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Non-Hermitian dynamics without dissipation in quantum systems
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Models based on non-Hermitian Hamiltonians can exhibit a range of surprising and potentially useful
phenomena. Physical realizations typically involve couplings to sources of incoherent gain and loss; this is
problematic in quantum settings because of the unavoidable fluctuations associated with this dissipation. Here,
we present several routes for obtaining unconditional non-Hermitian dynamics in nondissipative quantum
systems. We exploit the fact that quadratic bosonic Hamiltonians that do not conserve particle number give
rise to non-Hermitian dynamical matrices. We discuss the nature of these mappings from non-Hermitian to
Hermitian Hamiltonians, and explore applications to quantum sensing, entanglement dynamics, and topological
band theory. The systems we discuss could be realized in a variety of photonic and phononic platforms using the
ubiquitous resource of parametric driving.
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I. INTRODUCTION

Systems whose dynamics are governed by a non-Hermitian
Hamiltonian exhibit a wealth of unique phenomena, and
have been the subject of considerable recent theoretical and
experimental interest [1]. Non-Hermitian dynamics is typi-
cally realized by the structured introduction of both loss and
gain, and is usually studied in the context of coupled-mode
systems or tight-binding lattices with linear dynamics. Such
systems can exhibit the spontaneous breaking of parity-time
(PT ) symmetry, as well as exceptional points in parameter
space, where Hamiltonian eigenvalues coalesce. A variety
of phenomena in such non-Hermitian systems have been
studied, including quasiadiabatic evolution and chiral mode
switching [2–13], directional invisibility [14], the possibility
of enhanced parameter sensing [15–19], and even applications
to robust wireless power transfer [20].

While the majority of work on non-Hermitian PT -
symmetric systems has been in classical settings, it is natural
to ask whether their rich properties can also be exploited
in quantum systems. A natural stumbling block is that in
the quantum context, the gain and loss typically used to im-
plement non-Hermitian dynamics invariably introduces noise
into the system; as explored in several studies [11,18,19],
this limits the utility of many non-Hermitian effects in quan-
tum systems. While in principle such bath-induced noise
effects could be avoided using measurement and postselec-
tion [21,22], this is difficult if not infeasible in many setups.

In this paper, we present and analyze an alternative method
for realizing effective non-Hermitian dynamics in a quantum
setting that requires no couplings to external dissipative baths,
and requires no measurement-induced conditioning. The basic
idea is to exploit the unitary physics of squeezing (and anti-
squeezing) in parametrically driven quantum bosonic systems.
As is well known, this coherent form of driving can lead to
dynamics that exhibits exponential growth and/or decay in
time. We show that in a wide range of contexts, this can be
made to parallel the exponential growth and decay associated

with incoherent gain and loss processes, allowing a route
for the noiseless implementation of non-Hermitian dynamics.
At a formal level, we utilize the unitary correspondence be-
tween the non-Hermitian dynamical coupled-mode equations
of interest, and the Heisenberg equations of motion in our
Hermitian bosonic system. We provide a detailed analysis of
how this idea can be implemented both in simple two-mode
systems (with and without PT symmetry), as well as in
more complicated multimode lattice systems. We also use
this general mapping to explore a variety of non-Hermitian
phenomena [e.g., chiral mode switching, exceptional-point
(EP) sensing] in a dissipation-free quantum setting. We close
by showing how these mappings can also be useful when con-
sidering topological band structure in non-Hermitian systems.

We stress that the non-Hermitian nature of dynamical
matrices in quadratic bosonic systems has long been realized.
Recent work has utilized this to establish mappings between
specific one-dimensional (1D) models [23,24], as well as
a means for applying non-Hermitian symmetry classes to
bosonic problems [24,25]. Recent work has also pointed out
that a simple model of two coupled nondissipative modes
can exhibit an exceptional point [26–28]. Our focus is quite
different: we discuss general methods that enable one to
realize a given non-Hermitian Hamiltonian of interest with-
out dissipation using a parametrically driven (but Hermitian)
bosonic system, paying special attention to PT -symmetric
systems and multimode lattice models. A brief summary of
the three different approaches we develop to construct the
mapped system is given in Table I for convenience.

II. DISSIPATIONLESS NON-HERMITIAN
TWO-MODE DYNAMICS

We start by reviewing the basic dynamics of a non-
Hermitian two-mode PT -symmetric dimer, and show how
this can be directly mapped to the unitary squeezing dynamics
generated by a dissipation-free parametric amplifier model.
We then extend this discussion to two-mode non-Hermitian
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TABLE I. Summary of three different strategies for mapping non-Hermitian Hamiltonians to Hermitian quantum parametric amplifier
setups. See corresponding sections in the main text for details.

Mapping scheme DPA NDPA QMFS

Section Sec. II B Secs. III A and III B Secs. II D and III C

Target non-Hermitian
system

PT dimer Multimode PT system Generic non-Hermitian system

Hamiltonians HPT → ĤDPA Htb → ĤNDPA HN → ĤQMFS,multi

Number of modes in
non-Hermitian setup / in
corresponding paramp
system

2 / 1 2N / 2N N / 2N

Advantages Only requires a single
bosonic mode

Do not need doubling of the
number of modes

Mapping exists for generic
non-Hermitian Hamiltonians

Constraints Mapping requires a constraint
on the form of the initial state

Mapping exists for only a subset
of PT -symmetric Htb

Always realizes two copies of
the target non-Hermitian
dynamics (HN and H†

N )

systems where PT symmetry is broken, and show that a
similar mapping to a quantum system is still possible.

A. Review: PT dimer

A standard two-mode PT dimer consists of two tunnel-
coupled modes [amplitudes α1(t ), α2(t )] where mode 1 (2) is
subject to gain (loss), with the gain and loss rates set equal to
γ (see Fig. 1). The equations of motion are

i
d

dt

(
α1(t )
α2(t )

)
= HPT

(
α1(t )
α2(t )

)
, (1)

where the 2 × 2 effective non-Hermitian Hamiltonian is

HPT =
(+i γ

2 g
g −i γ

2

)
= i

γ

2
σz + gσx. (2)

g is the tunneling amplitude (which we take without loss
of generality to be real and positive), and σz, σx are stan-
dard Pauli matrices. We will use the calligraphic symbol H

FIG. 1. Schematics depicting non-Hermitian two-mode systems
and equivalent Hermitian driven bosonic setups. (a) Standard two-
mode PT dimer with balanced gain and loss. This system is unitarily
equivalent to the system in (b): a single-mode bosonic degenerate
parametric amplifier (DPA) with drive amplitude ν = γ . (c) Detuned
gain-loss dimer, where an energy detuning between modes breaks
PT symmetry; this is equivalent to the system in (d), a four-mode
nondegenerate parametric amplifier setup. As discussed in the text,
these mappings can be extended to multimode and lattice systems.

throughout to denote non-Hermitian Hamiltonians. Defining
the time-reversal operation T as complex conjugation, and
defining parity P as the interchange of the two modes, we
see that HPT is invariant under PT .

The eigenvalues of HPT are given by

λ± = ±
√

g2 −
(γ

2

)2
. (3)

At the critical point g = γ /2 ≡ gc, the PT -symmetric Hamil-
tonian HPT is defective, corresponding to a (second-order)
exceptional point in parameter space. For g < gc, the mode
eigenvalues become complex, implying exponential growth
and decay in the time domain; this transition is often referred
to as the “spontaneous breaking of PT symmetry.”

Consider next a more general non-Hermitian two-mode
problem, where the dynamics is again given by Eq. (1) with
HPT replaced by a more general effective Hamiltonian:

H = (�c + i �d ) · �σ . (4)

Here, �c and �d are real vectors, and we have ignored any
constant-matrix part of H (as this has a trivial effect on
dynamics). This general non-Hermitian Hamiltonian is uni-
tarily equivalent to HPT [and has eigenvalues of the form in
Eq. (3)] whenever its Hermitian and anti-Hermitian parts are
orthogonal, i.e.,

�c · �d = 0. (5)

While the preceding discussion is all classical, one might
think that the extension to a quantum setting is trivial:
just replace mode amplitudes α1(t ), α2(t ) in Eq. (1) by
canonical bosonic Heisenberg-picture annihilation operators
â1(t ), â2(t ), and interpret the result as a set of coupled
Heisenberg equations of motion. This in general is not a
valid evolution, as the dynamics will not preserve canonical
commutation relations, i.e., at all times [â j (t ), â†

j′ (t )] = δ j j′ .
This is perhaps most evident in the simple case where g = 0,
and one has simple exponential growth (decay) of mode 1 (2).

At a physical level, this inconsistency arises because the
gain and loss terms that give rise to the non-Hermitian part
of H arise from couplings to dissipative environments. In
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addition to providing gain and loss, these baths will also drive
the system with noise, and this noise cannot be neglected
in the quantum case. By adding appropriate inhomogeneous
quantum noise terms to the right-hand side of Eq. (1), one can
then obtain an allowed quantum evolution (i.e., commutation
relations are preserved in time). A systematic procedure for
constructing quantum noise terms consistent with a given non-
Hermitian Hamiltonian was presented recently in Ref. [18].

B. Mapping to a degenerate parametric amplifier

Our goal is to realize the effective non-Hermitian dynamics
of Eq. (1) in a quantum system without having dissipation
and the corresponding driving noise. To that end, we consider
the quantum Hamiltonian of a single bosonic mode â that is
parametrically driven (i.e., subject to two-photon driving). In
an appropriate rotating frame, the Hamiltonian is

ĤDPA = δâ†â + ν

2
(iâ†2 + H.c.), (6)

where δ represents a detuning term, and ν is the magnitude
of the parametric drive. This is the standard Hamiltonian of
a degenerate parametric amplifier, a system that is extremely
well studied in quantum optics (see, e.g., [29,30]), and that can
be realized in a wide range of settings. It generates a unitary
time evolution, which for δ = 0 reduces to a single-mode
squeezing transformation. Without loss of generality, we work
in a gauge where ν is real and positive in what follows.

Despite having only a single mode, the dynamics has a two-
component structure, as the parametric drive couples â and â†.
Defining a vector of operators

|â〉 = (â, â†)T , (7)

the Heisenberg equations of motions can be written as

i∂t |â〉 = MDPA|â〉, (8)

where the dynamical matrix MDPA is

MDPA =
(

δ iν
iν −δ

)
= δσz + iνσx. (9)

We see immediately that the structure of the Heisenberg
equation of motion (EOM) for this Hermitian problem mirrors
that of the effective non-Hermitian dimer system in Eq. (1),
with the dynamical matrix MDPA playing the role of an effec-
tive non-Hermitian Hamiltonian H. Further, MDPA satisfies
the condition in Eq. (4), implying that it is unitarily equivalent
to HPT in Eq. (2) (with δ = g and ν = γ /2). This effective
PT symmetry cannot be broken in our single-mode problem
[as Eq. (6) is the most general single-mode, quadratic, Hermi-
tian, and bosonic Hamiltonian].

Not surprisingly, the eigenvalues of MDPA have exactly the
same structure as the PT dimer:

λDPA,± = ±
√

δ2 − ν2. (10)

It follows that the parametric drive ν plays the role of the
incoherent gain and loss in HPT , whereas the detuning δ

plays the role of the tunnel coupling. As we show in the next
subsection, this allows us to directly map the physics of the
threshold transition in our DPA system to the “spontaneous”
breaking of PT symmetry that occurs in HPT when γ /2

is made larger than g. In particular, the DPA dynamical
matrix exhibits an exceptional point when ν = δ, i.e., at the
parametric oscillation threshold.

Before exploring this connection, we return to the problem
of commutation relations: why does not the non-Hermitian
nature of the dynamical matrix (and the possibility of expo-
nential growth or decay) in time cause issues in our DPA
system? The easiest way of seeing this is to explicitly make
the unitary transformation that maps the dynamical matrix
MDPA in Eq. (9) to the gain-loss form of HPT in Eq. (2).
With this transformation, the Heisenberg equations of motion
in Eq. (8) now take the form

i∂t

(
q̂
i p̂

)
=

(
iν δ

δ −iν

)(
q̂
i p̂

)
, (11)

where q̂ ≡ (â + â†)/
√

2, p̂ ≡ i(â† − â)/
√

2 are canonical
(Hermitian) quadrature operators. With this transformation,
we see that the dynamical matrix for the DPA in the quadra-
ture basis has explicitly the same form as the non-Hermitian
Hamiltonian HPT in Eq. (2) describing the gain-loss PT
dimer. We can also see why there is no longer any issue with
commutation relations: the exponential growth that occurs
when |δ| < ν causes q̂ to grow exponentially in time, and p̂ to
decay exponential in time, at the same rate. This is just stan-
dard, unitary squeezing dynamics. This exponential growth
preserves the canonical [q̂, p̂] = i commutation relation at all
times.

We thus see that by exploiting the squeezing and an-
tisqueezing, we can replicate the dynamics of the non-
Hermitian PT dimer in Eq. (1). Of course, in this mapping
we have just a single mode, and hence only a single complex
degree of freedom [whereas in Eq. (1), there are two complex
degrees of freedom]. In Eq. (11), this manifests itself in
the fact that the relative phase between the two amplitudes
must be i. By using a two-mode, nondegenerate parametric
amplifier system, this phase constraint can be lifted; this will
be discussed in Sec. III A. Section II D presents yet another
approach allowing even more flexibility.

Before proceeding, we briefly pause to note another con-
nection between the PT dimer Hamiltonian HPT and the
DPA dynamical matrix MDPA: they are are both pseudo-
Hermitian matrices. By definition, a pseudo-Hermitian matrix
is isospectral with its Hermitian conjugate, so that

H† = ηHη−1, (12)

where η is Hermitian and invertible [31]. It is easy to see
that the dynamical matrix of a generic multimode bosonic
parametric amplifier system is pseudo-Hermitian; this was
recently explicitly pointed out by Lieu [24] (see also Ap-
pendix A). This connection is, however, of limited use for our
problem: while a given PT -symmetric Hamiltonian is always
pseudo-Hermitian, it is not necessarily unitarily equivalent to
the dynamical matrix of some quantum bosonic system having
the same number of modes (see Appendix E).

C. “Phase transitions,” exceptional points,
and conserved quantities

A consequence of the above mapping is that the so-called
PT -symmetry-breaking phase transition in HPT is equivalent
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to the threshold transition in a parametric amplifier. Recall that
HPT exhibits a transition in the eigenvectors and eigenvalues
as a function of g; this is referred to as the “spontaneous
breaking of PT symmetry” [32]. The transition occurs at
g = γ /2 ≡ gc, i.e., the point at which HPT has an exceptional
point. When g > gc, one is in the PT -unbroken phase. HPT
has purely real eigenvalues, and its right eigenvectors �r± are
delocalized (i.e., their amplitudes in each mode are equal) as

�r± = 1√
2

(1,−ie±iα )T , (13)

with α = arccos (γ /2g). In contrast, when g is reduced below
gc, one is in the PT -broken phase. HPT has purely imaginary
eigenvalues, and the eigenvectors now exhibit localization.

The above behavior is equivalent to the threshold behavior
of a detuned DPA. For |δ| > ν, the parametric drive is too
nonresonant to cause any instability, and the system has purely
oscillatory dynamics (as it would if ν = 0). In contrast, when
|δ| is reduced below ν, one crosses the threshold for paramet-
ric instability. One now has exponential decay and growth,
which (as discussed) corresponds to the squeezing and anti-
squeezing of canonically conjugate quadratures. The effective
localization of the eigenvectors in this regime corresponds
to the fact that the amplified quadrature is predominantly q̂,
while the squeezed quadrature is predominantly p̂.

Finally, consider the case where one tunes δ = ν and is thus
exactly at the EP. The DPA Hamiltonian in this case is

ĤDPA = ν

2
(e−iπ/4â + eiπ/4â†)2 ≡ νQ̂2. (14)

The Hermitian quadrature operator Q̂ is a conserved quantity,
and thus ĤDPA is said to possess a quantum nondemolition
(QND) structure. This structure is directly responsible for
the lack of any oscillatory dynamics. The coexistence of
exceptional points and conserved QND quadrature operators
is not just limited to this simple example: it is a generic
feature in particle-nonconserving bosonic Hamiltonians. For
example, in Appendix F, we discuss a three-mode system that
can be tuned to a third-order EP; this coincides with it having
two conserved QND quadrature operators.

D. Mapping for more general two-mode non-Hermitian
Hamiltonian

We now discuss a more general approach for realizing non-
Hermitian two-mode dynamics in dissipation-free quantum
systems. Unlike the mapping to a DPA discussed in Sec. II B,
this alternate method does not require a PT -symmetric non-
Hermitian Hamiltonian H, and does not place restrictions
on the phases of mode amplitudes. Our approach adapts
the concept of quantum-mechanics free subsystems (QMFS)
introduced by Tsang and Caves [33]: by introducing extra
bosonic modes, one can have a commuting set of operators
with arbitrary (possibly non-Hermitian) dynamics. As all rel-
evant operators commute, there is no need to add noise terms.
While QMFS are conventionally discussed and utilized for
quantum back-action evasion [33–37], we show here that they
are also a powerful tool for realizing effective non-Hermitian
quantum dynamics in a dissipationless setting.

Consider a two-mode non-Hermitian system where PT is
explicitly broken by the addition of a detuning term ω:

Hω =
(
ω + i

γ

2

)
σz + gσx. (15)

This Hamiltonian is not unitarily equivalent to a PT system
[cf. Eq. (5)], and thus its dynamics cannot be realized by a
DPA using the mapping of Sec. II B.

As usual, the goal is to have a quantum system whose
Heisenberg equations of motion are governed by Hω without
any extra added quantum noise terms, i.e.,

i
d

dt

(
ẑ1(t )
ẑ2(t )

)
= Hω

(
ẑ1(t )
ẑ2(t )

)
. (16)

The operators ẑ j should play the analogous role of the mode
amplitudes in the classical coupled-mode equation (1), and
hence should encode two complex degrees of freedom. As
discussed, the obvious choice where ẑ j represent canonical
annihilation operators of two bosonic modes does not work:
the resulting dynamics would not in general preserve canoni-
cal commutation relations.

Clearly, a simple solution would be to use operators ẑ j

where, for all j, j′,

[ẑ j, ẑ†
j′ ] = [ẑ j, ẑ j′ ] = 0. (17)

As all operators commute, there would be no additional quan-
tum constraints on Eq. (16). Throughout this paper, we will
use the term pseudomodes to denote a set of fully commuting
operators ẑ j, ẑ†

j that obey some desired non-Hermitian dy-
namics. While these pseudomode operators are not canonical
bosonic annihilation or creation operators, they can play the
role of mode amplitudes in the classical coupled-mode theory.

For our two-mode problem, we can construct appropri-
ate pseudomodes by considering a system of four canoni-
cal bosonic modes, with annihilation operators â1, â2, b̂1, b̂2.
Each mode can be written in terms of Hermitian quadrature
operators ( j = 1, 2):

â j = 1√
2

(x̂a, j + i p̂a, j ), (18)

b̂ j = 1√
2

(x̂b, j + i p̂b, j ). (19)

One could now also define collective quadrature operators in
the standard manner:

x̂±, j = 1√
2

(x̂a, j ± x̂b, j ), (20a)

p̂±, j = 1√
2

( p̂a, j ± p̂b, j ). (20b)

These satisfy standard canonical commutation relations,
namely, [x̂±, j, p̂±, j′ ] = iδ j j′ , [x̂±, j, x̂∓, j′ ] = [ p̂±, j, p̂∓, j′ ] =
[x̂±, j, p̂∓, j′ ] = 0. Note that all + collective quadrature oper-
ators commute with all − operators.

We can now construct non-Hermitian pseudomode opera-
tors ẑ j with the desired properties by building them out of a
fully commuting set of four collective quadrature operators.
While there are many possible choices, we will use

ẑ j = x̂+, j + i p̂−, j = â j + b̂†
j . (21)
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Equation (17) is thus satisfied: we have two complex degrees
of freedom where there are no constraints from commutation
relations.

All that remains is to construct a physical (Hermitian)
Hamiltonian where the four collective quadratures of interest
are dynamically coupled as per Eq. (16). This can be accom-
plished using

ĤωPA = ω(â†
1â1 − â†

2â2 + b̂†
2b̂2 − b̂†

1b̂1)

+
[

g(â†
1â2 − b̂†

1b̂2) + i
γ

2
(â†

1b̂†
1 − â†

2b̂†
2) + H.c.

]
. (22)

This represents a system of two tunnel-coupled nondegenerate
parametric amplifiers. One can verify that the Heisenberg
equations of motion for collective quadratures generated by
the Hermitian Hamiltonian ĤωPA correspond to Eq. (16),
with the pseudomodes defined in Eq. (21). We thus have our
desired mapping.

Note that with this choice, the collective quadratures that
do not appear in the definition of ẑ j can be used to construct
another pair of pseudomodes:

ˆ̃z j = x̂−, j + i p̂+, j . (23)

The dynamics does not couple ẑ and ˆ̃z operators; using
Eq. (22), the latter satisfy

i
d

dt

(ˆ̃z1(t )
ˆ̃z2(t )

)
= H†

ω

(ˆ̃z1(t )
ˆ̃z2(t )

)
. (24)

Thus, in doubling the degrees of freedom, we have constructed
two sets of commuting “pseudomode” operators; the first set
evolves according to Hω, the second to H†

ω.
It is instructive to also consider the structure of the

Heisenberg equations of motion when written in terms of
the true canonical mode annihilation operators; the desired
non-Hermitian structure is present there as well. Letting
|v̂2〉 denote the four-vector of operators (â1, â2, b̂†

1, b̂†
2)T , the

Heisenberg equations of motion generated by ĤωPA have the
general form

i
d

dt
|v̂2〉 = MωPA|v̂2〉. (25)

Here, MωPA is the system’s mode-basis dynamical matrix; it
is unitarily equivalent to a PT -symmetric matrix:

HωPT =
(
Hω 0
0 H∗

ω

)
= U4MωPAU†

4 , (26)

U4 = 1√
2

(
I2 −I2

I2 I2

)
. (27)

This provides another way to interpret our mapping: by dou-
bling the degrees of freedom and introducing a mirror system
of the detuned PT dimer Hω in Eq. (15) which evolves under
H∗

ω = H†
ω, we effectively restore PT symmetry for the entire,

composite system, allowing a mapping to a parametrically
driven bosonic Hamiltonian.

We end this section by stressing that our construction using
four modes is not limited to the particular non-Hermitian
Hamiltonian Hω, but can be used to realize the dynamics
of any non-Hermitian two-mode Hamiltonian H. One again
represents the quasimode operators ẑ1 and ẑ2 using Eqs. (21).

One obtains the desired dynamics in Eq. (16) (with Hω

replaced by H) if the Hermitian Hamiltonian describing the
four-mode system is taken to be

ĤQMFS = 1

2

2∑
j, j′=1

[(H + H†) j j′ (â
†
j â j′ − b̂ j b̂

†
j′ )

+ (H − H†) j j′ (â
†
j b̂

†
j′ − â j′ b̂ j )]. (28)

We see that the particle-number-conserving terms are associ-
ated with the Hermitian part of H, whereas the non-Hermitian
parts of H are associated with particle-nonconserving two-
photon driving terms.

III. DISSIPATIONLESS NON-HERMITIAN
LATTICE DYNAMICS

We now show that the approaches in the previous section
for realizing effective non-Hermitian dynamics in driven,
dissipation-free quantum bosonic systems can be generalized
to a multimode lattice setting. We will focus on the approach
where the number of modes in the original non-Hermtian sys-
tem and the bosonic system are identical; this will be accom-
plished by using nondegenerate parametric driving (where
pairs of photons are added to distinct modes).

A. Standard non-Hermitian PT -symmetric
tight-binding chain

We start with a simple, but paradigmatic case: a one-
dimensional, nearest-neighbor tight-binding chain with onsite
gain and loss terms that respects PT symmetry. We refer to
this as a “standard” PT tight-binding chain. Non-Hermitian
lattice models of this form have been the subject of many
recent studies (see, e.g., [14,15,17,24,38–40]). We show that it
is possible to realize identical dynamics in a Hermitian driven
bosonic system, without any need to introduce dissipation or
double the number of degrees of freedom. We also show that
this approach can be generalized to a wider class of models.

We consider a 1D lattice of coupled modes having
2N sites, labeled (from left to right) by j ∈ {−N,−N +
1, . . . ,−1, 1, . . . , N − 1, N}. We will also (as is com-
mon) describe our non-Hermitian Hamiltonian using second-
quantized notation, with ĉ j being the mode annihilation oper-
ator on site j. The non-Hermitian lattice Hamiltonian then has
the form

Ĥtb =
−1∑

j=−N+1

(t j ĉ
†
j ĉ j−1 + H.c.) + (t0ĉ†

1ĉ−1 + H.c.)

+
N−1∑
j=1

(t j ĉ
†
j+1ĉ j + H.c.) + i

∑
j

γ j

2
ĉ†

j ĉ j . (29)

The first three terms represent Hermitian hopping on the
lattice, with hopping strength t j on each bond (which we take
to be real without loss of generality). The last, non-Hermitian
term describes onsite gain and loss on each site, with a
corresponding rate γ j/2.

We now constrain this model by insisting that it be PT
symmetric. P is defined as the real-space operation which
maps ĉ j to ĉ− j , and T is defined as before as simple complex
conjugation of the Hamiltonian matrix. PT symmetry thus
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FIG. 2. Illustration of a 2N-mode nearest-neighbor tight-binding
PT -symmetric system, whose Hamiltonian Ĥtb is given in Eq. (32).
Insisting on PT symmetry, and relabeling â j → ĉ− j and b̂ j →
ĉ j , the figure also represents the tight-binding Hamiltonian Ĥtb in
Eq. (29). There always exists unitary correspondence between a
system of this form and a Hermitian parametrically driven bosonic
system having an identical number of modes (see discussion in main
text).

requires

t j = t− j, (30a)

−γ j = γ− j . (30b)

Note that the class of models of this form includes the widely
studied non-Hermitian PT -symmetric Su-Schrieffer-Heeger
(SSH) model [38,39,41,42]. This would correspond to a
dimerized structure for the hoppings and loss: t j = t + (−) jt ′
and γ j = (−) jγ0.

It will be useful to rewrite the Hamiltonian in a more
structured form by relabeling the mode operators via

ĉ− j → â j, ĉ j → b̂ j ( j = 1, 2, . . . , N ). (31)

As depicted in Fig. 2, the Hamiltonian becomes

Ĥtb =
N∑

j, j′=1

[� j j′ (â
†
j â j′ + b̂†

j b̂ j′ )

+ i j j′ (â
†
j â j′ − b̂†

j b̂ j′ ) + Jj j′ â
†
j b̂ j′ + J̃ j j′ b̂

†
j â j′ ], (32)

where �, , J , and J̃ are all N × N coefficient matrices with
entries given by

�ll ′ = tlδl ′,l+1 + tl ′δl ′,l−1, (33a)

ll ′ = γlδl,l ′/2, (33b)

Jll ′ = t0δl,1δl ′,1 = J̃ll ′ . (33c)

In this new basis, P is simply the operation which inter-
changes a j and b j ( j = 1, 2, . . . , N).

We now proceed in analogy to our treatment of the PT
dimer in Sec. II B. We first obtain the equations of motion
for the aj and b j modes amplitudes α j and β j , generated

by Ĥtb as

i∂t

(�α
�β
)

= Htb

(�α
�β
)

, (34)

with the resulting non-Hermitian dynamical matrix given by

Htb =
(

� + i J
J̃ � − i

)
, (35)

with J̃ = J .
The block structure of the matrix Htb (corresponding to

a j/b j modes) allows us to make a simple rotation Utb which
moves the non-Hermitian gain and loss terms to the off-
diagonal blocks:

Mtb = UtbHtbU†
tb =

(
� + J i

i � − J

)
, (36)

Utb = 1√
2

(
IN IN

IN −IN

)
. (37)

In analogy to the two-mode problem in Sec. II B, the rotated
matrix Mtb now has the form of a dynamical matrix of a
parametrically driven bosonic system with 2N sites. However,
unlike the mapping in Sec. II B, the relevant system here
involves nondegenerate parametric drives (i.e., two-photon
driving terms that involve distinct modes). The dynamical
matrix Mtb above corresponds to the Hermitian bosonic
Hamiltonian

ĤNDPA =
N∑
j, j′

[� j j′ (â
†
j â j′ − b̂†

j b̂ j′ )

+ Jj j′ (â
†
j â j′ + b̂†

j b̂ j′ ) + i j j′ (â
†
j b̂

†
j′ − b̂ j â j′ )]. (38)

To be explicit, the Heisenberg equations of motion cor-
responding to this Hermitian Hamiltonian can be compactly
written as

i∂t |v̂N 〉 = Mtb|v̂N 〉, (39)

where |v̂N 〉 = (â1, â2, . . . , âN , b̂†
1, b̂†

2, . . . , b̂†
N )T . Thus, we see

that the dynamics of the general PT -symmetric non-
Hermitian gain-loss lattice model in Eq. (32) can be realized
by the nondissipative, Hermitian quantum Hamiltonian in
Eq. (38). As before, the exponential growth and decay that
could result from the gain and loss terms are mapped onto
unitary squeezing operations in the driven quantum model (in
this case, two-mode squeezing operations).

With this explicit nondegenerate parametric-amplifier
(NDPA) Hamiltonian ĤNDPA in hand, it is interesting to return
to the simple PT dimer discussed in Sec. II B. This corre-
sponds to the case N = 1 of the 1D PT chain considered
in this section. In this case, the matrix � becomes an overall
constant in the non-Hermtian Hamiltonian Ĥtb and can be ig-
nored, and our mapping shows that the dynamics is equivalent
to a simple two-mode NDPA in Eq. (38). We stress that this
is a distinct mapping from that in Sec. II B, which involves
a single-mode DPA. By having two modes here, there is no
constraint on the phases of mode amplitudes, as the number
of complex degrees of freedom is the same as the original
non-Hermitian coupled-mode problem. As we will show in
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the next section, this lack of constraints remains the same in
the general multimode version of the problem as well.

B. Generalized non-Hermitian PT -symmetric
tight-binding chain

We now consider more general PT -symmetric non-
Hermitian lattice models, which could be in higher dimen-
sions, have long-range hopping terms, and have nonlocal non-
Hermitian terms. The unitary mapping Utb derived above is
also valid for a wide class of these generalized models. Note
first that a generic PT -symmetric non-Hermitian Hamilto-
nian (in arbitrary dimensions, with 2N sites) can always be
written in the form given in Eq. (32), where PT symmetry
requires that the coefficient matrices �, are real, as well
as J̃ = J∗. Our mapping to a Hermitian parametric amplifier
problem [as per Eq. (38)] remains valid as long as the coef-
ficient matrices �, , and J are all real, symmetric matrices.
This encompasses a much broader class of models than the
1D nearest-neighbor, imaginary potential model described by
Eqs. (33).

The extra kinds of terms that can be accommodated in the
starting non-Hermitian PT lattice model are as follows:

(i) real detunings of a j and b j modes, given by real,
diagonal matrix elements of �;

(ii) real, coherent (i.e., Hermitian) coupling between any
two a j and a j′ (or b j and b j′ ) modes with a completely
real coupling strength, represented by off-diagonal matrix
elements of �;

(iii) real, coherent coupling between any two a j and b j′

modes with a completely real coupling strength, represented
by corresponding matrix elements of J;

(iv) imaginary, dissipative (i.e., non-Hermitian) couplings
between any two different modes, represented by off-diagonal
matrix elements of .

As an example, our mapping to a NDPA system remains
valid for a two-dimensional (2D) tight-binding PT lattice,
as long as the coherent couplings are purely real, and the
dissipative couplings are purely imaginary. Conversely, for
non-Hermitian tight-binding models where hopping phases
encode nontrivial fluxes, we may construct an example where
the mapping does not work. Necessary conditions for such a
mapping to exist are presented in Appendix C, while simple
four-mode systems where the correspondence fails are dis-
cussed in Appendix E.

C. Mapping for arbitrary multimode
non-Hermitian Hamiltonians

In Secs. III A and III B, we described a general map-
ping between a wide class of non-Hermitian, PT -symmetric
lattice models and the dynamical matrix of a Hermitian,
parametrically driven bosonic system. Crucially, this mapping
preserved the number of modes. As discussed, it cannot be
applied to all possible PT lattice models, nor can it be used
for systems with broken PT .

In this section, we show how the general QMFS strategy
introduced in Sec. II D can be generalized to map an arbitrary
non-Hermitian lattice model to a Hermitian, parametrically
driven bosonic problem. While more general, this strategy

comes with a price: the driven bosonic system will have
twice the number of modes as in the original non-Hermitian
Hamiltonian.

The approach is to generalize the construction presented
in Eq. (28) of Sec. II D to a general N-mode non-Hermitian
Hamiltonian HN . We will use a 2N-mode bosonic system,
with canonical quadrature operators x̂±, j and p̂±, j for j =
1, 2, . . . , N . The only nonzero commutators between the
quadratures are

[x̂±, j, p̂±, j′ ] = iδ j j′ , (40)

for j, j′ = 1, 2, . . . , N .
To implement the general QMFS strategy, we wish to

construct a Hamiltonian where a set of fully commuting
collective quadratures has a linear dynamics corresponding
to HN . Following the convention for the two-mode case in
Eqs. (21) and (23), we first introduce two sets of pseudomodes
ẑ±, j ( j = 1, 2, . . . , N ) as

ẑ±, j = x̂±, j + i p̂∓, j . (41)

Mirroring the strategy of Sec. II D, we want a Hermitian
bosonic Hamiltonian that yields the equations of motion

i∂t �̂z+ = HN �̂z+, (42a)

i∂t �̂z− = H†
N
�̂z−, (42b)

where we define N-vectors �̂z± consisting of the pseudomode
operators ẑ±, j , respectively, for notational convenience. As
before, the desired dynamics will only couple mutually com-
muting quadratures. It is straightforward to prove that the two
equations above generate a dynamics that preserves all canon-
ical commutation relations, i.e., they generate a symplectic
transformation of the bosonic system (see Appendix G 2 for
details). Further, one can show that this dynamics is generated
by the Hermitian 2N-mode Hamiltonian

ĤQMFS,multi = 1

2

N∑
j, j′=1

[(HN + H†
N ) j j′ (â

†
j â j′ − b̂ j b̂

†
j′ )

+ (HN − H†
N ) j j′ (â

†
j b̂

†
j′ − â j′ b̂ j )], (43)

where we define the bosonic mode operators in parallel to
Eq. (21) as

â j ± b̂†
j = x̂±, j + i p̂∓, j = ẑ±, j . (44)

The approach here is of course directly applicable to the
case where the non-Hermitian HN describes a lattice model in
real space. Our mapping doubles the number of modes: for ev-
ery lattice site in the original model, there are now two bosonic
modes â j, b̂ j . Note, however, from Eq. (43) that our mapping
is fully local. For every band En(�k) of HN , the closed-form
dynamics of the â j and b̂†

j operators will correspondingly con-

tribute two independent bands En(�k) and E∗
n (�k) in the bosonic

problem; this follows directly from Eqs. (42a) and (42b).
We stress that this doubled band structure only solves half
of the entire Bogoliubov–de Gennes (BdG) problem of the
bosonic Hamiltonian; the full band structure will also include
contributions from dynamics of the b̂ j and â†

j operators, which

063834-7



YU-XIN WANG AND A. A. CLERK PHYSICAL REVIEW A 99, 063834 (2019)

can also be obtained from Eqs. (42a) and (42b) as the −En(�k)
and −E∗

n (�k) bands.

IV. APPLICATIONS OF DISSIPATION-FREE
NON-HERMITIAN QUANTUM DYNAMICS

In this section, we discuss how the mappings introduced
in the previous sections can be used to realize various well-
known non-Hermitian effects in dissipation-free, quantum
settings.

A. Exceptional point sensing

We first consider sensing methods that exploit the strong
sensitivity of mode eigenvalues of a PT -symmetric non-
Hermitian system that is tuned to the vicinity of an exceptional
point (EP) [15,17]. The most common version of this scheme
involves a simple gain-loss PT dimer (cf. Sec. II A) with an
effective non-Hermitian Hamiltonian

H[ε] = HPT = i
γ

2
σz + (g0 + ε)σx. (45)

The goal is to estimate the small parameter ε. If the un-
perturbed Hamiltonian H[0] is tuned to the EP by choosing
g0 = γ /2 = gc, then the perturbation ε induces an eigenvalue
splitting that scales as

√
ε, i.e., from Eq. (3), we have

|λ+ − λ−| � 2
√

2g0ε. (46)

For small ε � g0, this is parametrically larger than a conven-
tional mode splitting in a Hermitian system, which would be
proportional to ε.

To exploit this eigenvalue sensitivity for measurement, it
was suggested in Refs. [15,17] to look at the reflection of
a probe tone applied to the system at frequency ωp. The
frequency-dependent reflection coefficient R[ωp] would then
reflect the parametric mode splitting of the eigenvalues. While
the advantage of this approach seems obvious, recent studies
have shown that the unavoidable noise associated with in-
coherent gain and loss in the quantum regime can limit any
enhancement of signal-to-noise ratio [18,19].

Here, we show an analogous EP sensing scheme can be
implemented in a parametric amplifier setup, without having
to introduce any incoherent gain and loss, and corresponding
noise. While there are many ways to proceed, the simplest is to
use the unitary mapping introduced in Sec. II B that maps the
PT dimer in Eq. (45) to a single-mode, degenerate parametric
amplifier (DPA). Letting δ = g0 and ν = γ /2, the Hermitian
DPA Hamiltonian corresponding to H[ε] is then given by

ĤDPA[ε] = (δ + ε)â†â + ν

2
(iâ†2 + H.c.). (47)

As usual, the tunneling in H[ε] becomes a detuning term,
and the gain and loss terms in H[ε] become a two-photon
drive. We stress that the dynamical matrix of this Hermitian
Hamiltonian is unitarily equivalent to H[ε], and has the same
eigenvalues. Note that the perturbation ε is now a standard
dispersive coupling, something that arises in many measure-
ment contexts. In the case where ε corresponds to the state of
a qubit, this exact setup was realized in a recent superconduct-
ing quantum circuit experiment (though operated in a different
regime) [43].

We now mimic the EP sensing protocol, by first tuning δ =
ν so that the unperturbed system is at the EP. To probe the
ε-induced mode splitting, we will again look at the reflection
of a probe tone applied at frequency ωp. We couple the cavity
â to an input-output waveguide (or transmission line), with a
coupling rate κext. The total decay rate of the cavity is given
by

κ = κext + κi, (48)

where κi denotes intrinsic damping rate of the cavity. Here,
we assume the cavity is in the overcoupled regime, and the
cavity linewidth is just given by the external coupling rate
κ = κext. As we will show later, the sensing signal is robust
to unwanted loss (namely intrinsic damping of the cavity) for
practical parameters. Using standard input-output theory [44],
the Heisenberg equation of motion of â is

d

dt
â = − iδâ + νâ† − κ

2
â − √

κ (αine−iωpt + ζ̂in(t )), (49)

where αin is the amplitude of the probe tone, and ζ̂in(t )
describes vacuum noise entering through the waveguide. Note
that we are working in a rotating frame determined by the
frequency of the pump field used to realize the parametric
interaction.

The introduction of the waveguide shifts the eigenvalues
of the dynamical matrix by a constant, but the system still
possesses an EP. We pick the pump detuning δ = ν ≡ δc so
that the unperturbed system is tuned to this EP. We then calcu-
late the total output flux Pout (ωp) (including both the reflected
signal and idler beams), as a function of the probe frequency
ωp, to see how the ε-induced mode splitting impacts the light
leaving the cavity. Using the standard input-output relation
âout = âin + √

κ â [44], the output flux is

Pout (ωp)

|αin|2 = 1 + 2κ2ν2

( f [ωp])2 + κ2(δ2 − ν2)
, (50)

where f [ωp] = ω2
p + (κ/2)2 − δ2 + ν2. Note that we do not

include the contribution from amplified vacuum fluctuations
here, as this yields a background that is independent of both
ωp and αin. In the limit of a weak coupling to the waveguide,
we will observe narrow peak(s) in Pout that correspond to the
dynamical matrix eigenvalues λ± (see Fig. 3). For ε = 0, there
is just a single peak, whereas for nonzero ε there are two
peaks, with the expected splitting |λ+ − λ−| � 2

√
2εδc  ε

[see also Eq. (46)]. In the presence of intrinsic cavity loss, as
shown in Fig. 3, the peak structure still survives, although the
reflected power becomes weaker.

We thus see that the EP sensing scheme of Refs. [15,17]
can be directly implemented in a parametric-amplifier setup,
without any need for incoherent gain and loss. We leave a full
analysis of the noise properties and ultimate sensitivity of this
scheme (both in the linear and nonlinear response regimes)
to a future work. Note that the general analysis in Ref. [18]
of linear-response EP sensing assumed a Hamiltonian that
conserves particle number, and thus does not apply directly
to the DPA setup described here. Also note that higher-order
exceptional points have been discussed in the context of
sensing; these too can be realized without dissipation using
parametrically driven bosonic modes (see Appendix F).
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FIG. 3. Exceptional-point sensing with a degenerate parametric
amplifier (DPA). A detuned DPA is tuned to an EP by matching
the pump detuning and parametric drive amplitudes. Probe light
of frequency ωp (in the rotating frame) is sent into the cavity via
waveguide (coupling rate κext). Plotted is the frequency-dependent
reflected flux of the probe tone. Unless stated differently below, we
consider the overcoupled cavity regime so that the cavity linewidth,
given by κ = κext + κi, can be taken as κ = κext . Dark cyan solid line:
reflected flux for the unperturbed system, showing a single peak.
Orange dashed line: reflected flux where the system is perturbed
by shifting the cavity frequency an amount ε = 0.7κ [cf. Eq. (47)].
One now has two distinct peaks, with a splitting that scales as√

ε. Green dotted line: same conditions as the orange dashed curve
except for nonzero intrinsic cavity loss κi = κext , so that the cavity
operates in the critical coupling regime κext = κ/2. Note that peak
splitting is robust in the presence of unwanted cavity loss. Parameters
correspond to a parametric drive amplitude ν/κ = 12.5, and pump
detuning δ = ν originally set to the EP.

B. Quasiadiabatic evolution and chiral mode switching

Another striking effect associated with exceptional points
involves the chirality of nonadiabatic effects in non-Hermitian
systems whose parameters are cyclically varied [2–10]. The
paradigmatic system is the detuned gain-loss dimer Hω in
Eq. (15), where now the tunneling g and detuning ω are made
time dependent:

Hω(t ) =
[
ω(t ) + i

γ

2

]
σz + g(t )σx. (51)

Consider a cyclic time variation of parameters, where
(g(t ), ω(t )) follow a closed path in parameter space that
encloses one of the two EPs at (gc = ±γ /2, ω = 0) [see inset
in Fig. 4(a)]. Nonadiabatic effects in such a setup depend
crucially on the direction one traverses the path in parameter
space: for one direction, there is no switching between adi-
abatic eigenmodes, whereas for the other direction, there is
appreciable switching. Appendix H gives a basic introduction
to this phenomena; see Ref. [8] for a more comprehensive
discussion.

Recent experiments have probed this EP encircling physics
in classical settings [9,10], and it has been suggested that
such effects could be useful in quantum settings [4]. As usual,
though, the unavoidable noise associated with incoherent gain
and loss in quantum systems would be problematic. We show
here how the mapping introduced in Sec. II D to a dissipation-
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FIG. 4. Chiral nature of quasiadiabatic dynamics in a four-mode
Hermitian bosonic system [cf. Eq. (22)] whose dynamics mimics
the gain-loss dimer in Eq. (51). In each plot, g(t ) and ω(t ) are
varied along a circle in parameter space (see insets). (a) Evolution
of instantaneous eigenmode amplitudes |〈ĉ±(t )〉| [cf. Eq. (55)], for a
counterclockwise (CCW) parameter variation. (b) Same, but now for
a clockwise (CW) variation. In both cases, the initial state is a coher-
ent state with 〈ĉ+(0)〉 = 1, 〈ĉ−(0)〉 = 0. For the CCW evolution, one
sees an adiabatic evolution (the + mode remains dominant), whereas
for CW evolution, there is a nonadiabatic switching, and the − mode
is dominant at the end of the protocol. For both plots, γ T = 20 and
ε/γ = 0.1.

free driven bosonic system allows one to realize this chiral
switching behavior without any dissipation or noise. As a
concrete quantum application of our mapping, we show how
the chiral switching behavior impacts the evolution of entan-
glement in our system.

As discussed in Sec. II D, we can realize the dynamics
of Hω(t ) in Eq. (51) without dissipation using a four-mode,
parametrically driven bosonic system with a Hamiltonian
ĤωPA(t ) given by Eq. (22). First, consider the non-Hermitian
system described by Hω(t ). The time-evolution matrix Uω(t )
corresponding to this Hamiltonian relates final and initial
mode amplitudes, and is determined by

i∂tUω(t ) = Hω(t )Uω(t ), Uω(t = 0) = 1. (52)

Our Hermitian, bosonic four-mode system has been con-
structed so that the quasimode operators ẑ1, ẑ2 defined in
Eq. (21) evolve exactly like amplitudes in the non-Hermitian
system. This implies that(

ẑ1(t )
ẑ2(t )

)
= Uω(t ) ·

(
ẑ1(0)
ẑ2(0)

)
, (53)

where we stress that these are operator equations. Thus,
the chiral switching behavior encoded in Uω(t ) will directly
manifest itself in the quantum bosonic system, without any
need to inject noise to preserve commutation relations.
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The chiral switching behavior is best understood by ana-
lyzing the dynamics in terms of the instantaneous eigemodes
�r±(t ) of Hω(t ). These are defined via

Hω(t )�r±(t ) = λ±(t )�r±(t ), (54)

where explicit forms for the eigenmodes and eigenvalues
λ±(t ) are given Eq. (H2) of Appendix H. Classically, we could
describe the instantaneous state of our system in terms of the
amplitudes c±(t ) of the two eigenmodes. In our quantum para-
metric amplifier analog, these amplitudes become operators:

ĉ±(t ) = �rT
±(t ) · �̂z(t ). (55)

Not surprisingly, the average values of these operators
behave exactly as the corresponding amplitudes in the clas-
sical setup. Preparing a particular initial condition would
involve displacing the four bosonic modes appropriately. In
Fig. 4, we show the evolution of the average instantaneous
mode amplitudes |〈ĉ±(t )〉|, for evolution along a circular
path in the (g, ω) parameter space that encircles an EP. In
both cases, the initial state is chosen so that only the +
eigenmode is initially excited, i.e., 〈�̂z(t = 0)〉 = �r+(t = 0).
As can be seen from the figure, for evolution corresponding
to a counterclockwise (CCW) encircling, the amplitudes of
the pseudomodes correspond to predominantly exciting the
instantaneous + eigenmode. In contrast, for a clockwise en-
circling, one sees that there is a switching: at the final time
T , the pseudomode amplitudes correspond to predominantly
exciting the − instantaneous eigenmode. Note that because of
the EP structure in our system, the instantaneous eigenmodes
at the final time t = T are flipped versions of those at t = 0,
i.e., �r±(t = T ) = �r∓(t = 0) [8].

A more interesting situation is to consider the evolution of
a general quantum state for either a CW or CCW parameter
evolution. In Appendix I, we derive the quantum unitary
transformations describing both these cases, and discuss them
using the Bloch-Messiah decomposition [45]. This allows us
to view each transformation as the product of two beam-
splitter operations, interspersed with a squeezing operation.
Interestingly, we find that both the CW and CCW complete
encirclings are described by the same squeezing operation;
the chirality only appears in the initial and final beam-splitter
operations.

To see a direct consequence of this, imagine a quantum
state with nonzero photon number, but where 〈ẑ1〉 = 〈ẑ2〉 = 0.
Classically, we could imagine at t = 0 stochastically prepar-
ing the system in the + eigenmode with a random phase;
the simplest choice would be to take c+(0) to be a Gaussian
random variable [while c−(0) is set to zero]. Using our
equivalent quantum parametric amplifier setup ĤωPA(t ), we
could consider an analogous initial condition. In particular, we
start the quantum four-mode system in a zero-mean Gaussian
pure state whose covariance matrix at t = 0 predominantly
populates the + eigenmode. By this, we mean an initial
state where 〈ĉ†

+ĉ+〉  〈ĉ†
−ĉ−〉. This state will necessarily have

entanglement correlations between the 1 subsystem (formed
by modes a1, b1) and the 2 subsystem (formed by modes a2,
b2). We can now ask how this entanglement evolves in time
as we cyclically vary g and ω as before. We stress that we are
always comparing the final values of the entanglement (i.e.,
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FIG. 5. Entanglement evolution during EP encircling. We con-
sider bipartite entanglement in a Hermitian four-mode bosonic sys-
tem whose dynamics corresponds to the detuned gain-loss dimer
described by Hω(t ) [cf. Eq. (51)]. The parameters (g, ω) follow a
complete circle in parameter space. Entanglement (as quantified by
the logarithmic negativity EN ) between the a1, b1 modes and a2,
b2 modes is plotted as a function of time; the two curves in each
panel are for a clockwise (CW) versus counterclockwise (CCW)
parameter variation. The center of the circular trajectory (g = g0, ω)
is different for each panel (as indicated). The top panel corresponds
to a trajectory centered on the exceptional point at g0 = gc ≡ γ /2,
whereas in the subsequent panels, the trajectory is displaced to the
right. One sees that entanglement generation at t = T after a full
cycle is manifestly chiral when the trajectory encircles the EP, while
this is lost when the trajectory is far from the EP. The initial state is
chosen to asymmetrically populate the + eigenmode (see main text),
and γ T = 20, ε/γ = 0.1.

at t = T ) for the CW versus CCW encirclings. This parallels
what is done in the classical case, when one compares the
mode occupancies at the end of the two protocols.

In Fig. 5, we show the evolution of the 1-2 subsys-
tem entanglement (as quantified by the logarithmic negativ-
ity [46,47]), for various circular parameter variations. In each
case, we start with zero-mean Gaussian states of our four
bosonic modes with the same amount of initial entanglement.
This initial state is chosen to have an average total photon
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number of approximately 8, and an asymmetry quantified by

〈ĉ†
+ĉ+〉

〈ĉ†
−ĉ−〉 � 102

|�r+(t = 0)|2 · |�r−(t = 0)|2  1. (56)

Further details and motivation for this choice are given in
Appendix I 4; our chosen state corresponds to e2λ0 = 10 in
Eq. (I19). The two curves in each panel correspond to CW
and CCW traversal of the same circular path in the (g, ω)
parameter space. The first panel corresponds to the same path
as in Fig. 4; in the remaining panels, we displace the path
so that it eventually no longer encloses the EP. For paths
enclosing the EP, we see that the entanglement by the end of
time evolution exhibits a marked chiral behavior: the amount
of entanglement at t = T depends crucially on the direction
that the path is traversed. This asymmetry gradually becomes
negligible as we displace the circular path away from the EP.
The results here show that the chirality associated with EP en-
circling can indeed have implications for quantum dynamics
(e.g., in determining the generation of entanglement).

C. Connecting topology in non-Hermitian systems to Hermitian
driven bosonic systems

As a final application, we discuss how our mappings can
be applied to non-Hermitian lattice models with topologically
nontrivial bands. There has been considerable recent interest
in studying such models (see, e.g., [24,25,38–40,48–51]).
Our mappings provide a route for realizing these topological
bands in fully Hermitian bosonic systems, without any need to
couple to external dissipation. More specifically, in Ref. [52],
a non-Hermitian Chern number was introduced to characterize
bands in 2D non-Hermitian systems. Using our mapping,
it is straightforward to show that these Chern numbers are
equivalent to topological invariants that were introduced ear-
lier to characterize bands in Hermitian bosonic systems with
pairing terms [53,54]; this is demonstrated in Appendix J. Our
discussion here complements recent studies showing that the
symmetry-based classification of non-Hermitian Hamiltoni-
ans can also be applied to anomalous bosonic systems [24,50].

Despite the immense interest in non-Hermitian topology,
most work has focused on models that are topological even if
the non-Hermitian terms are set to zero (i.e., in the absence of
gain and loss). As discussed below, our approach allows us to
construct a model where this is no longer true: nontrivial band
topology only emerges in the presence of nonzero gain and
loss. We accomplish this by constructing the non-Hermitian
equivalent of a recently studied bosonic model where para-
metric driving induces topology [54].

We consider a 2D kagome lattice, where on each lattice
site we have a two-cavity PT -symmetric gain-loss dimer
(see Fig. 6). The system Hamiltonian will consist of purely
Hermitian hopping terms coupling nearest-neighbor lattices,
and purely local term which includes non-Hermitian effects:

Ĥkagome = Ĥhopping + Ĥlocal. (57)

We will use the composite index j = (j, s) = ( j1, j2, s) to
label both the unit cell ( j1, j2) and basis element s = A, B,C
of each lattice site. Further, we will use a pseudospin ↑,↓
to index each element of the cavity dimer located at a given
lattice site.

(a)

C
gain
loss

B

A

(b)

FIG. 6. Schematic of the PT kagome model [cf. Eq. (57)], where
the system is topologically nontrivial only with the introduction of
nonzero gain and loss. (a) Kagome lattice, where each site (gray
circle) is a gain-loss dimer. (b) Unit cell.

Letting ψ̂j = (âj,↑ âj,↓)T the onsite terms are

Ĥlocal =
∑
j

ψ̂
†
j

(iνσz + ω0σx )ψ̂j. (58)

These local terms describe a PT dimer at each lattice site,
with tunneling amplitude ω0 and gain or loss rate ν.

The tunneling terms between cavities on nearest-neighbor
lattice sites is described by the Hermitian Hamiltonian

Ĥhopping =
∑
〈j,j′〉

ψj†J [ss′]ψj′ , (59)

where the hopping matrix elements depend on both sublattice
index and pseudospin:

J [ss′] = J

2
(eiϕss′

√
3σ0 + σx ), (60)

ϕss′ =
{+π

2 , ss′ = AB, BC,CA

−π
2 , ss′ = BA,CB, AC

(61)

where J is the overall hopping amplitude. We see that there
are hopping terms that both preserve and flip the pseudospin
(i.e., a gain cavity on a given site can tunnel to either a gain or
loss cavity on a neighboring site). Further, the spin-conserving
tunneling is complex, and thus encodes a synthetic gauge
field. The tunneling here can be viewed as a generalized kind
of synthetic spin-orbit coupling.

Consider first the properties of our system in the case
where there are no gain or loss terms (i.e., ν = 0), and the
Hamiltonian is Hermitian. In this case, the system has no
topologically nontrivial bands, as it is possible to completely
gauge away the hopping phases. To see this, note that in this
case σx on each lattice site commutes with the Hamiltonian. It
thus useful to use a local basis of σx eigenstates:

âj,± = 1√
2

(âj,↑ ± âj,↓). (62)

In this basis, the Hamiltonian decouples into two independent
tight-binding models

Hkagome,± = ±
⎛
⎝∑

j

ω0â†
j,±âj,± +

∑
〈j,j′〉

Je±i
2ϕss′

3 â†
j,±âj′,±

⎞
⎠,

(63)

with uniform onsite energies ±ω0 and nearest-neighbor cou-
plings ±J exp (∓i2ϕss′/3). We thus have two decoupled
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kagome lattices, with the + (−) lattice having a synthetic
Aharonov-Bohm flux π (−π ) in each triangular plaquette.
These fluxes do not break time-reversal symmetry, and can
be eliminated by a local gauge transformation:

âj,B,± → â′
j,B,± = e∓i 2π

3 âj,B,±, (64a)

âj,C,± → â′
j,C,± = e∓i 4π

3 âj,C,±. (64b)

This results in a decoupled pair of time-reversal-invariant,
topologically trivial kagome models

Ĥ ′
kagome,± = ±

⎛
⎝∑

j

ω0â†
j,±âj,± −

∑
〈jj′〉

Jâ†
j,±âj′,±

⎞
⎠. (65)

If we now turn on the gain and loss parts of the Hamiltonian
[i.e., make ν nonzero in Eq. (58)], it is no longer possible to
gauge away the hopping phases. At an intuitive level, the non-
Hermitian terms are off diagonal in the +/− basis used to
write Eq. (65), and hence can enable hopping processes that
pick up nontrivial fluxes.

The topological properties of the resulting model can be
completely understood by mapping the system to a Hermitian,
parametrically driven bosonic model having a single bosonic
mode on each lattice site (see Appendix K 1). As usual, the
non-Hermitian gain and loss terms are mapped to parametric
driving terms, and the dimer structure is mapped to the
particle-hole structure of the bosonic theory. The resulting
bosonic theory is equivalent to the parametrically driven
kagome lattice mode studied by Peano et al. in Ref. [54]. The
model exhibits topological bands and protected edge states
whenever ν is nonzero. Since the mapping is fully local in real
space (two bosonic modes, with balanced gain and loss, per
lattice site), it thus follows that our non-Hermitian PT model
exhibits topological bands (with nonzero Chern number) and
edge states if and only if there is nonzero gain loss. We thus
have, as desired, a model where topology is induced by gain
and loss.

V. CONCLUSIONS

In this paper we have given a thorough discussion of how
one can realize non-Hermitian dynamics without the need
to couple to external dissipation. We make use of a simple
but surprising fact: a Hermitian, quadratic bosonic Hamil-
tonian that breaks particle-number conservation necessarily
gives rise to a non-Hermitian dynamical matrix. We have dis-
cussed three generic strategies for using this correspondence
to realize a given non-Hermitian (linear) Hamiltonian using
a quadratic bosonic system. Given an initial N-mode non-
Hermitian problem, one can always accomplish this mapping
using a 2N-mode bosonic system and the quantum-mechanics
free subsystem (QMFS) approach discussed in Secs. II D
and III C. In other more constrained cases, it is possible to
mimic the desired dynamics using N modes (Sec. III) or
even N/2 modes (Sec. II B). We summarize advantages and
constraints of these three strategies in Table I for reference.

Our work has considered just a few possible applications
and implications of this mapping. In future work, it will be
interesting to use this mapping to explore a wider class of
non-Hermitian dynamical phenomena (such as the recently

observed non-Hermitian analog of Fermi arcs [55]), and to
develop new kinds of quantum control protocols in para-
metrically driven systems. It will also be extremely inter-
esting to extend our approach to describe systems with true
nonlinearities.
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APPENDIX A: COMMENT ON PSEUDO-HERMITICITY

In general, the 2N × 2N dynamical matrix Heff,N of a
N-mode bosonic parametrically driven system is related to a
Hermitian Bogoliubov–de Gennes Hamiltonian HBdG by

Heff,N = σN,zHBdG, (A1)

where σN,z = diag(IN ,−IN ) is the diagonal matrix incorpo-
rating bosonic commutation relations, so that Heff,N is always
σN,z-pseudo-Hermitian as [24,31]

H†
eff,N = σN,zHeff,NσN,z. (A2)

Previous works have shown that PT -symmetric Hamiltonians
are always η-pseudo-Hermitian, where η is an invertible Her-
mitian operator [31,56,57]. However, two pseudo-Hermitian
matrices need not be unitarily equivalent, even though they
may be isospectral. Hence, the fact that PT -symmetric
Hamiltonians are pseudo-Hermitian does not guarantee that
they are unitarily equivalent to the dynamical matrix of some
Hermitian, bosonic problem.

APPENDIX B: CANONICAL FORM FOR A GENERAL
CLASS OF PT -SYMMETRIC NON-HERMITIAN

HAMILTONIAN

Consider the most general 2N-mode PT -symmetric non-
Hermitian Hamiltonian. Using the same conventions as
Sec. III A, the Hamiltonian has the form

HPT =
(
E F
F∗ E∗

)
, (B1)

where E and F are arbitrary N × N matrices. As always, we
define time-reversal operation as complex conjugation, and
the parity operation is an exchange of modes described by

σN,x =
(

0 IN

IN 0

)
. (B2)

We will show that as long as the anti-Hermitian part of
HPT is full rank, it is always possible to unitarily transform
HPT to a form H2 where the non-Hermitian part of H is
diagonal, namely,

H2 =
(

�̃ + iN J̃
J̃∗ �̃∗ − iN

)
. (B3)

Here, �̃ is a Hermitian N × N matrix, N is a real, diago-
nal, non-negative N × N matrix, and the N × N matrix J̃ is
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symmetric. Note that H2 still explicitly retains PT symmetry
as defined before, as H∗

2 = σN,xH2σN,x.
We can always write HPT in terms of its Hermitian and

anti-Hermitian parts as HPT = HPT + iPT . The PT sym-
metry of HPT then implies

H∗
PT = σN,xHPT σN,x, (B4a)

∗
PT = −σN,xPT σN,x. (B4b)

Equation (B4b) implies that the eigenvalues of PT are real
and come in pairs of opposite signs. It can thus be diagonal-
ized as

UPT U†
 = D, (B5)

where D = diag(N ,−N ), and N is a diagonal N × N
matrix with non-negative entries.

Using U to transform HPT , i.e., H1 = UHPT U†
 , we

obtain

H1 = H1 + iD =
(

�1 + iN J
J† �2 − iN

)
, (B6)

PT symmetry implies that the Hermitian matrix H1 and the
non-negative matrix D must satisfy

H1 = ŨH∗
1 Ũ†

, (B7a)

D = −ŨDŨ†
, (B7b)

where we have introduced the symmetric unitary matrix Ũ =
UσN,xUT

 .
Equation (B7b) can be written explicitly as(+N 0

0 −N

)
Ũ + Ũ

(+N 0
0 −N

)
= 0. (B8)

In what follows, we assume that PT is full rank; physically,
this implies that all modes in the system are coupled to
the dissipation. As a consequence, N has no zeros on the
diagonal. The above equation then provides a constraint on
the form of Ũ: its diagonal blocks must be identically zero.
We can thus write it as

Ũ =
(

0 ũ12

ũT
12 0

)
, (B9)

with [ũ12, N ] = 0.
The remaining PT condition on H1 in Eq. (B7a) now reads

as (
�1 J
J† �2

)(
0 ũ12

ũT
12 0

)
=

(
0 ũ12

ũT
12 0

)(
�∗

1 J∗
JT �∗

2

)
,

(B10)

or equivalently

J†ũ12 = ũT
12J∗ ⇔ JũT

12 = ũ12JT , (B11a)

�1ũ12 = ũ12�
∗
2 ⇔ �2ũT

12 = ũT
12�

∗
1 . (B11b)

It follows that there exists a unitary matrix ũ12 that commutes
with N and satisfies the equalities

�∗
1 = ũ∗

12�2ũT
12, (B12a)

JũT
12 = ũ12JT = (

JũT
12

)T = (ũ∗
12J†)∗. (B12b)

We can now finally use this unitary matrix to transform our
non-Hermitian PT Hamiltonian into a simpler, final form H2:

H2 ≡
(
IN 0
0 ũ∗

12

)(
�1 + iN J

J† �2 − iN

)(
IN 0
0 ũT

12

)

=
(

�1 + iN JũT
12(

JũT
12

)∗
�∗

1 − iN

)
. (B13)

Defining �̃ = �1 and J̃ = Jũ†
12 and J̃ = JũT

12, this is exactly
the form given in Eq. (B3).

APPENDIX C: CONSTRAINTS ON REPRESENTING PT
NON-HERMITIAN HAMILTONIANS WITH HERMITIAN

BOSONIC HAMILTONIANS

In this Appendix we will derive necessary and sufficient
conditions for determining whether a given 2N-mode PT -
symmetric non-Hermitian Hamiltonian is unitarily equivalent
to the dynamical matrix of a Hermitian, 2N-mode parametric
amplifier system. The most general 2N-mode PT -symmetric
non-Hermitian Hamiltonian HPT was given in Eq. (B1). As
shown above, as long as its non-Hermitian part is full rank,
it can be transformed to the canonical form H2 in Eq. (B3),
where the anti-Hermitian terms are diagonal. We will work
with this form in what follows.

The question now is whether it is possible to find a unitary
matrix U that transforms the generic PT Hamiltonian H2 in
Eq. (B3) to a physical bosonic dynamical matrix MN , i.e.,

UH2U† = MN . (C1)

We will consider the least constrained mapping, where MN

is a 2N × 2N matrix describing nondegenerate parametric
driving. This is the same situation as in Sec. III: the bosonic
theory has N “a” modes and N “b” modes, and the parametric
driving conserves the total number of a minus b bosons. As
discussed in the main text [cf. Eq. (J4)], in this case the
dynamical matrix will take the form

MN =
(

μa ν

−ν† −μT
b

)
, (C2)

where μa,b are arbitrary Hermitian N × N matrices, and ν can
be any N × N matrix.

For a given PT Hamiltonian H2, it is not always possible
to find a U and MN satisfying Eq. (C1). This is because
the bosonic dynamical matrix MN is pseudo-Hermitian in
a constrained fashion. Recall (see Appendix A) that any
physical MN must satisfy

M†
N = σN,z MN σN,z, (C3)

where, as always, σN,z is a z Pauli matrix in particle-hole
space.

It thus follows that any PT Hamiltonian that is unitarily
equivalent to a bosonic dynamical matrix MN must satisfy

H†
2 = WH2W† (C4)

for some 2N × 2N matrix W satisfying

W = W† = W−1, (C5a)

Tr W = 0 (C5b)
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(i.e., a Hermitian unitary matrix with N eigenvalues +1 and
N eigenvalues −1). If a unitary equivalence existed as per
Eq. (C1), we could explicitly construct W as W = UσN,zU†.
Equations (C4) and (C5) thus represent a necessary condition
for the existence of a MN that is unitarily equivalent to a given
H2. Note this is a tighter constraint than simply requiring H2

to be pseudo-Hermitian (something that is always true).
To show that this is also a sufficient condition, suppose one

can find a W satisfying Eqs. (C4) and (C5). W could be then
diagonalized as W = UWσN,zU†

W for some unitary UW . It then
easily follows that the matrix M̃ ≡ U†

WH2UW satisfies the
pseudo-Hermiticity condition in Eq. (C3), and thus represents
a valid bosonic dynamical matrix.

We can derive more explicit conditions in the case where
the anti-Hermitian part of H2 is full rank (i.e., N is positive).
In this case, Eq. (C4) can only be satisfied if W has the form

W =
(

0 w12

w
†
12 0

)
, (C6)

where the unitary matrix w12 commutes with N . This form of
W is explicitly Hermitian, unitary, and traceless, so it fulfills
all the conditions in Eq. (C5).

From Eq. (C5), we can now derive(
0 w12

w
†
12 0

)(
�̃ J̃
J̃∗ �̃∗

)
=

(
�̃ J̃
J̃∗ �̃∗

)(
0 w12

w
†
12 0

)
.

(C7)

Hence, a necesary condition for H2 to be unitarily equivalent
to a bosonic dynamical matrix is the existence of an N × N
unitary matrix w12 that satisfies the equations

w12J̃∗ = J̃w
†
12, (C8a)

w12�̃
∗ = �̃w12. (C8b)

APPENDIX D: CONSTRAINTS ON REPRESENTING
HERMITIAN BOSONIC HAMILTONIANS WITH PT

NON-HERMITIAN HAMILTONIANS

We now ask the converse of the question discussed in the
previous Appendix. Given a generic 2N-mode nondegener-
ate parametric amplifier (NDPA) with Hermitian Hamilto-
nian ĤNDPA,multi, whose non-Hermitian dynamical matrix MN

takes the form [see Eq. (C2)]

MN =
(

μa ν

−ν† −μT
b

)
, (D1)

we would like to know if there exists unitary matrix U†
M that

transforms MN to an effective non-Hermitian Hamiltonian
matrix HPT with explicit PT symmetry

UMMNU†
M = σN,x(UMMNU†

M)∗σN,x, (D2)

or equivalently

MN = U†
MσN,xU∗

MM∗
NUT

MσN,xUM (D3)

⇒MN = WMM∗
NW†

M, (D4)

where WM = U†
MσN,xU∗

M. Thus, to determine the existence
of a unitarily equivalent HPT for dynamical matrix MN , we

can equivalently ask if there exists a symmetric, unitary matrix
WM that can be written in the form

WM = U†
MσN,xU∗

M, (D5)

such that Eq. (D4) is satisfied. Physically, being unitarily
equivalent to any PT -symmetric Hamiltonian can thus be
viewed as a generalized WM antiunitary symmetry for the dy-
namical matrix considered, with specific constraints imposed
on the unitary matrix WM.

In analogy to the derivation of canonical form for PT -
symmetric Hamiltonians HPT , we now transform MN to
a more tractable form. Noting that the N × N off-diagonal
block matrix ν can be written as singular value decomposition
ν = V†

a DνVb, or equivalently

VaνV†
b = Dν = Vbν

†V†
a , (D6)

we can transform the off-diagonal blocks into non-negative
diagonal matrix Dν :

H1 =
(
Va 0
0 Vb

)(
μa ν

−ν† −μT
b

)(
V†

a 0
0 V†

b

)

=
(
VaμaV†

a Dν

−Dν −Vbμ
T
b V

†
b

)
, (D7)

which can be rewritten in terms of N × N Hermitian matrices
�,� as

H1 =
(

� + � Dν

−Dν � − �

)
. (D8)

The next step is to rotate the anti-Hermitian part to diagonal
blocks via a unitary transformation, where we obtain

H2 =
(

� + iDν �

� � − iDν

)
= H1 + iν, (D9)

so that the equality in Eq. (D4) can be equivalently written as
the conditions on the 2N × 2N Hermitian matrix H1 and the
2N × 2N non-negative diagonal matrix ν :

H1 = W̃MH∗
1 W̃†

M, (D10a)

ν = −W̃M∗
νW̃†

M, (D10b)

where W̃M = Ũ†
MσN,xŨ∗

M should again be symmetric and
unitary for the unitary equivalence between MN and any PT -
symmetric Hamiltonian matrix HPT to exist. To proceed and
obtain necessary and sufficient conditions for the existence of
such unitary equivalence, we now assume that Dν is positive
definite, so that Eq. (D10b) requires that W̃M must take the
form

W̃M =
(

0 w12

wT
12 0

)
, (D11)

where the off-diagonal blocks must be unitary and commute
with the diagonal matrix [w12, Dν] = 0. We note that the
criterion W̃M = Ũ†

MσN,xŨ∗
M is automatically satisfied as

W̃M =
(
IN 0
0 wT

12

)(
0 IN

IN 0

)(
IN 0
0 w12

)
. (D12)
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Substituting the form of W̃M into Eq. (D10a), we obtain(
� �

� �

)(
0 w12

wT
12 0

)
=

(
0 w12

wT
12 0

)(
�∗ �∗
�∗ �∗

)
.

(D13)

We thus obtain a set of sufficient conditions for a given
dynamical matrix MN to be unitarily equivalent to a PT -
symmetric Hamiltonian HPT , which is the existence of a
unitary matrix w12 such that

w12� = �∗wT
12, (D14a)

w12� = �∗w12, (D14b)

which also commutes with the diagonal matrix [w12, Dν] =
0. For a positive-definite diagonal matrix Dν corresponding
to the parametric drivings, the conditions above will also be
necessary conditions.

APPENDIX E: EXAMPLES OF FOUR-MODE PT AND PA
MODELS WHERE THE CORRESPONDENCE FAILS

In this section, we will present a four-mode PT -symmetric
non-Hermitian Hamiltonian ĤPT ,4, for which there does not
exist any unitarily equivalent Hermitian parametric Hamil-
tonian of four (or less) modes. According to results in Ap-
pendix B, it suffices to only consider PT -symmetric Hamil-
tonians in the canonical form of H2 in Eq. (B3). We start with
a tight-binding four-mode Hamiltonian in the canonical form

Ĥtb,4 = i
γ

2
(â†

1â1 + â†
2â2 − b̂†

1b̂1 − b̂†
2b̂2)

+ g(â†
1â2 + b̂†

1b̂2 + â†
1b̂1 + â†

2b̂2 + H.c.), (E1)

where the coefficients γ and g are both real, so that it takes
the form of Ĥtb in Eq. (29) the main text. Now, we add a
Hermitian perturbation V̂1 as

V̂1 = δ(iâ†
2b̂2 + H.c.), (E2)

so that the total Hamiltonian is now given by Ĥ′
tb,4 = Ĥtb,4 +

V̂1. We note that the perturbation (δ > 0) breaks time-reversal
symmetry of the coherent part in the Hamiltonian Ĥ′

tb,4, which
still takes the canonical form in Eq. (B3) with component
coefficient 2 × 2 matrices now given by

�̃ = gσx, (E3a)

J̃ =
(

t + iδ

2

)
σ0 − iδ

2
σz, (E3b)

N = γ

2
σ0, (E3c)

for which we can check the conditions in Eqs. (C8) alge-
braically. It is straightforward but tedious to check these
conditions for all possible 2 × 2 unitary matrices w12. We
find that it is impossible to construct a unitary w12 such that
all the conditions are satisfied. Thus, we have constructed a
four-mode PT -symmetric Hamiltonian to which there does
not exist any unitarily equivalent PA system having four or
less modes.

Conversely, there also exists parametric model whose
dynamical matrix is not unitarily equivalent to any PT -

symmetric system with equal number of modes. If we have
a parametric model that (up to a local gauge transformation)
fits the form in Eq. (38),

Ĥp.a.,4 = g(â†
1â2 − b̂†

1b̂2) + ν1â†
1b̂†

1 + ν2â†
2b̂†

2 + H.c., (E4)

where g and ν1 �= ν2 are real positive parameters, then the
correspondence can be broken by adding a Hermitian per-
turbation as beam-splitter interactions with completely imag-
inary phase V̂2 = δ(iâ†

1â2 − ib̂†
1b̂2 + H.c.), where we assume

δ > 0 without lack of generality. We note that the perturbation
introduces a nontrivial phase into the parametric Hamiltonian,
and the dynamics of the system can still be described by a 4 ×
4 non-Hermitian dynamical matrix, which is automatically in
the form in Eq. (D8). The corresponding canonical form in
Eq. (D8) now has coefficient 2 × 2 matrices as

� = gσx, (E5a)

� = −δσy, (E5b)

Dν = ν1 + ν2

2
σ0 + ν1 − ν2

2
σz, (E5c)

but now the dynamics is not unitarily equivalent to any four-
mode PT -symmetric Hamiltonian.

APPENDIX F: HIGHER-ORDER EXCEPTIONAL POINT
IN PA SYSTEMS

In Sec. IV A of the main text, we have presented EP
enhanced mode splitting based on the

√
ε scaling of the

splitting of eigenvalues in a PT -symmetric non-Hermitian
system. With some minor twists on the multimode mapping in
Sec. III B, unitary mappings from PT -symmetric system with
odd number of modes to nondegenerate parametric amplifiers
with equal number of modes could also be constructed. The
idea is to leave the single PT -symmetric mode unchanged,
perform mapping for the rest of the modes as before, and
assign coherent, particle-number-conserving interaction terms
to realize dynamics of the remaining bosonic mode. As pro-
posed in Refs. [58–60], such NDPA could exhibit higher-order
exceptional point, with mode-splitting scaling as ε1/3.

We first describe the basic ingredients of higher-order
exceptional point and the corresponding enhanced mode split-
ting in a PT -symmetric three-mode system. Although the
higher-order exceptional points can also be found in systems
with more number of modes, we focus on the PT trimer setup
for demonstrating purpose. The sensing scheme now consists
of an unperturbed three-mode system with the Hamiltonian
given by

HHOEP[0] =
⎛
⎝+i γ

2 g 0
g 0 g
0 g −i γ

2

⎞
⎠, (F1)

and we intend to estimate the small parameter ε by probing
the output power spectrum of the perturbed Hamiltonian

H[ε] =
⎛
⎝+i γ

2 g 0
g ε g
0 g −i γ

2

⎞
⎠. (F2)

If the unperturbed Hamiltonian H[0] is set to the third-order
EP (gc = √

2γ /4), then the power spectrum has a single
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resonance peak. In this case, the small perturbation ε in
the mode detuning will induce mode splitting in the output
spectrum, which scales as ε1/3 and may be even more sensitive
than the splitting scaled as

√
ε in PT dimer settings. The ε1/3

scaling of mode splitting with respect to small ε perturbations
close to the third-order exceptional point has recently been
verified in optical experiments [61].

Again, we aim to achieve the same ε1/3 scaling of mode
splitting in a PA setup, without having to introduce any ex-
ternal bath (i.e., noise source). Applying the unitary mapping
in Sec. II B to the two-mode subsystem with gain and loss,
the corresponding ε-dependent NDPA Hamiltonian can be
obtained as

ĤNDPA,3[ε] = εb̂†b̂ +
(√

2gâ†
2b̂ + i

ν

2
â†

1â†
2 + H.c.

)
, (F3)

where the detuning term ε becomes the detuning term of the
third bosonic mode b, and the gain and loss at rate γ are
transformed into the parametric drive with strength ν = γ .
Note that this bosonic Hamiltonian has the general structure of
a driven three-mode optomechanical system, where a mechan-
ical resonator â2 interacts with two electromagnetic modes
b̂, â1 via radiation-pressure interactions. This setup has been
previously studied for entanglement generation [62–65].

It is also interesting to consider the form of the Hamiltonian
when ε = 0, g = √

2γ /4 and we are exactly tuned to the
EP. As discussed in Sec. II C, EP’s in bosonic Hamiltonians
coincide with conserved Hermitian quadrature variables. The
same is true in our system. Making the gauge change b̂ →
b̂′ = −ib̂, the Hamiltonian at the exceptional point can be
written

ĤNDPA,3 = γ

2
[X̂2(P̂1 − P̂b′ ) + P̂2(X̂1 + X̂b′ )], (F4)

where we have introduced standard quadrature operators for
each mode. It follows immediately that there are two con-
served quadratures Q̂± in this system:

Q̂− = 1√
2

(P̂1 − P̂b′ ), (F5)

Q̂+ = 1√
2

(X̂1 + X̂b′ ). (F6)

APPENDIX G: QMFS FOR MULTIMODE SYSTEMS:
CONSTRUCTION AND CORRESPONDING SYMPLECTIC

TRANSFORMATIONS

In Sec. III C, we discussed how the dynamics of an arbi-
trary N-mode non-Hermitian Hamiltonian could be realized
using a QMFS embedded in a 2N-mode bosonic system. We
provide more details here as to how one constructs such multi-
mode QMFS, and also discuss properties of the corresponding
symplectic transformation generated by this dynamics.

1. Constraints on a general QMFS

Consider an N-mode linear and Hermitian bosonic system
where the dynamics does not couple canonically conjugate

quadratures. We can write the equations of motion as

∂t �̂q(t ) = A(t ) �̂q(t ), (G1a)

∂t �̂π (t ) = B(t ) �̂π (t ), (G1b)

where A(t ) and B(t ) are generic real dynamical matrices, and
�̂q and �̂π are both column vectors formed by N quadrature
operatures satisfying the canonical commutation relations as

[q̂ j, π̂ j′ ] = iδ j j′ , (G2)

with all other commutators between the quadratures vanishing
[q̂ j, q̂ j′ ] = [π̂ j, π̂ j′ ] = 0.

We require the dynamics to preserve the canonical commu-
tation relations at all times. It is straightforward to show that
a necessary and sufficient condition to ensure this is that at all
times

B(t ) = −AT (t ) (G3)

for all time t .
Similarly, if integration of the equations of motion yields

�̂q(t ) = UA(t ) �̂q(0), (G4a)

�̂π (t ) = UB(t ) �̂π (0), (G4b)

then the preservation of canonical commutation relations
holds if and only if

UA(t )UT
B (t ) = IN . (G5)

2. QMFS for realizing arbitrary multimode
non-Hermitian dynamics

We can use the results above to verify the QMFS dynamics
presented in Sec. III C does indeed correspond to a Hermitian
bosonic Hamiltonian. In Sec. III C, an arbitrary non-Hermitian
Hamiltonian HN was encoded in a QMFS via Eq. (42a), i.e.,

i∂t �̂z+ = HN �̂z+, (G6)

with pseudomodes �z± defined in Eq. (41).
In terms of the column vectors formed by quadrature

operators �̂x+ and �̂p−, we have

∂t

( �̂x+
�̂p−

)
=

(
Im HN ReHN

− ReHN Im HN

)( �̂x+
�̂p−

)
. (G7)

Now, using Eq. (G3) to ensure conjugate quadratures evolve
appropriately, we obtain

∂t

( �̂p+
−�̂x−

)
=

(−Im HT
N ReHT

N
− ReHT

N −Im HT
N

)( �̂p+
−�̂x−

)
. (G8)

The above equation is equivalent to

i∂t �̂z− = H†
N
�̂z−, (G9)

as given in Sec. III C. It thus follows that the QMFS dynamics
given in Sec. III C does indeed preserve canonical commuta-
tion relations.

The above approach is also valid for an arbitrary time-
dependent non-Hermitian dynamical matrix HN (t ). Note first
that the classical amplitude evolution is controlled by the
N × N complex matrix UN (t ). It satisfies

i∂tUN (t ) = HN (t )UN (t ). (G10)
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In terms of the quadratures x̂±, j and p̂±, j , we have( �̂x+(t )
�̂p−(t )

)
=

(
ReUN (t ) − Im UN (t )
Im UN (t ) ReUN (t )

)( �̂x+(0)
�̂p−(0)

)
,

(G11a)( �̂p+(t )
−�̂x−(t )

)
=

(
ReVN (t ) Im VN (t )

− Im VN (t ) ReVN (t )

)( �̂p+(0)
−�̂x−(0)

)
,

(G11b)

where the coefficient matrix VN (t ) is defined as

VN (t ) ≡ [
UT

N (t )
]−1

. (G12)

It follows immediately that the constraint in Eq. (G5) is
obeyed.

Finally, the above transformation can be equivalently de-
scribed in terms of the bosonic annihilation and creation
operators as(�̂a(t )

�̂b(t )

)
= A(t ) ·

(�̂a(0)
�̂b(0)

)
+ B(t ) ·

(�̂a†(0)
�̂b†(0)

)
, (G13)

where

A(t ) = 1

2

(
UN (t ) + [U†

N (t )]−1 0
0 U∗

N (t ) + [
UT

N (t )
]−1

)
,

(G14a)

B(t ) = 1

2

(
0 UN (t ) − [U†

N (t )]−1

U∗
N (t ) − [

UT
N (t )

]−1
0

)
.

(G14b)

3. Bloch-Messiah representation of the multimode
QMFS evolution

As discussed above, the non-Hermitian Hamiltonian HN (t )
induces a symplectic (i.e., unitary) transformation in the cor-
responding bosonic QMFS system. To understand its nature
better, it is helpful to use the Bloch-Messiah (BM) decompo-
sition [45]. This reduces an arbitrary Gaussian unitary to a se-
quence of three simple operations: a beam-splitter operation,
a product of single-mode squeezing operations, then another
beam-splitter operation.

In terms of Eq. (G13), the Bloch-Messiah decomposition
corresponds to

A = UBMDAV †
BM, (G15a)

B = UBMDBV T
BM, (G15b)

where UBM and VBM are unitary, and DA, DB are non-negative
diagonal matrices with the constraint D2

A = D2
B + I2N .

The Bloch-Messiah matrices can be explicitly computed.
We first write a singular value decomposition for the time-
evolution matrix UN (t ) in Eq. (G10):

UN (t ) = W1DUW †
2 , (G16)

and then use this to define the diagonal unitary matrix WU :

WU =
√(

DU − D−1
U

)∣∣DU − D−1
U

∣∣−1
. (G17)

these definitions, the unitary matrices in the BM decomposi-
tion (describing initial and final beam-splitter operations) are
given by

UBM =
(

W1 0
0 W ∗

1

)
1√
2

(
1 −1
1 1

)(
WU 0
0 W ∗

U

)
,

(G18a)

V †
BM =

(
W ∗

U 0
0 WU

)
1√
2

(
1 1

−1 1

)(
W †

2 0
0 W T

2

)
.

(G18b)

Correspondingly, the diagonal matrices describing the squeez-
ing operations in the BM decomposition can be computed as

DA =
(

DU+D−1
U

2 0

0 DU+D−1
U

2

)
, (G19a)

DB =
⎛
⎝

∣∣D−1
U −DU

∣∣
2 0

0

∣∣D−1
U −DU

∣∣
2

⎞
⎠. (G19b)

APPENDIX H: REVIEW OF THE EP ENCIRCLING

In this Appendix, we briefly review the quasiadiabatic
dynamical phenomena by encircling an EP in two-mode
non-Hermitian systems. We use the convention in Ref. [8]
for clarity. We consider a system evolving according to the
time-dependent non-Hermitian Hamiltonian Hω(t ) given in
Eq. (51) whose instantaneous eigenvalues are given by

λ±(t ) = ±
√

[ω(t ) + iγ /2]2 + g(t )2. (H1)

We assume that the parameters are varied at a rate much
slower than the eigenvalue gap |λ+ − λ−|. We choose the left
(right) instantaneous eigenvectors �l±(t ) [�r±(t )] of Hω(t ) to be
biorthonormal and satisfy �l± = �r±, implying

�r± = (1 + ρ2
±)

− 1
2

(
ρ±
1

)
, (H2a)

ρ± = ω + iγ /2 + λ±
g

. (H2b)

We consider varying parameters g(t ) and ω(t ) along a
circle that encloses the EP:

g(t ) = g0 + ε cos φ(t ), (H3a)

ω(t ) = ε sin φ(t ), (H3b)

where the center of the circle is taken to be the exceptional
point g0 = γ /2, and ε < γ /2 is a small positive parameter
characterizing the encircling radius. The circling phase is
chosen such that EP is encircled once, with φ(ti) = φ(t f )
during the time duration that we consider, and the evolution
time is chosen such that t f − ti = T  1/|λ+ − λ−|.

The system is prepared in one of the instantaneous eigen-
modes (e.g., the λ+ branch) �z(ti) = �r+(ti ) at the beginning
time ti, and we consider solution to the equation of motion
i∂t�z = Hω�z. For the Hamiltonian matrix Hω(t ) at given time
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t , we expand the state vector �z(t ) at time t in terms of
instantaneous eigenvectors as

�z(t ) = c+(t )�r+(t ) + c−(t )�r−(t ). (H4)

If the dynamics were adiabatic, we would expect the
amplitude c−(t ) to be negligible for the entire protocol.
Note that as the EP is encircled once during the time
evolution, the instantaneous eigenmodes undergo a switch by
the end of the evolution, i.e., λ±(t f ) = λ∓(ti ). Surprisingly,
for the path that encircles the EP once, the adiabatic prediction
holds for parametric encircling path along only one direction,
whereas a nonadiabatic transition will occur in the opposite
direction, as depicted in Fig. 4 in the main text. This chiral
mode switching phenomenon could be interpreted physically
as a consequence of stability loss delay [8].

APPENDIX I: EXCEPTIONAL POINT ENCIRCLING:
DETAILS

We present here additional details for the quasiadiabatic
exceptional point encircling dynamics presented in Sec. IV B;
the focus is on how the dynamics of the non-Hermitian gain-
loss dimer Hamiltonian Hω(t ) [cf. Eq. (51)] directly deter-
mines the quantum evolution in our Hermitian, four-mode
bosonic system [Hamiltonian ĤωPA(t ), cf. Eq. (22)]. We will
make explicit use of the Bloch-Messiah (BM) reduction of the
symplectic transformation generated by Hω(t ) (as introduced
in Appendix G 3).

1. Symmetry constraints

Note first that, by construction, Hω(t ) is a symmetric ma-
trix, and satisfies the chiral symmetry condition {Hω(t ), σy} =
0. As a result, the amplitude-evolution matrix Uω(t ) generated
by Hω(t ) [cf. Eq. (52)] obeys the constraint

[
UT

ω (t )
]−1 = σyUω(t )σy. (I1)

It also follows that det Uω(t ) = 1.
These conditions can be used to constrain the form of

the unitary operator Ûω(t ) which describes evolution in the
four-mode Hermitian bosonic system corresponding to Hω(t )
(constructed using the QMFS approach). One finds that the
diagonal matrices DA(t ) and DB(t ) in the BM reduction of
Ûω(t ) [cf. Eqs. (G13) and (G15)] are both proportional to the
unit matrix, i.e.,

DA(t ) = cosh λs(t )I4, (I2a)

DB(t ) = sinh λs(t )I4, (I2b)

with the squeezing parameter λs(t ) given by

cosh λs(t ) = 1

2

√
tr[U†

ω(t )Uω(t )] + 2. (I3)

It follows that the squeezing part of the BM decomposition
necessarily corresponds to four identical single-mode squeez-
ing operations.

2. Symplectic transformation for the four-mode QMFS
Hermitian bosonic system

We now derive the explicit form of the symplectic
transformation for the collective quadratures x̂±, j and q̂±, j

( j = 1, 2) under the time evolution generated by the time-
dependent parametric Hamiltonian ĤωPA(t ) [cf. Eq. (22)].
Using Eq. (G11), we immediately have

⎛
⎜⎝

x̂1,+(t )
x̂2,+(t )
p̂1,−(t )
p̂2,−(t )

⎞
⎟⎠ =

(
ReUω(t ) − Im Uω(t )
Im Uω(t ) ReUω(t )

)⎛
⎜⎝

x̂1,+(0)
x̂2,+(0)
p̂1,−(0)
p̂2,−(0)

⎞
⎟⎠, (I4a)

⎛
⎜⎝

p̂1,+(t )
p̂2,+(t )

−x̂1,−(t )
−x̂2,−(t )

⎞
⎟⎠ =

(
ReVω(t ) Im Vω(t )

− Im Vω(t ) ReVω(t )

)⎛
⎜⎝

p̂1,+(0)
p̂2,+(0)

−x̂1,−(0)
−x̂2,−(0)

⎞
⎟⎠,

(I4b)

where Vω(t ) ≡ [UT
ω (t )]−1 [see Eq. (G12)].

As derived in Eq. (I1), the chiral symmetry of Hω(t )
ensures the equality Vω(t ) = σyUω(t )σy, so that the equation
of motion (I4b) can be equivalently rewritten in terms of the
matrix Uω(t ) as⎛
⎜⎝

x̂2,−(t )
−x̂1,−(t )
p̂2,+(t )

−p̂1,+(t )

⎞
⎟⎠ =

(
ReUω(t ) Im Uω(t )

− Im Uω(t ) ReUω(t )

)⎛
⎜⎝

x̂2,−(0)
−x̂1,−(0)
p̂2,+(0)

−p̂1,+(0)

⎞
⎟⎠.

(I5)

Note that the symplectic transform presented here in terms
of the collective quadratures x̂±, j and p̂±, j is equivalent to
the one discussed in Eq. (53) in the main text, which can
be compactly written using the pseudomodes ẑ j and ˆ̃z j [cf.
Eqs. (21) and (23)] as(

ẑ1(t )
ẑ2(t )

)
= Uω(t )

(
ẑ1(0)
ẑ2(0)

)
, (I6a)

(
ˆ̃z1(t )
ˆ̃z2(t )

)
= [U†

ω(t )]−1

(
ˆ̃z1(0)
ˆ̃z2(0)

)
. (I6b)

3. Comparing symplectic transformations for clockwise
and counterclockwise encirclings

Consider a general case of a multimode Hermitian bosonic
system which corresponds (via the QMFS mapping) to a time-
dependent non-Hermitian Hamiltonian. We take this latter
Hamiltonian to be symmetric and periodic (period T0), i.e.,

HN (t ) = HT
N (t ) = HN (t + T0). (I7)

As discussed in Appendix G, the corresponding symplectic
transformations in the QMFS setup are fully characterized by
the nonunitary time-evolution matrices UN (T0) and ŨN (T0),
which are t = T0 solutions to the equations of motion

i∂tUN (t ) = HN (t )UN (t ), (I8a)

i∂t ŨN (t ) = HN (−t )ŨN (t ). (I8b)
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As (by assumption) HN (t ) is a symmetric matrix, one finds

ŨN (t ) = [
UT

N (−t )
]−1

. (I9)

Furthermore, periodicity of HN (t ) leads to the relation that
UN (−T0) = [UN (T0)]−1, so that we have

ŨN (T0) = [
UT

N (−T0)
]−1 = UT

N (T0). (I10)

We see that the classical amplitude-evolution matrices
associated with forward and backward evolution are related
by a simple transpose operation. We can use this and the
results of Appendix G 3 to then directly relate the unitary
evolutions in the corresponding four-mode bosonic QMFS
systems. It follows that the BM decompositions for forward
and backward evolution are related via

ŨBM(T0) = V ∗
BM(T0), (I11a)

ṼBM(T0) = U ∗
BM(T0), (I11b)

D̃A(T0) = DA(T0) ⇔ D̃B(T0) = DB(T0). (I11c)

Here, tildes indicate backward evolution. Note that the
squeezing aspect of the evolution (as parametrized by the D
matrices) is the same irrespective of the direction. Finally,
note that these results apply directly to our two-mode problem
of interest [i.e., HN (t ) → Hω(t ), UN (t ) → Uω(t )], as Hω(t )
satisfies Eq. (I7).

4. Evolution of quantum states via EP encircling

a. Evolution of an initial vacuum state

Having built up the necessary machinery, we can now study
how the switching dynamics encoded in Uω(t ) influences the
evolution of quantum states in our four-mode bosonic system
(lowering operators â1, â2, b̂1, b̂2). The unitary evolution op-
erator Ûω(t ) of our system is defined by

i∂tÛω(t ) = ĤωPA(t )Ûω(t ), Ûω(t = 0) = I, (I12)

where ĤωPA(t ) is given by Eq. (22). Ûω(t ) generates a sym-
plectic (i.e., commutation-relation preserving) linear trans-
formation of the system’s mode operators. As established in
Appendix I 2, the form of this transformation is completely
determined by the amplitude-evolution matrix Uω(t ) of the
original non-Hermitian problem.

As in the main text, we consider a cyclic evolution where
(g(t ), ω(t )) evolve along a closed circle, starting and ending
at the same point in parameter space. The non-Hermitian
system’s evolution is different for these two directions, corre-
sponding to two distinct evolution matrices U�(t ) and U�(t ).
When transformed to the instantaneous eigenmode basis of
Hω(t ), one of these encodes the switching behavior seen in
Fig. 4, the other has no switching behavior.

Using our mapping, we have two corresponding unitary
transformations Û�(t ) and Û�(t ) for our quantum four-mode
system; we wish to understand their asymmetry. This is best
accomplished by using the Bloch-Messiah decomposition (see
Appendix I 3), which represents each transformation as a
product of two beam-splitter transformations, interspersed
with a (diagonal) squeezing transformation. We find that
the squeezing associated with both Û�(T ) and Û�(T ) are

identical, with the asymmetry manifesting itself only in the
beamsplitter operations [cf. Eqs. (I11)].

To see the physical consequences of this asymmetry, con-
sider first the case where all four modes start in vacuum,
and parameters are cyclically evolved on the path shown in
Fig. 4(a). CW or CCW traversal of this path results in two
different final states for our four bosonic modes, |��(t = T )〉
versus |��(t = T )〉. These final states are necessarily Gaus-
sian and have zero means, and are thus fully characterized by
their covariance matrix. First, consider beam-splitter-type cor-
relations between a and b modes. Due to the block structure
of the symplectic transformation in Eqs. (G14), these vanish
for all times t , i.e.,

〈â†
j (t )b̂ j′ (t )〉 = 〈b̂†

j (t )â j′ (t )〉 = 0. (I13)

Moreover, the photon numbers are identical for all four
modes:

〈â†
j (t )â j′ (t )〉 = 〈b̂†

j (t )b̂ j′ (t )〉 = δ j j′sinh2λs

= δ j j′

4
(tr[U†

ω(t )Uω(t )] − 2). (I14)

As the squeezing parameter λs is the same at the final time
T irrespective of encircling direction, the same is necessarily
true for these average photon numbers.

Finally, the only nonzero anomalous (squeezing) correla-
tors are given by

〈â j (t )b̂ j′ (t )〉 = 〈b̂ j′ (t )â j (t )〉 = Dj j′ , (I15)

D = 1
4Uω(t )U†

ω(t ) − 1
4 [Uω(t )U†

ω(t )]−1, (I16)

where D is a Hermitian matrix. These correlators (at the final
time t = T ) will depend on the direction of the encircling.

Finally, we could look at bipartite entanglement between
different subsystems. Consider, for example, the entanglement
between the a subsystem (formed by modes a1, a2) and the b
subsystem (formed by modes b1, b2). Quantifying the entan-
glement via the logarithmic negativity EN [46,47], one finds

EN [ρab(t )] = (cosh λs + 1) ln (cosh λs)

− (cosh λs − 1) ln (sinh λs). (I17)

The entanglement only depends on the squeezing paramter λs.
As this is identical for both encircling directions, the gener-
ated a − b entanglement is thus also insensitive to direction.
The net result is that if we start with a vacuum state, the
asymmetry between the states |��(t = T )〉 and |��(t = T )〉
is subtle: both have the same average photon number and
entanglement properties, and differ only in the phase of two-
mode squeezing correlators between a and b modes.

b. Construction of an asymmetric initial quantum state

We now finally turn to the case presented in Sec. IV B of
the main text, where we consider an initial, pure quantum
state that corresponds to selectively populating one of the
two eigenmodes of Hω(0). In the classical case, the chiral
mode switching behavior depends crucially on having such
an asymmetric initial state. The same is true in the quantum
case.
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To construct a suitable initial state, we first consider the
classical two-mode problem. Using our convention for the
instantaneous eigenvectors �r+(t ), �r−(t ) of Hω(t ), one finds
that the vectors �r+(t ) and (�r−(t ))∗ are orthogonal. They thus
serve as a good basis, and we can write any initial set of
amplitudes in the classical problem as

�z = ξ
�r+
|�r+| + ξ⊥

(�r−)∗

|�r−| , (I18)

where ξ and ξ⊥ are complex numbers. ξ⊥ is proportional to
the amplitude c− defined in Eq. (55), whereas ξ describes the
amount of population in the mode �r+ (when we make this
vector part of an orthonormal basis).

We could now imagine a random classical state which
selectively populates the + eigenmode with a random phase.
In particular, take ξ, ξ⊥ to be complex Gaussian random vari-
ables with zero mean, and where the only nonzero covariances
are

(Re ξ )2 = (Im ξ )2 = 1
2 e2λ0 , (I19a)

(Re ξ⊥)2 = (Im ξ⊥)2 = 1
2 e−2λ0 . (I19b)

The parameter λ0 > 0 determines the asymmetry of the initial
state.

Turning to our quantum system, the components of ẑ
become operators as per Eqs. (16) and (21): they are linear
combinations of the QMFS collective quadrature operators
(x̂+,1, x̂+,2, p̂−,1, p̂−,2). It immediately follows that the am-
plitudes ξ , ξ⊥ become commuting operators that are linear
combinations of these QMFS collective quadrature operators;
one can easily find the relevant orthogonal transformation.

We can now construct a quantum Gaussian state where
the operators ξ̂ , ξ̂⊥ have a covariance matrix that coincides
with Eqs. (I19). This in turn defines the covariance matrix
of the QMFS collective quadrature operators. This of course
does not specify the entire state: we also need to specify co-
variances involving collective quadratures conjugate to those
in the QMFS, i.e., ( p̂+,1, p̂+,2,−x̂−,1,−x̂−,2). We do this by
insisting on three additional requirements:

(i) The covariance matrix of the entire system describes a
physical state compatible with the uncertainty principle [66].

(ii) The covariance matrix of the entire system describes a
pure state.

(iii) There are no classical (i.e., symmetrized) correlations
between a collective quadrature from the main QMFS and the
secondary QMFS.

These conditions allow us to find a pure zero-mean Gaus-
sian state parametrized by λ0, where the amplitude operators
ξ̂ , ξ̂⊥ have covariances given by Eqs. (I19). This is the kind
of initial state used for the calculations of entanglement
dynamics in Sec. IV B.

Note that while our state clearly has a strong asymmetry
favoring the + instantaneous eigenmode, there is still some
population of the − eigenmode, as ξ⊥ is not exactly zero. One
cannot find a physical state where 〈ξ̂ †

⊥ξ̂⊥〉 is strictly zero as this
would violate the uncertainty principle (i.e., as this quantity
becomes smaller and smaller, the covariances of operators
outside of the QMFS would diverge).

APPENDIX J: RELATING NON-HERMITIAN AND
BOSONIC TOPOLOGICAL INVARIANTS

In this Appendix, we exploit the mappings established
earlier to show that non-Hermitian Chern numbers [52] are
equivalent to the Chern numbers for anomalous bosonic
problems.

1. Relating Bogoliubov transformations to
non-Hermitian eigenvectors

As a prerequisite, we will establish the connection between
Bogoliubov transformations (in the bosonic problem) to the
eigenvectors of the non-Hermitian problem.

Consider first a translationally invariant Hermitian bosonic
2D lattice model having a primitive unit cell with N sites. The
Hamiltonian can be written as Ĥ = 1

2

∑
k Ĥk, where the Bloch

Hamiltonian for quasimomentum k has the general form

Ĥk =
N∑

i, j=1

(μk,i j â
†
k,iâk, j + μ−k,i j â

†
−k,iâ−k, j )

+
N∑

i, j=1

(νk,i j â
†
k,iâ

†
−k, j + H.c.), (J1)

where âk,i is the annihilation operator corresponding to quasi-
momentum k and site i in the unit cell. Hermiticity requires
μk = μ

†
k; further, νk = νT

−k as bosonic lowering operators
commute.

The Heisenberg equations of motion now take the compact
form

i∂t |âk〉 =
(

μk νk

−ν
†
k −μT

−k

)
|âk〉, (J2)

where we define the column vector |âk〉 formed by the 2N
coupled operators as

|âk〉 = (âk,1, âk,2, . . . , âk,N , â†
−k,1, â†

−k,2, . . . , â†
−k,N )T .

(J3)

We can now interpret the dynamical matrix of our driven
bosonic system as an effective non-Hermitian Bloch Hamil-
tonian Heff (k) of a lattice with 2N sites in the unit cell,

Heff (k) =
(

μk νk

−ν
†
k −μT

−k

)
. (J4)

This non-Hermitian Bloch Hamiltonian is related to the
Hermitian Bogoliubov–de Gennes (BdG) Bloch Hamiltonian
HBdG(k) by Heff (k) = σN,zHBdG(k), where

HBdG(k) =
(

μk νk

ν
†
k μT

−k

)
(J5)

and σN,z is a z Pauli matrix in particle-hole space.
We next define the left and right eigenvectors of the matrix

Heff (k):

Heff (k)|k, j〉R = Ej (k)|k, j〉R, (J6)

L〈k, j|Heff (k) = Ej (k)L〈k, j|. (J7)
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Here, j = 1, 2, . . . , 2N , and we choose the eigenvectors to
satisfy the biorthonormal condition

L〈k, j | k, j′〉R = δ j, j′ . (J8)

We will focus exclusively on the regime where the para-
metric driving is sufficiently weak that our system is stable,
and the spectrum Ej (k) is purely real. Ĥk can then be diag-
onalized via a Bogoliubov transformation. Not surprisingly,
the quasiparticle operators that diagonalize the Hamiltonian
are directly related to the eigenvectors of Heff (k). To see this
explicitly, we use the fact that all left eigenvectors either have
a real, nonzero “expectation” of σN,z that is either positive or
negative (see, e.g., [67]). They can thus be chosen to obey the
symplectic normalization condition

L〈k, n,±|σN,z|k, n′,±〉L = ±δn,n′ . (J9)

All left eigenvectors are now labeled by a sign ±, and the
index n runs from 1 to N . We denote the corresponding
eigenvalues En,±(k). With this convention, it follows from
Eq. (J8) that the corresponding right eigenvectors are given
by

|k, n,±〉R = ±σN,z|k, n,±〉L. (J10)

The eigenvectors now let us express the equations of motion
in diagonal form; this can be accomplished by using the
positive-norm eigenvectors only. We introduce new bosonic
quasiparticles via

β̂k,n = L〈k, n,+ | â〉.
They satisfy

i∂t β̂k,n = En,+(k)β̂k,n.

This represents a canonical Bogoliubov transformation, and
the Hamiltonian is diagonal when expressed in terms of these
operators. We thus see the (expected) relation between the
Bogoliubov transformation and the eigenvectors of our non-
Hermitian Hamiltonian.

2. Equivalence of bosonic and non-Hermitian Chern numbers

With the above relations in hand, we can now show that
the non-Hermitian Chern number introduced in Ref. [52]
coincides with the previously introduced Chern number for
anomalous bosonic problems [53].

We start with the bosonic system. The Berry connection
Ann(k) for the nth band was introduced in Refs. [39,53,54] as

Ann(k) = i · L〈k, n|σN,z∇k|k, n〉L, (J11)

and the corresponding (quantized) Chern number is given by

Cn = 1

2π

∫
BZ

(∇ × Ann) · ẑ d2k. (J12)

This serves as a topological invariant to characterize bands in
an anomalous, stable bosonic system.

Now, using Eq. (J10), we can equivalently write this Chern
number in terms of left and right eigenvectors of the non-

Hermitian Hamiltonian Heff (k):

Cn = 1

2π

∫
BZ

(∇ × Ann) · ẑd2k

= i

2π

∫
BZ

ε3i j∂i(L〈k, n,+|∂ j |k, n,+〉R)d2k

= i

2π

∫
BZ

ε3i j (∂i〈k, n,+|L)(∂ j |k, n,+〉R)d2k. (J13)

We can now compare this expression against the gener-
alized Chern numbers Nαβ

n introduced in Ref. [52] for 2D
non-Hermitian Hamiltonians. These are defined as

Bαβ
n,i j (k) = i

〈
∂iψ

α
n (k)

∣∣∂ jψ
β
n (k)

〉
, (J14)

Nαβ
n = 1

2π

∫
BZ

εi jB
αβ
n,i j (k)d2k. (J15)

Here, the indices α, β = L, R, and |ψL
n (k)〉 [|ψR

n (k)〉] denotes
the left (right) eigenvector of the given non-Hermitian Bloch
Hamiltonian H(k). Reference [52] shows that all four Chern
numbers Nαβ

n for a given band n are identical.
We see now that the bosonic Chern number in Eq. (J13)

is identical to the generalized non-Hermitian Chern number
NLR

n . Thus, as long as the bosonic Hamiltonian Ĥk has well-
defined Chern numbers, we can always find the correspond-
ing non-Hermitian lattice model Heff (k) whose topological
invariants are exactly the same.

While the correspondence found here here may not seem
that surprising, it provides an interesting recipe for con-
structing nontrivial non-Hermitian topological models: start
with a topological bosonic model, and then construct its
non-Hermitian analog. We pursue this approach in the next
Appendix.

APPENDIX K: TOPOLOGICAL PT -SYMMETRIC MODEL
INSPIRED BY THE MAPPING BETWEEN

PT AND PA SYSTEMS

1. Correspondence between the dimer kagome Hamiltonian
and the bosonic parametric model

Due to the correspondence between the Chern number
based on the bosonic symplectic normalization relation and
the generalized Chern number for the non-Hermitian dy-
namical matrix, the analysis in Ref. [54] on the topological
phases of the system also applies to the equivalent non-
Hermitian problem. One interesting and probably exotic fea-
ture for the bosonic model is that the nontrivial topological
phases are completely due to the parametric drive, without
which we would only have a trivial kagome lattice model
with nearest-neighbor tunnel couplings. Thus, for the non-
Hermitian model, nontrivial topological phases can only ex-
ist if the effective Hamiltonian has nonzero non-Hermitian
components. This is in contrast to some previous work based
on a topologically nontrivial coherent Hamiltonian on non-
Hermitian topological systems, where the anti-Hermitian part
of dynamics is usually introduced as a perturbation [38,48].
Here, we combine the correspondence of topological
phases and the mapping between some parametric models
and PT -symmetric systems to construct a non-Hermitian
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PT -symmetric lattice model, where nontrivial topological
phase emerges from an otherwise topologically trivial Hermi-
tian model when one adds balanced onsite gain and loss terms
to the model properly.

In Ref. [54], nontrivial topological states can be created
by adding parametric coupling with proper arrangement of
phases to a topologically trivial kagome lattice model that
only have identical coherent hopping. We consider a para-
metric Hamiltonian Ĥp.a.,kagome = Ĥ0 + ĤL consisting of a
topologically trivial tight-binding kagome lattice model that
conserves particle number

Ĥ0 = ω0

∑
j

â†
j
âj − J

∑
〈j,j′〉

â†
j′ âj′ , (K1)

and a local parametric drive term HL,

ĤL = −1

2
ν

∑
j

eiφs â†
j
â†
j
+ H.c., (K2)

where the index j = (j, s) = ( j1, j2, s) incorporates both pe-
riodicity in real space and sublattices s = A, B,C, and ν, φs

denote the parametric drive strength and phase, respectively.
Transforming the mode operators to the reciprocal k space,
the system dynamics is closed with respect to the set of opera-

tors |âk〉 = (âk,A, âk,B, âk,C, â†
−k,A, â†

−k,B, â†
−k,C )

T
, so that as a

special case of Eq. (J2), the equations of motion can be written
in the compact form

i∂t |âk〉 = Heff,K.(k)|âk〉, (K3)

where the dynamical matrix is given by

Heff,K.(k) =
(

ω0I3 − Jτ (k) h
−h† −ω0I3 + Jτ (k)

)
. (K4)

The matrix τ (k) is formed by geometrical factors of the tight-
binding kagome lattice

τ (k) =
⎛
⎝ 0 1 + e−ik·a1 1 + eik·a3

1 + eik·a1 0 1 + e−ik·a2

1 + e−ik·a3 1 + eik·a2 0

⎞
⎠, (K5)

where a1 = (−1,−√
3), a2 = (2, 0) are the lattice vectors,

and a3 = (−1,
√

3); the coefficient matrix h = −ν exp (i�),
I3 is the 3 × 3 identity matrix, and � is the diagonal matrix
formed by the phases carried by local parametric drives

� = diag(φA, φB, φC ) = diag(0, φ, 2φ), φ = 2π

3
. (K6)

The off-diagonal tunnelings in h can be rotated to onsite gain
and loss via a unitary transformation

UK = 1√
2

(
e2i� e2i�

ie−2i� −ie−2i�

)
(K7)

so that HPT ,K(k) = U†
KHeff,K(k)UK is

HPT ,K(k) =
(

�(k) − iνI3 �(k)
�(k) �(k) + iνI3

)
, (K8)

where �(k) and �(k) are Hermitian matrices with matrix
elements given by

�ss′ (k) = iJτss′ (k) sin (2φs − 2φs′ ), (K9a)

�ss′ (k) = ω0δss′ − Jτss′ (k) cos (2φs − 2φs′ ). (K9b)

The corresponding real-space Hamiltonian Ĥkagome for the
lattice model HPT ,K(k) is presented in Sec. IV C in the main
text.

Before ending this Appendix, we note that the unitary
mapping UK in Eq. (K7) is local in real space, so that any
topological edge modes of the parametric kagome lattice
model Ĥp.a.,kagome will also be mapped to topological edge
modes of the PT -symmetric model.
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