〉 + |1〉),

|
2〉 = 3
2

(|−1〉 + |0〉 − 1
2 |1〉). (17)

The pump transverse profile with which one could prepare
the state in Eq. (15) is shown in Fig. 1(c). The amplitude
in ±3d/4 must be equal to half of the amplitude in ±d/4.
Besides that, the setup must be adjusted in order to make the
propagation phase φ equal to π/2. The necessity of control-
ling the phase φ and the intensity along the profile, instead of
just canceling it in some points, makes the preparation of this
state more difficult.

IV. EXPERIMENT

Figure 3 shows our setup for preparation and measurement
of 2 × 3 states, which could be used for any dimension. A
405 nm continuous-wave (cw) laser beam is filtered by a
monomode fiber in order to ensure a stable pump beam. The
preparation sequence is made in two ways. In Fig. 3(a), a
50 cm focal length lens (L1) focuses the pump in the center
of a BiB3O6 (BiBO) crystal, generating collinear 810 nm
photon pairs in a type-I phase matching configuration. Next
to the crystal, a 5 cm focal cylindrical lens (Lc) and a 20 cm
spherical lens (L2) form a nonconfocal telescope that projects
the crystal image (z0), with fourfold magnification, on the
slits plane (za). In Fig. 3(b) the laser crosses a transparent
slide with some printed black narrow lines, on the plane at
zp, before pumping the crystal. After that, a 12.5 cm spherical
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FIG. 4. Experimental pump beam profile at zp and za planes, and
the respective coefficients matrices for the states ψI [in (a) and (b)],
ψII [in (c) and (d)], and ψIII [in (e) and (f)]. The bars indicate the
square of the absolute values of the coefficients in Eqs. (10) and (6).
The red lines (the central lines) in (a), (c), and (e) indicate the region
matched with the center of both multiple slits.

lens (L3) projects, on the plane at za, a nonmagnified image of
the plane at zp.

In both configurations [Figs. 3(a) and 3(b)] a dichroic mir-
ror (DM) reflects the pump beam out of the setup, and the twin
photons are separated by a nonpolarized beam splitter (BS).
Transmitted and reflected photons cross, respectively, double
and triple slits which are positioned at the same distance from
the BS. The slits are 100 μm wide and separated, center to
center, by 250 μm. Furthermore, double and triple slits are
positioned with their centers always coinciding with the center
of the pump beam profile. The stripes shown in Fig. 3(b) are
positioned so that they match with the transverse positions
highlighted in Eq. (10). The single-photon detectors (Di and
Ds) are placed at a distance of 40 cm from the slits. Spherical
lenses of 10 cm (L4 and L5) and 20 cm (L6 and L7) are used to
perform, respectively, image and interference measurements.
Interference filters, centered in 810 nm and 30 nm bandwidth,
are coupled to detectors and microscope lenses are attached
to the filters in order to couple the photons into multimode
fibers. Rectangular apertures are placed at the entrances of the
detectors (except for marginal measurements) in such a way
that the scanning is made along the x direction. Coincidence
counts are registered in a time window of 5 ns. Figures 4(a),
4(c), and 4(e) show different biphoton profiles on the za plane,
obtained with both configurations shown in Fig. 3.

A. Correlation measurements in position-position basis

We characterize the states starting from measurements in
position-position basis. For that, we use a lens to project the
image of the two multiple slits in their respective detectors
planes. We scan one of the detectors, while the other is
maintained fixed in the center of each slit image. These
measurements allow us determine experimentally the matrix
coefficients [Eqs. (6) and (10)] for each of the prepared states,
as shown in Figs. 4(b), 4(d), and 4(f).

Comparing Eq. (6) and the matrix in Fig. 4(b), we can con-
clude that the correlations are governed, predominantly, by the
propagated phase matching; in other words, ξ1/ξ2 � E1/E2 as
expected. We also observe that the experimental biphoton pro-
file is not symmetrical, which produces the difference between
|− 1

2 − 1〉 and | 1
2 1〉 coefficients. For the second configuration

in Fig. 3(b), a similar asymmetry between | 1
2 − 1〉 and | 1

2 1〉
coefficients is theoretically expected and can be verified in the
matrices in Figs. 4(d) and 4(f).

B. Qualitative characterization by measurements
in position-momentum basis

A second measurement that we use to characterize the
states qualitatively is projecting one of the multiple slits
Fourier transforms over the respective detection plane. In
this case we implement different measurement operators for
each part of the state, that is, the measurements are made in
different bases simultaneously.

Labeling the idler and signal photons as p or q, i.e., p(q) =
i, s(i, s), we will consider that the apertures plane of photon p
is imaged at its detection plane, while the Fourier transform of
the apertures plane of the photon q is projected at the second
detection plane. In this case we can write the probability to
get CNC as

P2(xi, xs) ∝ sinc2
(
θxp

)
∣∣∣∣∣∣
∑

lp

∑
lq

�in
(
lpd, lqd, za

)
e−iγ lpxp

×
∏ (

xq − lqd

2a

)∣∣∣∣∣∣
2

, (18)

where
∏

(x) is the rectangular function, which corresponds to
the transmission function of a slit, and its presence in Eq. (18)
is due to the image measurement. Owing to the rectangular
function orthogonality (because the separation d is larger than
the slits width 2a), we can rewrite Eq. (18) as

P2(xp, xq ) ∝ sinc2(θxp)
�p∑

lp=−�p

�q∑
lq=−�q

∏ (
xq − lqd

2a

)
F

(lq )
ψ (xp).

(19)
This expression shows that different interference patterns

can be observed when the detector of photon q is fixed in the
center of each image slit. The oscillation described by F (1)

ψ (xq)
is governed by the global state coefficients �in(lpd, lqd, za)
and also depends on which part of the system, as well as its
dimension, is detected at the optical Fourier transform plane.
Tables I and II show the expressions F

(lq )
ψ (xp) for each 2 × 3

theoretical state presented above.
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TABLE I. Theoretical oscillation functions when the qubit detec-
tor is kept fixed at the center of a slit image while the qutrit detector
is scanned on the Fourier transform plane.

State F (−1)
ψ (xi ) F (0)

ψ (xi ) F (1)
ψ (xi )

|ψI〉 1 [1 − cos(γ xi )] 1
|ψII 〉 1 1 1
|ψIII 〉 1 0 1
|ψIV 〉 [1 − 4

5 cos(γ xi )] [1 − cos(γ xi )] [1 − 4
5 cos(γ xi )]

The experimental interference patterns, measured in coin-
cidences, for each state in Fig. 4 are shown in Fig. 5, where we
can observe a more pronounced variance between theoretical
curves of Tables I and II and the experimental data. The
influence of the not null coefficients indicated by dark bars
(the smaller bars) in Figs. 4(b), 4(d) and 4(f) can be clearly
seen in the patterns obtained from qubit far-field measure-
ments. Despite this, we can see a strong agreement between
the experimental patterns and the expected curves for the real
coefficients’ values, which are shown in lines superimposed
to the experimental dots in Fig. 5. We are not yet able to link
a global state feature to the oscillations F

(lq )
ψ (xp) directly but

they seem, together, to give us a state signature.

C. Qualitative characterization by marginal measurements

We explore a third kind of measurement where one of the
detectors is maintained open while the other is scanned in the
Fourier transform plane; in other words, we measure marginal
probabilities in the momentum basis. Labeling the photons as
in the previous subsection, the probability to detect the twin
photons in coincidences, as functions of the detector position
of the photon q and using the photon p as a trigger, i.e., a
heralded single photon detection, is

P1(xq) ∝ sinc2(θxq)
∑

lp

∑
lq

∑
l ′q

�in(lpd, lqd, za)

×�∗
in(lpd, l ′

qd, za)eiγ (l ′q−lq )xq , (20)

which we can write in the simple form

P1(xq) ∝ sinc2(θxq)F (1)
ψ (xq), (21)

where F (1)
ψ (xq) is a marginal oscillation function.

For pure Bell states, it was already shown that the amount
of entanglement is directly linked to marginal pattern contrast.
Bipartite states in which the marginal interference pattern
presents a minimal visibility have maximal concurrence [15].
Furthermore, some m × m maximally entangled states (that

FIG. 5. Interference patterns measured in hybrid detection. In
(a), (c), and (e) Di was fixed in peaks regarding the down and up
apertures of double slit; in (b), (d), and (f) Ds was fixed in peaks
regarding the down, up, and middle apertures of triple slit. The dots
(circles, squares, and triangles) are the experimental data with error
bars and the lines (solid, dash, and dot dash lines) are the expected
curves drescribed in Eq. (18) for the states with the coefficients
shown in the matrices in Fig. 4. The interference patterns in (a) and
(b) correspond to the coefficients in Fig. 4(b), (c) and (d) correspond
to the coefficients in Fig. 4(d), and (e) and (f) correspond to the
coefficients in Fig. 4(f).

anticorrelated one) have diagonal reduced density operators
which do not provide fringes in marginal measurement.
Therefore, the absence of interference fringes in these cases
is an indication of maximal entanglement, but the same is not
valid for the states presented in this work.

It is important to observe that, in general, each part of an
m × n state (m < n) provides different marginal interference
patterns due to the dimension asymmetry. Therefore, we must
take into account which part is chosen when we analyze
the global state by averaging one part of it. The results of

TABLE II. Theoretical oscillation functions when the qutrit detector is kept fixed at the center of a slit image
while the qubit detector is scanned on the Fourier transform plane.

State F (−1/2)
ψ (xs ) F (1/2)

ψ (xs )

|ψI 〉 [1 + cos(γ xs )] [1 + cos(γ xs )]

|ψII 〉 1 [1 + 2C3C2
C2

3 +C2
2

cos(φd2) cos(2γ xs )]

|ψIII 〉 1 1
|ψIV 〉 [1 + 4

9 (cos(γ xs ) − cos(2γ xs ))] [1 + 4
9 (cos(γ xs ) − cos(2γ xs ))]
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FIG. 6. Interference patterns measured in marginal detection. In
(a), (c), and (e) Di is open and in (b), (d), and (f) Ds is open. The
dots are the experimental data with error bar and the blue (solid)
lines are the expected theoretical curves described in Eq. (20) for the
states with the real coefficient values of Figs. 4(b), 4(d), and 4(f). The
interference patterns in (a) and (b) correspond to the coefficients in
Fig. 4(b), (c) and (d) correspond to the coefficients in Fig. 4(d), and
(e) and (f) correspond to the coefficients in Fig. 4(f).

both marginal measurements may even be different, but they
must lead to the same, or nonconflicting, conclusion about
the global state properties. This reinforces the requirement to
study marginal probabilities considering the different proper-
ties of the dimensions composing a higher dimensions system.

Among the states introduced previously, |ψIII〉 is a maxi-
mally entangled one that exhibits the same behavior as a Bell
state, so both marginal probabilities do not present oscilla-
tions. The state |ψIV 〉 has maximal concurrence but, however,
has the qutrit part exhibiting interference on the marginal
probability, even the state having maximal concurrence. For
|ψIV 〉,

F (1)
ψIV

(xi ) = 1,

F (1)
ψIV

(xs) = 1 + 4
9 [cos(γ xs) − cos(γ 2xs)]. (22)

On the other hand, the state |ψII〉, despite being nonmax-
imally entangled, has no oscillations on marginal probability
when it is measured by scanning the detector of the qubit part,
namely

F (1)
ψII

(xi ) = 1,

F (1)
ψII

(xs) = 1 + 2C3C2

2C2
2 + C2

3

cos(2φd2 − 2γ xs). (23)

Finally, the state |ψI〉 is also nonmaximally entangled and its
both parts exhibit oscillations as expected in principle:

F (1)
ψI

(xi ) = 1 + 1
2 cos(γ xi ),

F (1)
ψI

(xs) = 1 + cos(γ xi + ϕ) + cos(γ xi − ϕ). (24)

Experimental marginal patterns for the states shown in Fig. 4
are presented in Fig. 6. Again, the experimental data is in
agreement with the expected curves for states with the coeffi-
cients shown in Figs. 4(b), 4(d), and 4(f).

V. OBSERVATION CONCERNING CONDITIONAL
TERMS IN MEASUREMENTS IN

MOMENTUM-MOMENTUM BASIS

If we use a lens to project the Fourier transform of both
multiple slits in the detection planes, the probability to get
coincidence as a function of the detectors’ position along x
direction is

P2(xi, xs) ∝ sinc2(θxs)sinc2(θxi )F
(2)
ψ (xi, xs), (25)

where θ ≡ ka/(2f), a is the separation between two apertures,
f is the focal distance of the lens, and F (2)

ψ (xi, xs) is a function
that describes the spatial oscillation weighted by the state
coefficients �in(lid, lsd, za).

For maximally entangled states like Bell states, in 2 × 2 di-
mension, and anticorrelated in m × m dimension, F (2)

ψ (xi, xs)
has only oscillatory terms dependent on xi ± xs, identified
as conditional terms. Because of that, it is usual to asso-
ciate maximal entanglement with the presence of this kind
of oscillation only. However, in most of the m × n states
(m �= n) one mode from the first part is correlated with a
superposition of modes from the second part and because of
that we cannot link directly entanglement and conditional os-
cillations. The state of Eq. (15), for example, has an oscillation
function

FψIV (xi, xs) = {
1+ 8

9 cos[γ (xi − xs)] − 2
9 cos[γ (xi − 2xs)]

− 4
9 cos[γ (xi + xs)] − 1

9 cos[γ (xi + 2xs)]

− 1
9 cos(γ xi )

}
, (26)

which has a nonconditional term even though the entangle-
ment formation of the state, as well its concurrence, is equal
to one.

VI. DISCUSSION AND OUTLOOK

In this work, we studied the preparation of bipartite spatial
quantum states with the parts having different dimensions
which are determined by the number of multiple-slit ways
set in the path of photons produced in the SPDC process.
We presented experimentally the results of two-photons 2 × 3
states with some particular spatial correlations. We discussed
the versatility and limitations in preparing the m × n quantum
photonic states encoded in the photon paths degree of free-
dom, a consequence of transverse linear momentum conser-
vation in SPDC.
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We showed, mathematically and experimentally, the un-
usual behavior that these states can exhibit on far-field mea-
surements and found agreement between the theoretical pre-
dicted interference patterns and the measured ones. We also
pointed out that some behavior on far-field measurements
requires more accurate analyses concerning, for example,
the relation between marginal probabilities and entanglement
measures, which will be explored in a future work. Finally,
we introduce hybrid measurements which we show to be
useful for spatial states’ characterization and experiments
concerning interferometric features. Our analyses open the
range for possible applications using m × n quantum states,

which are indispensable for experimental realizations of
several theoretical works.

ACKNOWLEDGMENTS

This research was supported by the Brazilian agencies
CNPQ - Conselho Nacional de Desenvolvimento Científico
e Tecnológico, Capes - Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior, Fapemig - Fundação de Am-
paro á Pesquisa do Estado de Minas Gerais, and INCT-IQ -
Instituto Nacional de Ciência e Tecnologia de Informação
Quântica.

[1] T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A.
Zeilinger, Phys. Rev. Lett. 84, 4729 (2000).

[2] D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter,
and A. Zeilinger, Nature (London) 390, 575 (1997).

[3] B. Marques, M. R. Barros, W. M. Pimenta, M. A. D. Carvalho,
J. Ferraz, R. C. Drumond, M. Terra Cunha, and S. Pádua,
Phys. Rev. A 86, 032306 (2012).

[4] C. K. Law and J. H. Eberly, Phys. Rev. Lett. 92, 127903
(2004).

[5] C. H. Monken, P. H. Souto Ribeiro, and S. Paádua, Phys. Rev.
A 57, 3123 (1998).

[6] R. Ramírez-Alarcón, H. Cruz-Ramírez, and A. B. U’Ren,
Laser Phys. 23, 055204 (2013).

[7] W. P. Grice, A. B. U’Ren, and I. A. Walmsley, Phys. Rev. A 64,
063815 (2001).

[8] M. V. Fedorov, M. A. Efremov, P. A. Volkov, E. V. Moreva,
S. S. Straupe, and S. P. Kulik, Phys. Rev. Lett. 99, 063901
(2007).

[9] A. G. da Costa Moura, W. A. T. Nogueira, and C. H. Monken,
Opt. Commun. 283, 2866 (2010).

[10] W. H. Peeters, J. J. Renema, and M. P. van Exter, Phys. Rev. A
79, 043817 (2009).

[11] M. V. Jabir, N. A. Chaitanya, and G. K. Samanta, Front. Opt.
paper JTh2A. 18 (2016).

[12] H. J. Lee and H. S. Park, Quantum Inf. M. paper QF2B. 2
(2017).

[13] D. Ghosh, T. Jennewein, P. Kolenderski, and U. Sinha,
OSA Cont. 1, 996 (2018).

[14] E. J. S. Fonseca, J. C. Machado da Silva, C. H. Monken, and S.
Pádua, Phys. Rev. A 61, 023801 (2000).

[15] L. Neves, G. Lima, E. J. S. Fonseca, L. Davidovich, and S.
Pádua, Phys. Rev. A 76, 032314 (2007).

[16] E. V. Kovlakov, S. S. Straupe, and S. P. Kulik, Phys. Rev. A 98,
060301(R) (2018).

[17] S. Liu, Z. Zhou, S. Liu, Y. Li, Y. Li, C. Yang, Z. Xu, Z. Liu, G.
Guo, and B. Shi, Phys. Rev. A 98, 062316 (2018).

[18] C. J. Pugh, P. Kolenderski, C. Scarcella, A. Tosi, and T.
Jennewein, Opt. Express 24, 20947 (2016).

[19] H. Avetisyan and C. H. Monken, Opt. Express 24, 2318
(2016).

[20] R. Shimizu, T. Yamaguchi, Y. Mitsumori, H. Kosaka, and K.
Edamatsu, Phys. Rev. A 77, 032338 (2008).

[21] A. Mair, A. Vaziri, and G. A. Zeilinger, Nature (London) 412,
313 (2001).

[22] W. H. Peeters, E. J. K. Verstegen, and M. P. van Exter,
Phys. Rev. A 76, 042302 (2007).

[23] A. K. Jha, B. Jack, E. Yao, J. Leach, R. W. Boyd, G. S. Buller,
S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, Phys. Rev.
A 78, 043810 (2008).

[24] D. Pagel and H. Fehske, J. Phys. B: At. Mol. Opt. Phys. 50,
224002 (2017).

[25] L. Neves, G. Lima, J. G. Aguirre Gómez, C. H. Monken,
C. Saavedra, and S. Pádua, Phys. Rev. Lett. 94, 100501
(2005).

[26] G. Lima, L. Neves, I. F. Santos, C. H. Monken, J. G. A.
Gómez, C. Saavedra, and S. Pádua, Int. J. Quantum Inf. 05, 69
(2007).

[27] B. P. Lanyon, T. J. Weinhold, N. K. Langford, J. L. O’Brien,
K. J. Resch, A. Gilchrist, and A. G. White, Phys. Rev. Lett.
100, 060504 (2008).

[28] L. Neves, G. Lima, A. Delgado, and C. Saavedra, Phys. Rev. A
80, 042322 (2009).

[29] A. Z. Khoury and L. E. Oxman, Phys. Rev. A 89, 032106
(2014).

[30] K. Ann and G. Jaeger, Phys. Lett. A 372, 579 (2008).
[31] G. Karpat and Z. Gedik, Phys. Lett. A 375, 4166 (2011).
[32] H.-R. Wei, B.-C. Ren, and F.-G. Deng, Quantum Inf. Process.

12, 1109 (2013).
[33] D. Girolami, T. Tufarelli, and G. Adesso, Phys. Rev. Lett. 110,

240402 (2013).
[34] H. Zhao, S.-M. Fei, J. Fan, and Z.-X. Wang, Int. J. Quantum Inf.

12, 1450013 (2014).
[35] X. Zhan, X. Zhang, J. Li, Y. Zhang, B. C. Sanders, and P. Xue,

Phys. Rev. Lett. 116, 090401 (2016).
[36] K. K. Sharma and S. N. Pandey, Quantum Inf. Process. 13, 2017

(2014).
[37] Z.-G. Li, S.-M. Fei, Z. D. Wang, and W. M. Liu, Phys. Rev. A

79, 024303 (2009).
[38] P. Faist, Ph.D. thesis, ETH Zurich, 2016.
[39] S. P. Walborn, C. H. Monken, S. Pádua, and P. H. Souto Ribeiro,

Phys. Rep. 495, 87 (2010).
[40] C. K. Hong and L. Mandel, Phys. Rev. A 31, 2409 (1985).
[41] K. W. Chan, J. P. Torres, and J. H. Eberly, Phys. Rev. A 75,

050101(R) (2007).
[42] S. S. Straupe, D. P. Ivanov, A. A. Kalinkin, I. B. Bobrov, and

S. P. Kulik, Phys. Rev. A 83, 060302(R) (2011).
[43] S. P. Walborn, D. S. Ether, R. L. de Matos Filho, and N. Zagury,

Phys. Rev. A 76, 033801 (2007).

063839-8

https://doi.org/10.1103/PhysRevLett.84.4729
https://doi.org/10.1103/PhysRevLett.84.4729
https://doi.org/10.1103/PhysRevLett.84.4729
https://doi.org/10.1103/PhysRevLett.84.4729
https://doi.org/10.1038/37539
https://doi.org/10.1038/37539
https://doi.org/10.1038/37539
https://doi.org/10.1038/37539
https://doi.org/10.1103/PhysRevA.86.032306
https://doi.org/10.1103/PhysRevA.86.032306
https://doi.org/10.1103/PhysRevA.86.032306
https://doi.org/10.1103/PhysRevA.86.032306
https://doi.org/10.1103/PhysRevLett.92.127903
https://doi.org/10.1103/PhysRevLett.92.127903
https://doi.org/10.1103/PhysRevLett.92.127903
https://doi.org/10.1103/PhysRevLett.92.127903
https://doi.org/10.1103/PhysRevA.57.3123
https://doi.org/10.1103/PhysRevA.57.3123
https://doi.org/10.1103/PhysRevA.57.3123
https://doi.org/10.1103/PhysRevA.57.3123
https://doi.org/10.1088/1054-660X/23/5/055204
https://doi.org/10.1088/1054-660X/23/5/055204
https://doi.org/10.1088/1054-660X/23/5/055204
https://doi.org/10.1088/1054-660X/23/5/055204
https://doi.org/10.1103/PhysRevA.64.063815
https://doi.org/10.1103/PhysRevA.64.063815
https://doi.org/10.1103/PhysRevA.64.063815
https://doi.org/10.1103/PhysRevA.64.063815
https://doi.org/10.1103/PhysRevLett.99.063901
https://doi.org/10.1103/PhysRevLett.99.063901
https://doi.org/10.1103/PhysRevLett.99.063901
https://doi.org/10.1103/PhysRevLett.99.063901
https://doi.org/10.1016/j.optcom.2010.03.025
https://doi.org/10.1016/j.optcom.2010.03.025
https://doi.org/10.1016/j.optcom.2010.03.025
https://doi.org/10.1016/j.optcom.2010.03.025
https://doi.org/10.1103/PhysRevA.79.043817
https://doi.org/10.1103/PhysRevA.79.043817
https://doi.org/10.1103/PhysRevA.79.043817
https://doi.org/10.1103/PhysRevA.79.043817
https://doi.org/10.1364/OSAC.1.000996
https://doi.org/10.1364/OSAC.1.000996
https://doi.org/10.1364/OSAC.1.000996
https://doi.org/10.1364/OSAC.1.000996
https://doi.org/10.1103/PhysRevA.61.023801
https://doi.org/10.1103/PhysRevA.61.023801
https://doi.org/10.1103/PhysRevA.61.023801
https://doi.org/10.1103/PhysRevA.61.023801
https://doi.org/10.1103/PhysRevA.76.032314
https://doi.org/10.1103/PhysRevA.76.032314
https://doi.org/10.1103/PhysRevA.76.032314
https://doi.org/10.1103/PhysRevA.76.032314
https://doi.org/10.1103/PhysRevA.98.060301
https://doi.org/10.1103/PhysRevA.98.060301
https://doi.org/10.1103/PhysRevA.98.060301
https://doi.org/10.1103/PhysRevA.98.060301
https://doi.org/10.1103/PhysRevA.98.062316
https://doi.org/10.1103/PhysRevA.98.062316
https://doi.org/10.1103/PhysRevA.98.062316
https://doi.org/10.1103/PhysRevA.98.062316
https://doi.org/10.1364/OE.24.020947
https://doi.org/10.1364/OE.24.020947
https://doi.org/10.1364/OE.24.020947
https://doi.org/10.1364/OE.24.020947
https://doi.org/10.1364/OE.24.002318
https://doi.org/10.1364/OE.24.002318
https://doi.org/10.1364/OE.24.002318
https://doi.org/10.1364/OE.24.002318
https://doi.org/10.1103/PhysRevA.77.032338
https://doi.org/10.1103/PhysRevA.77.032338
https://doi.org/10.1103/PhysRevA.77.032338
https://doi.org/10.1103/PhysRevA.77.032338
https://doi.org/10.1038/35085529
https://doi.org/10.1038/35085529
https://doi.org/10.1038/35085529
https://doi.org/10.1038/35085529
https://doi.org/10.1103/PhysRevA.76.042302
https://doi.org/10.1103/PhysRevA.76.042302
https://doi.org/10.1103/PhysRevA.76.042302
https://doi.org/10.1103/PhysRevA.76.042302
https://doi.org/10.1103/PhysRevA.78.043810
https://doi.org/10.1103/PhysRevA.78.043810
https://doi.org/10.1103/PhysRevA.78.043810
https://doi.org/10.1103/PhysRevA.78.043810
https://doi.org/10.1088/1361-6455/aa8f37
https://doi.org/10.1088/1361-6455/aa8f37
https://doi.org/10.1088/1361-6455/aa8f37
https://doi.org/10.1088/1361-6455/aa8f37
https://doi.org/10.1103/PhysRevLett.94.100501
https://doi.org/10.1103/PhysRevLett.94.100501
https://doi.org/10.1103/PhysRevLett.94.100501
https://doi.org/10.1103/PhysRevLett.94.100501
https://doi.org/10.1142/S0219749907002815
https://doi.org/10.1142/S0219749907002815
https://doi.org/10.1142/S0219749907002815
https://doi.org/10.1142/S0219749907002815
https://doi.org/10.1103/PhysRevLett.100.060504
https://doi.org/10.1103/PhysRevLett.100.060504
https://doi.org/10.1103/PhysRevLett.100.060504
https://doi.org/10.1103/PhysRevLett.100.060504
https://doi.org/10.1103/PhysRevA.80.042322
https://doi.org/10.1103/PhysRevA.80.042322
https://doi.org/10.1103/PhysRevA.80.042322
https://doi.org/10.1103/PhysRevA.80.042322
https://doi.org/10.1103/PhysRevA.89.032106
https://doi.org/10.1103/PhysRevA.89.032106
https://doi.org/10.1103/PhysRevA.89.032106
https://doi.org/10.1103/PhysRevA.89.032106
https://doi.org/10.1016/j.physleta.2007.07.070
https://doi.org/10.1016/j.physleta.2007.07.070
https://doi.org/10.1016/j.physleta.2007.07.070
https://doi.org/10.1016/j.physleta.2007.07.070
https://doi.org/10.1016/j.physleta.2011.10.017
https://doi.org/10.1016/j.physleta.2011.10.017
https://doi.org/10.1016/j.physleta.2011.10.017
https://doi.org/10.1016/j.physleta.2011.10.017
https://doi.org/10.1007/s11128-012-0458-8
https://doi.org/10.1007/s11128-012-0458-8
https://doi.org/10.1007/s11128-012-0458-8
https://doi.org/10.1007/s11128-012-0458-8
https://doi.org/10.1103/PhysRevLett.110.240402
https://doi.org/10.1103/PhysRevLett.110.240402
https://doi.org/10.1103/PhysRevLett.110.240402
https://doi.org/10.1103/PhysRevLett.110.240402
https://doi.org/10.1142/S0219749914500130
https://doi.org/10.1142/S0219749914500130
https://doi.org/10.1142/S0219749914500130
https://doi.org/10.1142/S0219749914500130
https://doi.org/10.1103/PhysRevLett.116.090401
https://doi.org/10.1103/PhysRevLett.116.090401
https://doi.org/10.1103/PhysRevLett.116.090401
https://doi.org/10.1103/PhysRevLett.116.090401
https://doi.org/10.1007/s11128-014-0794-y
https://doi.org/10.1007/s11128-014-0794-y
https://doi.org/10.1007/s11128-014-0794-y
https://doi.org/10.1007/s11128-014-0794-y
https://doi.org/10.1103/PhysRevA.79.024303
https://doi.org/10.1103/PhysRevA.79.024303
https://doi.org/10.1103/PhysRevA.79.024303
https://doi.org/10.1103/PhysRevA.79.024303
https://doi.org/10.1016/j.physrep.2010.06.003
https://doi.org/10.1016/j.physrep.2010.06.003
https://doi.org/10.1016/j.physrep.2010.06.003
https://doi.org/10.1016/j.physrep.2010.06.003
https://doi.org/10.1103/PhysRevA.31.2409
https://doi.org/10.1103/PhysRevA.31.2409
https://doi.org/10.1103/PhysRevA.31.2409
https://doi.org/10.1103/PhysRevA.31.2409
https://doi.org/10.1103/PhysRevA.75.050101
https://doi.org/10.1103/PhysRevA.75.050101
https://doi.org/10.1103/PhysRevA.75.050101
https://doi.org/10.1103/PhysRevA.75.050101
https://doi.org/10.1103/PhysRevA.83.060302
https://doi.org/10.1103/PhysRevA.83.060302
https://doi.org/10.1103/PhysRevA.83.060302
https://doi.org/10.1103/PhysRevA.83.060302
https://doi.org/10.1103/PhysRevA.76.033801
https://doi.org/10.1103/PhysRevA.76.033801
https://doi.org/10.1103/PhysRevA.76.033801
https://doi.org/10.1103/PhysRevA.76.033801


ENGINEERING QUANTUM CORRELATIONS FOR … PHYSICAL REVIEW A 99, 063839 (2019)

[44] D. S. Tasca, S. P. Walborn, P. H. Souto Ribeiro, and F. Toscano,
Phys. Rev. A 78, 010304(R) (2008).

[45] D. S. Tasca, S. P. Walborn, P. H. Souto Ribeiro, F. Toscano, and
P. Pellat-Finet, Phys. Rev. A 79, 033801 (2009).

[46] L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley, J. Phys.
B 42, 114011 (2009).

[47] E. S. Gómez, W. A. T. Nogueira, C. H. Monken, and G. Lima,
Opt. Exp. 20, 3753 (2012).

[48] L. Neves, S. Pádua, and C. Saavedra, Phys. Rev. A 69, 042305
(2004).

[49] C. Eltschka and J. Siewert, J. Phys. A: Math. Theor. 47, 424005
(2014).

063839-9

https://doi.org/10.1103/PhysRevA.78.010304
https://doi.org/10.1103/PhysRevA.78.010304
https://doi.org/10.1103/PhysRevA.78.010304
https://doi.org/10.1103/PhysRevA.78.010304
https://doi.org/10.1103/PhysRevA.79.033801
https://doi.org/10.1103/PhysRevA.79.033801
https://doi.org/10.1103/PhysRevA.79.033801
https://doi.org/10.1103/PhysRevA.79.033801
https://doi.org/10.1088/0953-4075/42/11/114011
https://doi.org/10.1088/0953-4075/42/11/114011
https://doi.org/10.1088/0953-4075/42/11/114011
https://doi.org/10.1088/0953-4075/42/11/114011
https://doi.org/10.1364/OE.20.003753
https://doi.org/10.1364/OE.20.003753
https://doi.org/10.1364/OE.20.003753
https://doi.org/10.1364/OE.20.003753
https://doi.org/10.1103/PhysRevA.69.042305
https://doi.org/10.1103/PhysRevA.69.042305
https://doi.org/10.1103/PhysRevA.69.042305
https://doi.org/10.1103/PhysRevA.69.042305
https://doi.org/10.1088/1751-8113/47/42/424005
https://doi.org/10.1088/1751-8113/47/42/424005
https://doi.org/10.1088/1751-8113/47/42/424005
https://doi.org/10.1088/1751-8113/47/42/424005

