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coupled-waveguide system

Xiang-Wen Luo,1,* Qun-Yong Zhang,2,* Ping Xu,1,3,† Rong Zhang,1 Hua-Ying Liu,1 Chang-Wei Sun,1

Yan-Xiao Gong,1 Zhen-Da Xie,1,4 and Shi-Ning Zhu1

1National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
2Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian 223003, People’s Republic of China

3Institute for Quantum Information and State Key Laboratory of High Performance Computing, College of Computing,
National University of Defense Technology, Changsha 410073, People’s Republic of China

4National Laboratory of Solid State Microstructures and School of Electronic Science and Engineering, Nanjing University,
Nanjing 210093, People’s Republic of China

(Received 22 January 2019; published 24 June 2019)

High-dimensional quantum entangled states are a highly desired resource for their extended possibilities in
quantum information processing. In this paper, we introduce on-chip engineering of a variety of path-entangled
states based on the simultaneous enabling of spontaneous parametric down-conversion and efficient coupling
between waveguides in a quadratic coupled-waveguide system. By varying the properties of pump beams, the
phase-matching conditions, and the coupling coefficients in a three-coupled-waveguide system, it is possible to
generate the deterministic and robust three-path biphoton entangled states without any postprocessing, as well as
to transform the output photons among different types of path entanglement. This integrated implementation of
the entanglement source will become an important building block for practical applications of on-chip quantum
technologies.
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I. INTRODUCTION

Quantum entanglement is a vital physical resource in
quantum information science which includes quantum com-
putation, quantum communication, quantum metrology, and
fundamental physics in quantum mechanics [1]. One of the
most common methods for generating the source of entan-
gled photon pairs is to use the nonlinear optical process of
spontaneous parametric down-conversion (SPDC). In SPDC,
photons from a pump laser beam, within a nonlinear optical
medium, can spontaneously be converted into signal-idler
photon pairs that are momentum and energy conserved. En-
tangled states of a high-dimensional system, which endow
each photon with more shared information, are of particular
interest due to their extended capabilities [2]. They enable
the realization of various quantum communication schemes
that can offer higher-density coding and greater resilience to
errors in quantum computation [3,4]. High-dimensional en-
tangled states are an essential step for a deeper understanding
of quantum information processing and the foundations of
quantum mechanics. They have been realized by encoding
in many degrees of freedom, such as longitudinal momentum
[5], frequency domain [6], and orbital angular momentum [7],
etc.

Naturally, as path-encoded quantum states are used, scal-
ability and phase stability become great challenges for the
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traditional bulk optical approach in many quantum optical ex-
periments. An overwhelming solution is to develop integrated
photonic circuits which have become outstanding platforms
for various quantum technologies, including nonclassical state
generation [8,9], on-chip quantum devices [10–12], and quan-
tum information processing applications [13,14]. To harness
the path degree of freedom, integrated optical circuits are
usually built upon various architectures of directional couplers
which can be realized by designing closely adjacent waveg-
uides. By virtue of the coupling between adjacent channels,
a single photon launched into one of the waveguides can be
gradually distributed across the array. Gräfe et al. reported
on-chip generation of high-order W states by manipulating
the dynamic evolution of single photons in an evanescently
coupled linear waveguide system [15], but their photons are
generated externally to the array by using bulk photonic
elements before importing into the chip. Perez-Leija et al.
proposed a convenient method to generate photon-encoded W
states in multiport waveguide-array systems and demonstrated
the perfect transfer of path-entangled photons in these fully
integrable optical arrangements [16,17]. Nonlinear waveguide
arrays have also been widely explored as attractive platforms
for they can combine SPDC processes and quantum walks
in a single chip [18–20]. They further open the possibility
for the investigation of high-dimensional quantum states in a
fully integrated device. Solntsev et al. experimentally demon-
strated the simultaneous generation of correlated photon pairs
which reveal unique spatial correlations and their quantum
walks inside a nonlinear waveguide array [21]. However, these
investigations mainly focused on the properties of quantum
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FIG. 1. (a) Schematic diagram of the coupled-waveguide system
containing three parallel nonlinear waveguides. (b) The complete
system contains the pump multiplexer, the taper region, and the
three-coupled-waveguide system. (c) The transverse modal field of
the waveguide system corresponds to three different eigenmodes.

walks rather than on the preparation of specific entangled
states. Until recently, Kruse et al. demonstrated a two-in-one
waveguide source allowing for a robust two-photon NOON
state preparation when pumped into a single waveguide [22].
Wu et al. proposed a scheme for the generation of Bell states
in a system incorporating two coupled quadratic nonlinear
waveguides [23]. Setzpfandt et al. experimentally demon-
strated the generation of split states, robust NOON states,
and various intermediate regimes on a single chip driven by
two classical pump beams with a variable phase difference
[24,25]. Yang et al. theoretically investigated the transforma-
tion of different types of path-entangled states by modulating
the χ (2) distributions in a SPDC array [26]. To our knowledge,
in all schemes to date, it is not yet known how to produce and
manipulate versatile high-dimensional path-entangled states,
such as the W state or the Dicke state, which underlie the
keystones of on-chip quantum information processing. So in
this article we theoretically study the unique and reconfig-
urable generation of path-entangled states in high dimensions
but with a limited number of quadratic coupled-waveguide
systems. This moderate scale of coupled-waveguide systems
is frequently used to prepare the initial quantum states for the
cascaded quantum information processing.

This article is organized as follows. We give the description
of our device and derive the fully expanded expression of
a high-dimensional entangled state based on the eigenmode
basis in Sec. II. In Sec. III, we discuss manipulation of
the high-dimensional entangled state in a coupled-waveguide
system. In Sec. IV, we calculate the genuine multipartite
entanglement concurrence to quantify the high-dimensional
entanglement. Conclusions are given in Sec. V.

II. THREE-COUPLED-WAVEGUIDE SYSTEM

We begin from the three-coupled-waveguide system shown
in Fig. 1(a) which can be described by coupled-mode the-
ory under a weak-coupled condition and an ignorable next-
nearest-neighboring coupling. The substrate material can be
one of the quadratic nonlinear crystal with strong second-
order nonlinearity and the capability for ferroelectric poling,
such as LiNbO3 (LN) or LiTaO3 (LT). Three pump beams are
designed to originate from one single injected pump by an
on-chip 1×N beam-splitting network as shown in Fig. 1(b),
whose architecture consists of cascaded Mach-Zehnder inter-
ferometers [27], and thus the relative amplitude and phase

among the three waveguides can be precisely controlled.
The pump beam-splitting network is designed to be single
mode waveguides for the pump and a taper is cascaded to
transform into a wider single-mode waveguide but for the
down-converted photons.

Additionally, in our design we apply domain engineering
in the three-coupled waveguide region so as to introduce a
periodic poling with the proper length for the efficient genera-
tion of entangled photon pairs, which is widely used in quasi-
phase-matching (QPM) nonlinear optics [28,29]. The poling
period is designed to match the phase mismatch between the
fundamental modes of the pump, the signal, and the idler.
The signal-idler photon pairs are generated from the QPM
SPDC, and they can hop between the neighboring waveguides
due to evanescent coupling characterized by the coupling
coefficient κ , which is determined by the distance between
two adjacent waveguides and the operating wavelength of the
device. In degenerate SPDC, the pump frequency is twice that
of the degenerate down-converted photons; it is commonly
designed so that only the down-converted photons are affected
by the coupling geometry and will result in a two-photon
quantum walk while the pump photons remain uncoupled.
At the end face of this quadratic coupled-waveguide system,
the entangled photon source can be combined with cascaded
integrated waveguide circuits for further quantum information
processing.

Under the weak-coupling assumption, the coupled-mode
equations for the single mode of the classical light field in this
system can be written as [30]

dE1

dz
= −iβ1E1 + iκ12E2,

dE2

dz
= −iβ2E2 + iκ21E1 + iκ23E3, (1)

dE3

dz
= −iβ3E3 + iκ32E2,

where Ei (i = 1, 2, 3) represent the mode amplitudes of the
electric field in the corresponding waveguide i, βi are the
propagation constants along the z axis, and κi j represent
the coupling coefficients between adjacent waveguides i and
j. In the case of codirectional coupling, conservation of
energy calls for κi j = κ ji. For simplicity, we assume all the
waveguides are identical and regularly arrayed, i.e., β1 =
β2 = β3 = β0 and κ12 = κ21 = κ23 = κ32 = κ . According to
the coupled-mode analysis, the system eigenmodes can be
expressed as the superposition of the electric field in each
waveguide,

Ẽ = u1(�ρ)E1(z) + u2(�ρ)E2(z) + u3(�ρ)E3(z), (2)

where ui(�ρ) represent the transverse field distributions in
waveguide i. The longitudinal electric field satisfies the eigen-
value equation dẼ/dz = −iβẼ . If we substitute these formu-
las into Eq. (1) and keep the equation true at arbitrary ui(�ρ),
we can get the eigenvalues of the corresponding propagation
constants in the three-coupled-waveguide system as

βA = β0, βB = β0 −
√

2κ, βC = β0 +
√

2κ. (3)

The subscripts A, B, and C represent the three different
eigenmodes of the system which are shown in Fig. 1(c).
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Then the corresponding electric fields of these eigenmodes
can be rewritten as

ẼA = uA(�ρ)eiβAz = 1√
2

[u1(�ρ ) − u3(�ρ)]eiβAz,

ẼB = uB(�ρ )eiβBz = 1

2
[u1(�ρ) +

√
2u2(�ρ ) + u3(�ρ)]eiβBz, (4)

ẼC = uC (�ρ)eiβC z = 1

2
[u1(�ρ) −

√
2u2(�ρ) + u3(�ρ)]eiβC z,

where uA(�ρ), uB(�ρ), and uC (�ρ) represent the transverse field
distribution of each eigenmode.

In the case of individual waveguides, the presence of two
photons, one photon, and no photon at a given output site
corresponds to the states of |2〉, |1〉, and |0〉, respectively. The
full Hamiltonian of the three-coupled waveguide system can
be expressed by a linear part given by the free propagation
and the coupling behavior of the fields, as well as a nonlinear
interaction part describing the SPDC process. To derive the
generated biphoton state in the poled coupler system, we can
write the effective Hamiltonian in the interaction picture as

ĤI = ε0

∫
V

dV χ (2)E (+)
p Ê (−)

s Ê (−)
i + H.c., (5)

where ε0 is the vacuum permittivity, the integral is taken over
the interaction volume V , and χ (2) is the effective nonlinear
coefficient of the medium. E (+) and E (−) are positive- and
negative-frequency components of the field operators. The
subscripts p, s, and i represent the pump, the signal, and the
idler, respectively. H.c. denotes the Hermitian conjugate part.
To calculate the effective Hamiltonian, we can express the
fields in the eigenmode basis, and then the pump beam which
can be treated as a classical wave can be expressed as

E (+)
p =

∑
l

∫
dωpα(ωp)A(p)

l u(p)
l (�ρ)e

−i
[
β

(p)
l z−ωpt

]
, (6)

where l is the eigenmode of the pump photon, and α(ωp) is
the pump mode function which gives the energy-conservation
condition. A(p)

l is the pump excitation amplitude, and u(p)
l (�ρ) is

the transverse field distribution of the pump photon. The sig-
nal and idler fields are usually treated quantum mechanically:

Ê (−)
s =

∑
m

∫
dωsu

(s)
m (�ρ)ei[β (s)

m z−ωst]â(s)†
m , (7)

and

Ê (−)
i =

∑
n

∫
dωiu

(i)
n (�ρ)ei[β (i)

n z−ωit]â(i)†
n . (8)

The subscripts m and n are the eigenmodes of signal and idler
photons which can be any one in the set of {A, B,C}. â†

m(n)
represent the creation operators in the eigenmode basis, which
can be deduced from the waveguide basis b̂†

i (i = 1, 2, 3)
according to Eq. (4):

â†
A = 1√

2

(
b̂†

1 − b̂†
3

)
,

â†
B = 1

2

(
b̂†

1 +
√

2b̂†
2 + b̂†

3

)
, (9)

â†
C = 1

2

(
b̂†

1 −
√

2b̂†
2 + b̂†

3

)
.

According to the first-order perturbation theory [31], by
substituting Eqs. (6)–(8) into Eq. (5), we can obtain the
biphoton state in the eigenmode basis as

|ψ〉eig = 1√
N

∫
dωs

∫
dωi

∫
d �ρ

∫
dzα(ωp)

∑
l,m,n

A(p)
l

× u(p)
l (�ρ )u(s)

m (�ρ)u(i)
n (�ρ)e(i
βlmnz)â(s)†

m â(i)†
n |0〉, (10)

where N is a normalization constant, �ρ is the integral area
of transverse field components, and 
βlmn = β

(p)
l − β (s)

m −
β (i)

n − G are the values of phase mismatch in the SPDC
processes, where G is the reciprocal vector of the periodically
poled region which can be carefully designed. We define the
transverse field overlap between the pump photon and the
down-converted photons as � = ∫

d �ρu(p)
l (�ρ )u(s)

m (�ρ)u(i)
n (�ρ).

According to Eq. (4), the transverse field overlap integral
for any combination of three different eigenmodes can be
deduced, and the results of the derivation which are multiples
of the fixed value �0 = ∫

d �ρu(p)(�ρ)u(s)(�ρ )u(i)(�ρ) are listed
in Table I, where u( j)(�ρ) ( j = p, s, i) represent the transverse
fields in an individual waveguide of pump, signal, and idler
photons, respectively. The first line in Table 1 means l has
three different pump eigenmodes A, B, and C. The left column
and the last line in the table correspond to three different
signal and idler eigenmodes, respectively. For instance, if all
the pump, signal, and idler photons are in the eigenmodes A,
i.e., lmn = AAA, then the result of the transverse field overlap
integral will be 0. Otherwise if lmn = AAB, the result of the

TABLE I. Results of field overlap integral � for the pump, signal, and idler photons. l , m, and n represent the eigenmodes which can be
any one in the set of {A, B,C}.
�����m

l
A B C

A 0 1
2 �0

1
2 �0

1
2 �0 0 0 1

2 �0 0 0

B 1
2 �0 0 0 0 1+√

2
4 �0

1−√
2

4 �0 0 1−√
2

4 �0
1+√

2
4 �0

C 1
2 �0 0 0 0 1−√

2
4 �0

1+√
2

4 �0 0 1+√
2

4 �0
1−√

2
4 �0

�����m
n A B C A B C A B C

063833-3



XIANG-WEN LUO et al. PHYSICAL REVIEW A 99, 063833 (2019)

overlap integral will be �0/2. Then the fully expanded expression of the biphoton state can be written as

|ψ〉eig = U�0

∫
dωs

∫
dωiα(ωp)

{
A(p)

A

[
sin c

(

βAABL

2

)
â†

Aâ†
B + sin c

(

βAACL

2

)
â†

Aâ†
C

]
+ A(p)

B

[
1

2
sin c

(

βBAAL

2

)
â†

Aâ†
A

+ 1 + √
2

4
sin c

(

βBBBL

2

)
â†

Bâ†
B + 1 + √

2

4
sin c

(

βBCCL

2

)
â†

Câ†
C + 1 − √

2

2
sin c

(

βBBCL

2

)
â†

Bâ†
C

]

+ A(p)
C

[
1

2
sin c

(

βCAAL

2

)
â†

Aâ†
A + 1 − √

2

4
sin c

(

βCBBL

2

)
â†

Bâ†
B

+ 1 − √
2

4
sin c

(

βCCCL

2

)
â†

Câ†
C + 1 + √

2

2
sin c

(

βCBCL

2

)
â†

Bâ†
C

]}
|0〉. (11)

In the above state, the slowly varying terms and constants are
all absorbed into U . A(p)

A , A(p)
B , and A(p)

C are the excitation am-
plitudes of the pump light in modes A, B, and C, respectively.
The properties of the generated photon pairs are determined
by the pump excitation amplitudes and the sinc functions
which depend on the phase mismatch 
βlmn of the SPDC
processes and the length of the periodically poled region
L. Different combinations of eigenmodes for the generated
photon pairs yield different phase-matching conditions, as
their propagation constants are modified uniquely. The state
in Eq. (11) contains several distinct phase-matching condi-
tions, which we can regarded as the different possibilities for
distributing two SPDC photons across three eigenmodes. Due
to their spectral separation, we can selectively excite differ-
ent eigenmode combinations by choosing the proper pump
wavelength, tuning the properties of the input pump laser,
and adjusting the sample structure or the sample temperature;
then different quantum states can be obtained. In the following
we discuss manipulation of high-dimensional path-entangled
states by exciting different SPDC processes.

III. MANIPULATION OF HIGH-DIMENSIONAL
PATH-ENTANGLED STATES

In a SPDC process, a pump beam generates the signal and
idler photons with the same polarization and half the pump
frequency, it is usually called degenerate type-I or type-0
SPDC process in which the generated photon pairs are indis-
tinguishable. In this section, we consider another situation,
namely, the values of phase mismatch being degenerate. If
the signal and idler photons are both in mode A, or one in
mode B and the other in mode C, then the value of the phase
mismatch will be 
β0 as illustrated for modes AA, BC, CB
in the white dashed box in Fig. 2. From this figure, we can
see that both signal and idler photons have three different
eigenmodes, their different combinations will lead to different
values of phase mismatch. As the coupling of the pump laser
is ignored, the mode of the pump beam is not taken into con-
sideration. The SPDC process which generates two photons
both in eigenmodes B will lead the value of phase mismatch
to 
β0 + 2

√
2κ , whereas the value of phase mismatch for the

two photons in eigenmodes CC will be 
β0 − 2
√

2κ . In the
case that one photon is generated in mode A and the other in
mode C, the value of the phase mismatch will be 
β0 − √

2κ .

If one photon is generated in mode A and the other in mode B,
then the value of the phase mismatch will be 
β0 + √

2κ .
The quantum entangled state can be manipulated by al-

tering the properties of the input pump laser injected into
three waveguides and designing proper κ and L. For ex-
ample, suppose the SPDC process in the waveguide sys-
tem to be 775 nm (TM mode) → 1550 nm (TM mode) +
1550 nm (TM mode) and only the degenerate phase mis-
match conditions AA, BC, and CB with the phase mis-
match value 
β0 are excited, which can be ensured to
be the proper poling period. When κ >

√
2π/L, the other

phase-matching peaks with phase mismatch 
β0 ± √
2κ and


β0 ± 2
√

2κ should be out of the width of sin c(
β0L/2).
To give the typical parameters in the system, we simulate
the waveguide coupling with RSoft software. Suppose the
waveguide length is 1 cm. A standard technique is cho-
sen with titanium of thickness 120 nm, a diffusion tem-
perature of 1050 ◦C, and a diffusion time of 5 h. The
width of the waveguide is 7.5 μm for ensuring the single-
mode condition for the down-converted photons. The dis-
tance between waveguides is 12.96 μm, which satisfies
the weak-coupled approximation described by the coupled-
mode theory, and the coupling coefficient for the down-
converted photons is evaluated to be 4.45 cm−1, while the
coupling coefficient of the pump is less than 1.5 m−1, which
indicates the coupling within 1 cm is definitely negligible.

FIG. 2. Combination of different eigenmodes for the signal and
the idler photons. The values of phase mismatch are determined by
the combination of different eigenmodes.
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For simplicity, the amplitude of the pump laser that is injected into the waveguide 1 is considered to be unitary, and the
inputs into waveguides 2 and 3 are αeiθ and γ eiφ , respectively. The three amplitudes should be normalized by 1√

(1+α2+γ 2 )
, so

that the total pump power is assumed to be a constant whose SPDC efficiency will be easily compared with the SPDC from a
single waveguide with the same pump power. Then the excitation amplitude of the pump light field in different modes can be
written as

A(p)
A = 1√

2(1 + α2 + γ 2)
(1 − γ eiφ ),

A(p)
B = 1

2
√

1 + α2 + γ 2
(1 + γ eiφ +

√
2αeiθ ), (12)

A(p)
C = 1

2
√

1 + α2 + γ 2
(1 + γ eiφ −

√
2αeiθ ).

If we substitute Eqs. (9) and (12) into Eq. (11) and consider the contribution of 
β0 from the degenerate modes AA, BC, and
CB, we can obtain the two-photon state in the eigenmode basis which can also be rewritten in the waveguide basis as

|φ〉 = U�0

∫∫
dωsdωiα(ωp)

1√
1 + α2 + γ 2

{
1

2
(1 + γ eiφ ) sin c

(

β0L

2

)
â†

Aâ†
A + 1

2
[1 + γ eiφ − 2αeiθ ] sin c

(

β0L

2

)
â†

Bâ†
C

}
|0〉

= U�0

∫∫
dωsdωiα(ωp)

1√
1 + α2 + γ 2

{
1

8
(3 + 3γ eiφ − 2αeiθ )

(
b̂†

1b̂†
1 + b̂†

3b̂†
3

)

− 1

4
(1 + γ eiφ + 2αeiθ )b̂†

1b̂†
3 − 1

4
(1 + γ eiφ − 2αeiθ )b̂†

2b̂†
2

}
|0〉. (13)

From the above equation,treating three interactive waves as monochromatic ones, we can see that some special types of two-
photon states can be generated only by tuning the condition of pump injection. When waveguides 1, 2, and 3 are excited with the
same amplitude of the input laser beam, but with a relative phase of π in waveguide 2, i.e., sin c( 
β0L

2 ) = 1, αeiθ = −1, γ eiφ = 1,
the biphoton bunching state will be obtained at the output when normalization is performed, which can be simply described as a
two-photon three-path W state:

|φ1〉 = 1√
6

(
b̂†

1b̂†
1 − b̂†

2b̂†
2 + b̂†

3b̂†
3

)|0〉

= 1√
3

(|200〉 − |020〉 + |002〉), (14)

where |200〉 indicates the state with two photons in the first path-mode and zero photons in the second and the third modes.
The biphoton W state generated in the nonlinear waveguides does not require precise control of the waveguide length L and is
therefore robust with respect to moderate fabrication inaccuracies. We just need to choose the right pump light to excite the three
waveguides under the condition of degenerate phase mismatch.

In the above paragraphs, we introduced the high-dimensional quantum state for a pair of parametric photons, which always
locate in the same waveguide if the degenerated phase mismatch is excited. In the following discussion, we explore the general
situation in which all the phase mismatches are taken into consideration. By designing the waveguide system appropriately,
a wider possibility for modulating two-photon states can be reached. Typical two-photon states in an eigenmode basis can be
described as

|ψ〉eig = U�0

∫∫
dωsdωiα(ωp)

1√
1 + α2 + γ 2

{√
2

2
(1 − γ eiφ )

{
sin c

[
(
β0 − √

2κ )L

2

]
â†

Aâ†
B

+ sin c

[
(
β0 + √

2κ )L

2

]
â†

Aâ†
C

}
+ 1

4
[1 + γ eiφ + 2αeiθ ]

{
sin c

[
(
β0 − 2

√
2κ )L

2

]
â†

Bâ†
B

+ sin c

[
(
β0 + 2

√
2κ )L

2

]
â†

Câ†
C

}
+ 1

2
(1 + γ eiφ ) sin c

(

β0L

2

)
â†

Aâ†
A

+ 1

2
(1 + γ eiφ − 2αeiθ ) sin c

(

β0L

2

)
â†

Bâ†
C

}
|0〉. (15)
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It can also be rewritten and rearranged in the waveguide basis
according to Eq. (9). By tuning the complex amplitude and
relative phase of the pump, the coupling coefficient, and the
phase mismatch, different quantum states can be generated in
the three-coupled-waveguide system, including the W state,
i.e., the type of bunching state in which a pair of photons stays
in the same waveguide, or the Dicke state [32,33], namely,
the antibunching state where n photons locate in m different
waveguide modes (n < m), or their superposition.

By designing the waveguide structure to tune the propaga-
tion constants and coupling coefficients, together with varying
the properties of the input pump beam, we can produce
specific kinds of quantum entanglement states. For instance,
we might like to obtain the Dicke state |ψ1〉 at the output
which can be described in the waveguide basis as

|ψ1〉 = 1√
3

(
b̂†

1b̂†
2 + b̂†

2b̂†
3 + b̂†

1b̂†
3

)|0〉

= 1√
3

(|110〉 + |011〉 + |101〉). (16)

This state means there is only one photon that can be detected
from two of the three waveguides. By substituting the aiming
state into the rewritten form of Eq. (15) in the waveguide
basis, we can obtain the conditions which are needed to gen-
erate the desired state. For the Dicke state |ψ1〉, the conditions
include 
β0L = 7.267, κL = 0.884, waveguides 1 and 3 are
excited with the same input amplitude, and waveguide 2 is ex-
cited with 2 times the amplitude in waveguide 1. Likewise, if

β0L = 0, κL = 2.221, and the three waveguides are excited
with the same input amplitude, but with a phase difference
of π in waveguide 2, the state evolves to the case discussed
before with only degenerate phase mismatch are excited, and
the path-entangled bunching state |ψ2〉 can be obtained as

|ψ2〉 = 1√
3

(|200〉 − |020〉 + |002〉). (17)

If the conditions of 
β0L = 5.393 and κL = 2.829 are sat-
isfied, and the input light in waveguide 2 is 0.453 times the
amplitudes in waveguides 1 and 3, then the superposition of
the W state and the Dicke state can also be obtained as

|ψ3〉= 1√
6

(|200〉+|020〉+|002〉+|110〉+|011〉+|101〉).

(18)

The required conditions for generating certain output states
are listed in Table II. We simulate the waveguide cou-
pling with the RSoft software to obtain examples of spe-
cific parameters under the same conditions of the poling
region length and the wavelength of photons. For instance,
when the distance between waveguides is 15.800 μm (κ =
8.839×10−5 μm−1), the poling period is 19.085 μm (
β0 =
7.267×10−4 μm−1), the condition in the first line of Table II
is satisfied, and |ψ1〉 can be generated. Likewise, when the
distance between waveguides is chosen to be 14.140 μm
(κ = 2.221×10−4 μm−1), the poling period is calculated to be
19.043 μm (
β0 = 0.000 μm−1) and |ψ2〉 can be generated.
When the distance between waveguides is 13.730 μm (κ =
2.829×10−4 μm−1), the poling period is calculated to be
19.074 μm (
β0 = 5.393×10−4 μm−1) and the generated
entangled state is |ψ3〉.

TABLE II. The required conditions for generating certain output
states. I1, I2, and I3 are the complex amplitudes of the laser beam
input into waveguides 1, 2, and 3, respectively.

Complex amplitude 
β0L κL Output state

I1 = 1/
√

6
I2 = 2/

√
6 7.267 0.884 |ψ1〉

I3 = 1/
√

6

I1 = 1/
√

3
I2 = −1/

√
3 0.00 2.221 |ψ2〉

I3 = 1/
√

3

I1 = 1/1.485
I2 = 0.453/1.485 5.393 2.829 |ψ3〉
I3 = 1/1.485

Furthermore, we analyzed the dependence of those out-
put states under different excitation parameter conditions in
Fig. 3. Taking the entangled state |ψ3〉 as an example, we
assume that the length of the waveguides is fixed at 1 cm, and
the pump amplitude and the phase coupled into waveguides
1 and 3 stay the same. Figures 3(a) and 3(b) illustrate the
influence of the input pump amplitude and the relative phase
in waveguide 2, respectively. We can see from the figures
that several terms in |ψ3〉 have the same probability when
the amplitude is 0.453 times that in waveguide 1 and with
the same phase. Figures 3(c) and 3(d) show the influence of
the coupling coefficient and the phase mismatch on the gener-
ated output states, respectively. The probabilities of |200〉 and
|002〉 follow the same tendency because of the symmetry in
the coupled-waveguide system, as well as for |110〉 and |011〉.
In Figs. 3(a) and 3(b), the probabilities of |110〉 and |011〉 also
follow the same tendency as |101〉.

For the practical implementations, compensation can
be made by adjusting different parameters in the system.

FIG. 3. Relationships between the generated state and the excita-
tion parameters. [(a), (b)] The probabilities of different terms in |ψ3〉
vary with the input pump amplitude in waveguide 2 and the phase
difference, respectively. [(c), (d)] The probabilities of different terms
in |ψ3〉 vary with the coupling coefficient and the phase mismatch,
respectively.
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Amplitudes and phases of the pump can be precisely set
through varying the voltages in Mach-Zehnder interferome-
ters of the pump multiplexer. The coupling coefficient can
be optimized by a set of different coupling gaps which can
be designed on the same chip. The phase-matching condition
can be controlled by properly engineering the poling period.
For example, the cascaded poling periods can be designed on
a single chip to satisfy different requirements. In addition,
the tuning of the pump wavelength within its tuning range
and the working temperature of the chip can both work as an
accessorial skill to mainly refine the coupling coefficient and
the phase mismatch, respectively.

When taking several phase mismatches into considera-
tion simultaneously, flexible modulation of entangled states
can be realized at the cost of photon pair yield reduction.
We estimated the generation rate of these biphoton states,
compared with the situation when the QPM SPDC happens
inside a single waveguide with the same pump power. Af-
ter taking the modular square of the amplitude before each
quantum state derived from Eq. (15) under the conditions
in Table II, the photon pair yield of |ψ1〉 will be reduced
to 6.76%, and |ψ3〉 will be reduced to 16.59%. |ψ2〉 is
generated under phase-matching conditions and thus is free
of the photon pair yield reduction. Since a Ti-diffusion or
proton-exchange LN waveguide will enhance the SPDC ef-
ficiency by 3 ∼ 4 orders when compared with bulk crystals
[9,34], the on-chip generation of path-entangled states is
still an advantageous method for the initial quantum state
preparation.

When we try to generalize this method to four or more
parallel coupled waveguides, we find that the number of
control parameters grows slowly when new waveguides are
introduced, although the nonuniform gaps can be introduced
as new parameters while the dimension of the path-entangled
state grows more quickly. Therefore manipulation of path-
entangled states seems difficult when the number of waveg-
uides is higher than three.

IV. QUANTIFICATION OF HIGH-DIMENSIONAL
ENTANGLEMENT

In order to quantify the degree of entanglement, we cal-
culate the genuine multipartite entanglement (GME) concur-
rence [35,36] for high-dimensional path-entangled states. For
n-partite pure states |ψ〉 in finite-dimensional Hilbert space
Hi(i = 1, 2, . . . , n), the GME concurrence can be defined as

CGME(|ψ〉) = min
γi∈γ

√
2
[
1 − Trρ2

Aγi

]
, (19)

where γ = {γi} = {Aγi |Bγi} represents the set of all possi-
ble bipartitions, ρ is the density matrix, and the reduced
density matrix is written as ρA = TrBρ. The GME con-
currence can also be generalized for mixed states ρ =
�i pi|ψi〉〈ψi| via a convex roof construction. In the case of
three-waveguide system, high-dimensional entangled states
|ψ〉 ∈ H1⊗H2⊗H3, there are three possible bipartitions, i.e.,
γ ={γ1, γ2, γ3}={{1|2, 3}, {2|1, 3}, {3|1, 2}}. Consequently,

the GME concurrence is CGME(|ψ〉)=min{
√

2[1−Tr(ρ2
1 )],√

2[1 − Tr(ρ2
2 )],

√
2[1 − Tr(ρ2

3 )]}, where ρi (i = 1, 2, 3)

θ

FIG. 4. The dependence of GME concurrences on the pump
phase θ and the amplitude α of waveguide 2.

are the reduced density matrices which are taken over all
possible decompositions of ρ.

The general form of biphoton high-dimensional entangled
states produced in Sec. III can be written as

|ψ〉 = a|110〉 + b|011〉 + c|101〉
+ d|200〉 + e|020〉 + f |002〉, (20)

where a– f represent the coefficients of each term, and the
coefficients satisfy the normalization condition |a|2 + |b|2 +
|c|2 + |d|2 + |e|2 + | f |2 = 1. The density matrix can be ob-
tained by using the equation ρ = |ψ〉〈ψ |. Tracing out the
subsystem, the reduced density matrices ρ1, ρ2, and ρ3 will
be obtained. Therefore, we can get the GME concurrences
of certain states by definition. For instance, in the case of
the Dicke state |ψ1〉, we have |a| = |b| = |c| = 1√

3
and |d| =

|e| = | f | = 0; then we can obtain the GME concurrences
C = 2

√
2/3. In the case of |ψ2〉, |a| = |b| = |c| = 0 and

|d| = |e| = | f | = 1√
3
; then we can obtain the same GME

concurrences. For the state |ψ3〉 = (|200〉 + |020〉 + |002〉 +
|110〉 + |101〉 + |011〉)/

√
6, i.e., in the case of the maximal

entangled state, the GME concurrences C = √
11/3.

Furthermore, we analyzed the GME concurrences of entan-
gled states when tuning the typical parameters in the coupled-
waveguide system. Since there are many parameters involved,
we can only discuss the dependence of GME concurrences
on two parameters when the other parameters are selected
at some fixed values. Taking the parameters of the W state
(|ψ2〉) as an example, we can adjust the amplitude and the
phase of the input pump light while the coupling coefficient
and the length of the waveguides are fixed. The result of GME
concurrences is illustrated in Fig. 4, the horizontal axis and the
vertical axis represent the pump phase θ and the amplitude
α in waveguide 2, respectively. As we can see from the
figure, when the pump input of waveguide 2 shares the same
amplitude with the other two waveguides but with a phase
difference π , i.e., α = 1 and θ = π , the entangled state |ψ2〉
with the GME concurrences C = 2

√
2/3 can be generated.

The relationship between the degree of entanglement and
other parameters can also be analyzed in the same way, we
do not cover all of them here.

V. CONCLUSION

In conclusion, we investigated the fundamental physics
for the generation of a high-dimensional path-entangled state

063833-7



XIANG-WEN LUO et al. PHYSICAL REVIEW A 99, 063833 (2019)

in quadratic nonlinear coupled-waveguide structures. Photon
pairs can be generated through SPDC processes and simul-
taneously spread through quantum walks in the integrated
waveguide chip. We have shown how to harness the path
degree of freedom in integrated circuits for engineering high-
dimensional biphoton entangled states in multiple channels.
The type of entanglement can be manipulated entirely classi-
cally by varying the properties of the input pump beam or the
phase-matching conditions. Our approach allows for phase-
stable state preparation which is free of precise fabrication
of the waveguide length. Our path-entangled source extends
earlier investigations focusing on waveguide systems which
contain two or infinite coupled waveguides. It also simplifies
the complexity of integration, as the state preparation is
already integrated in the source design and does not need
any postprocessing by additional linear circuits. Moreover,
combining the state generation with the action of quantum

walk in photonic circuits will take the integration density to
a different level. These advantages open new perspectives in
the field of integrated quantum optics.
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