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Anomalous geometric spin Hall effect of light
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The geometric spin Hall effect of light (GSHEL), similar to the spin Hall effect of light, is also a spin-
dependent shift in the centroid of light intensity (energy flux), but it is a purely geometric effect and independent
of the light-matter interaction. In this paper, we discuss the GSHEL with respect to momentum flux instead of
energy flux. Interestingly, for the symmetric energy-momentum (E-M) tensor, its centroid shift of momentum
flux is double that of the energy flux; however, for the canonical E-M tensor, its centroid shift of momentum
flux agrees with that of the energy flux. Furthermore, when considering the effect produced by orbital angular
momentum, for these two conventional E-M tensors the centroid shifts of the momentum fluxes are twice those
of the energy fluxes. To tell which E-M tensor of the electromagnetic field would be more “correct,” we propose
a possible experimental scheme to test the GSHEL of momentum flux through the mechanical effect of light.
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I. INTRODUCTION AND KEYNOTE

Light can carry energy, momentum, and angular momen-
tum, which play important roles in the light-matter inter-
action. Nowadays, many techniques have been realized to
manipulate microscopic particles by using the linear and
angular momentum of light, such as laser cooling, optical
tweezers, and optical spanners [1–4]. As reciprocal influences
of the matter upon the light, the spin Hall effect of light
(SHEL) has attracted a considerable amount of theoretical
and experimental investigations. It is a novel phenomenon
of spin-dependent centroid displacement of light intensity. In
fact, the light reflected or refracted from an optical interface
can yield two polarization-dependent shifts in the intensity
centroid, namely the longitudinal Goos-Hänchen shift and the
transverse Fedorov-Imbert shift [5–8] (for a reference, see
Ref. [9]). The latter is regarded as an example of the SHEL,
which now is usually interpreted as the spin-orbital interaction
of light in terms of the Berry phase [10].

In 2009, another type of SHEL, named geometric SHEL
(GSHEL), was proposed [11]. This effect says that a spin-
dependent transverse displacement of the centroid of light
intensity is observed in a plane not perpendicular to the
propagation direction of the light beam. It originates from
the nonzero transverse angular momentum observed in the de-
tector frame. Unlike the conventional SHEL that requires the
light-matter interaction, the GSHEL is of a purely geometric
nature. Later on, the orbital angular momentum of light [12]
was shown to cause a similar transverse shift in addition to
the shift caused by spin [13]. In 2014, it was reported that the
polarized light transmitted across an oblique polarizer [14]
yields an intensity centroid displacement larger than that of
the conventional SHEL, which was claimed as the observation
of the GSHEL [15]. So far, the GSHEL or similar effects
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have been analyzed for collimated paraxial beams [16], tightly
focused vector beams [17], and inhomogeneous polarized
beams [18]. For the convenience of reference and comparison,
we put here the centroid displacement of the GSHEL with
respect to energy flux:

〈y〉P =
∫

y T
z0
symdxdy

/ ∫
T

z0
symdxdy � λ

4π
σ tan θ. (1)

Here 〈y〉P denotes the shift in the barycenter of light intensity
and the subscript P indicates that the light intensity is eval-
uated with the Poynting vector (the energy flux T i0

sym). The
overbar denotes time average. σ = ±1 is the polarization of
light and λ the wavelength. θ is the tilted angle between the
detector plane and the transverse plane of the light beam.
Figure 1 is a schematic diagram of the light beam and the
detection system. Strictly speaking, Eq. (1) receives correction
for the angular spread of the beam, which we omit in the
following discussion.

Light carries energy and its energy transportation is rep-
resented by energy flux. Likewise, light carries momentum
and its momentum transportation is described by momentum
flux. In fact, the energy-momentum (E-M) tensor of the light
field, which bands together the energy density, the momentum
density, the energy flux density, and the momentum flux
density, is a very convenient tool to analyze the properties of
light. In this paper, we discuss the GSHEL with respect to
the momentum flux density and reach a result different from
Eq. (1). To show the difference, for a beam with only spin
polarization we get the centroid displacement of momentum
flux T zz

sym:

〈ysym〉T =
∫

y T
zz
symdxdy

/ ∫
T

zz
symdxdy = λ

2π
σ tan θ. (2)

This result differs from the conventional GSHEL with respect
to energy flux by a factor of 2, so we call it the anomalous
GSHEL. T z0

sym in Eq. (1) and T zz
sym in Eq. (2) correspond to the
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FIG. 1. The light beam propagates along the z′ axis, around
which the beam is rotationally symmetric. The x-y plane of the
laboratory frame K is in the detection plane. The y axis is parallel
to the y′ axis of the beam frame K ′. The z axis is tilted by an angle θ

from the z′ axis. If the light beam carries angular momentum along
the z′ direction, a transverse angular momentum Jx can be observed
in the K frame.

z-direction energy flux density and the z-direction flux density
of the z-direction momentum of the symmetric E-M tensor:

T μν
sym = −FμαF ν

α + 1
4 gμνFαβFαβ, (3)

where gμν is the Minkowski metric with signature (+ − −−).
Interestingly, the expression of the E-M tensor is not

uniquely determined by the energy and momentum conser-
vation laws. Besides the symmetric E-M tensor, we also have
the well-known canonical E-M tensor:

T μν
can = −Fμα∂νAα + 1

4 gμνFαβFαβ. (4)

When calculating the barycenter of momentum flux according
to the canonical E-M tensor, we get the result

〈ycan〉T =
∫

yT
zz
candxdy

/ ∫
T

zz
candxdy = λ

4π
σ tan θ. (5)

The prediction of the canonical version in Eq. (5) coincides
with Eq. (1), but that of the symmetric version in Eq. (2) does
not. For this reason, we argue that the GSHEL can be used as
a strong criteria to single out a more valid version. In other
words, either or both of them must be wrong.

Remarkably, the Poynting vector (E × B)i is not only
the symmetric energy flux density T i0

sym (and the symmetric
momentum density T 0i

sym) but also the canonical energy flux
density T i0

can in the radiation gauge. Therefore, Eq. (1) also
holds for the canonical E-M tensor in the radiation gauge
or the gauge-invariant version of the canonical E-M tensor
[19–22]. Certainly, one cannot tell the difference between the
two conventional forms of E-M tensor by the GSHEL with
respect to energy flux. This is also why the Poynting vector
is almost always effective as the energy flux density of a free
electromagnetic field.

The E-M tensor and the angular momentum tensor are
among the most fundamental quantities of an electromagnetic
field. In the field-theory description of the free electromag-
netic field, we start with the standard Lagrangian [23]

L = − 1
4 FαβFαβ. (6)

From Noether’s theorem, the conservation laws are associ-
ated with continuous symmetries of the Lagrangian. For the

symmetry of space-time translations, applying Noether’s the-
orem yields the canonical E-M tensor T μν

can and the correspond-
ing conservation law:

∂μT μν
can = 0, (7)

with the conserved charge (the four-momentum Pν)

Pν =
∫

d3xT 0ν
can. (8)

The symmetry of space-time rotations generates the con-
served canonical angular momentum tensor:

Mλμν
can = xμT λν

can − xνT λμ
can + Sλμν ≡ Lλμν + Sλμν, (9)

with the corresponding conservation law

∂λMλμν
can = 0 (10)

and the corresponding conserved charge

Jμν =
∫

d3xM0μν
can . (11)

Here Sλμν = AμFλν − AνFλμ is the spin tensor. Thus, the
canonical angular momentum tensor suggests a natural sepa-
ration of the total angular momentum into the orbital and spin
contributions [19–22].

However, the canonical E-M tensor is generally nonsym-
metric and is unfavorable to the Einstein’s gravitational theory
which requires a symmetric E-M tensor as the source of
the gravitational field [24]. In addition, the canonical tensors
break the gauge symmetry because of their explicit depen-
dence on the vector potential Aα , as shown in Eq. (4). In fact,
without modifying both the corresponding conservation law
and the conserved charges, the expressions of the E-M and
angular momentum tensors are not unique. The symmetric
E-M tensor can be constructed by adding a suitable total
divergence to the canonical one, and such procedure is the
so-called Belinfante’s method [25]:

T μν
sym = T μν

can + ∂αB[αμ]ν = T μν
can + ∂α (FμαAν ), (12)

where B[αμ]ν can be constructed from the spin tensor: B[αμ]ν =
(Sμνα + Sνμα − Sανμ)/2. The corresponding symmetric angu-
lar momentum tensor can be constructed from the symmetric
E-M tensor:

Mλμν
sym = xμT λν

sym − xνT λμ
sym. (13)

Quite impressively, the symmetric version of the total angular
momentum tensor is expressed in a fully orbital-like form.
In other words, the symmetric angular momentum tensor
does not discriminate the spin part from the orbital part.
However, the spin angular momentum and the orbital angular
momentum are largely treated as separated degrees of freedom
in classical and quantum optics [19,26–31]: The spin angular
momentum is related with the polarization of light, and the
orbital angular momentum is associated with the wave-front
shape of light. Additionally, optical experiments clearly show
that they yield different physical effects [32–35].

The understanding of the E-M tensor determines the un-
derstanding of the angular momentum tensor, and vice versa.
For the reasons mentioned above, it is not exactly clear
how to handle such two different forms of E-M and angular
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momentum tenors. In this work, the GSHEL, an effect of
the angular momentum of light, is therefore used to show
the difference between the two conventional E-M tensors.
In the next section, our above results can be derived in a
simple way. Then, a possible experimental scheme for testing
the GSHEL concerning momentum flux is presented to tell us
which one of the symmetric and the canonical E-M tensors is
more “physical.”

II. GSHEL OR ANOMALOUS GSHEL

The GSHEL is related to the nonzero transverse angular
momentum of the light beam. In this section, we simply
use the sum rule of angular momentum to deduce the above
results.

The beam frame K ′ and the laboratory frame K are
connected by a rotation transformation, i.e., xμ = 
μ

νx′ν [or
x′μ = (
−1)μνxν], as depicted in Fig. 1. Here the rotation
transformation matrix is


μ
ν =

⎡
⎢⎢⎢⎣

1 0 0 0

0 cos θ 0 sin θ

0 0 1 0

0 − sin θ 0 cos θ

⎤
⎥⎥⎥⎦. (14)

Then T zz in the K frame can be expressed by the momentum
flux in the K ′ frame:

T zz(x) = 
z
α
z

βT ′αβ (x′) = −(T ′xz + T ′zx ) sin θ cos θ

+ (T ′zz cos2 θ + T ′xx sin2 θ ). (15)

In the K ′ frame, according to the axial symmetry of the
beam around its beam axis, T ′zz should show a symmetrical
distribution with respect to the x′- and y′-axis. Furthermore,
T ′xx can be ignored compared to T ′zz because the light beam
mainly carries the momentum along the propagation direction
(z′ axis) and the momentum also is mainly transported in the
propagation direction. Hence, we obtain

〈y〉T =
∫

y T
zz

dxdy

/ ∫
T

zz
dxdy

= − tan θ

∫
y(T

′xz + T
′zx

)dxdy

/ ∫
T

′zz
dxdy

= −
∫

y′(T ′xz + T
′zx

)dx′dy′∫
T

′zz
dx′dy′ tan θ. (16)

In the last step, expressing the area element from the K frame
to the K ′ frame does not change the final result.

To proceed with the expression in Eq. (16), we have two
E-M tensors in hand, the canonical one and the symmetric
one:

〈ysym〉T = −2
∫

y′ T
′zx
symdx′dy′

∫
T

′zz
symdx′dy′ tan θ, (17)

〈ycan〉T = −
∫

y′(T
′xz
can + T

′zx
can

)
dx′dy′

∫
T

′zz
candx′dy′ tan θ. (18)

According to the axial symmetry of the light beam, we have∫
−y′ T

′zx
dx′dy′ =

∫
x′ T

′zy
dx′dy′

= 1

2

∫
(x′ T

′zy − y′ T
′zx

)dx′dy′ (19)

and ∫
T

′zz
symdx′dy′ �

∫
T

′zz
candx′dy′ � P′

z = nh̄k, (20)

where n is the photon number per unit time across the plane
x′-y′, namely the photon number flux.

For the symmetric E-M tensor, M ′zxy
sym = x′ T ′zy

sym − y′ T ′zx
sym

represents the flux of the total angular momentum along
the propagation direction. Hence, for a beam with only spin
polarization we obtain

〈ysym〉T = tan θ

∫ (
x′ T

′zy
sym − y′ T

′zx
sym

)
dx′dy′

/
P′

z

= nσ h̄

nh̄k
tan θ = λ

2π
σ tan θ. (21)

For the canonical E-M tensor, L′zxy = x′ T ′zy
can − y′ T ′zx

can gives
merely the flux of the orbital angular momentum along the
propagation direction. Thus, the integral of the term y T

′zx
can

in Eq. (18) vanishes when the light beam only carries spin
angular momentum. For the collimated light beam, the light
wave function is approximately in the simultaneous eigen-
state of energy and longitudinal momentum. Thus, from the
expression of the canonical E-M tensor, we can observe the
following relation:

T
′xz
can � k

ω
T

′x0
can = c T

′x0
can. (22)

Then we have

〈ycan〉T � −c tan θ

∫
y′ T

′x0
can dx′dy′

/
P′

z . (23)

Again, because of the axial symmetry of the light beam, we
arrive at∫

−y′ T
′x0
can dx′dy′ =

∫
x′ T

′y0
can dx′dy′

= 1

2

∫ (
x′ T

′y0
can − y′ T

′x0
can

)
dx′dy′. (24)

As mentioned above, the canonical energy flux density T i0
can

becomes the Poynting vector (E × B)i in the radiation gauge.
Hence, Eq. (24) represents the total time-averaged angular
momentum of the beam per unit length and the final result
of Eq. (23) is

〈ycan〉T = cNsσ h̄

2nh̄k
tan θ = λ

4π
σ tan θ. (25)

Here Ns is the photon number per unit length along the
direction of propagation and we have n = cNs.

So far we have proved the main results presented in the
first section. For the light beam carrying the orbital angular
momentum l h̄ as well as the spin angular momentum σ h̄ per
photon along the propagation direction, repeating the above
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analysis can give the following more general results about the
GSHEL:

〈ysym〉P = 〈ycan〉P = λ

4π
(l + σ ) tan θ, (26)

〈ysym〉T = λ

4π
(2l + 2σ ) tan θ, (27)

〈ycan〉T = λ

4π
(2l + σ ) tan θ. (28)

It is valuable to make two remarks on the above results.
(i) As seen in Eq. (16), there are two pieces of mo-

mentum flux. One is the transverse flow of the longitudinal
momentum T ′xz, which is approximately proportional to the
corresponding transverse component of energy flux for both
the symmetric and the canonical E-M tensors, and its rotation
around the direction of the propagation gives the total angular
momentum flux. The other is the longitudinal flow of the
transverse momentum T ′zx, and its rotation refers to the total
angular momentum flux for the symmetric E-M tensor, but its
rotation only refers to the orbital angular momentum flux for
the canonical E-M tensor.

(ii) Therefore, there are two kinds of anomalous GSHEL.
One represents the comparison between the GSHEL of mo-
mentum flux and that of energy flux, and the difference origi-
nates from the two pieces of momentum flux. The other refers
to the comparison between the GSHEL of orbital and spin
angular momenta, in other words, the different predictions of
the symmetric and the canonical E-M tensors for the spin-
generated GSHEL concerning momentum flux.

As seen from Eqs. (26)–(28), the GSHEL of orbital angular
momentum cannot discriminate these two E-M tensors by
both cases of energy and momentum fluxes. However, from
Eqs. (27) and (28), the GSHEL concerning momentum flux of
the spin-polarized beam can serve as a probe for the possible
experimental test of those two E-M tensors. It should be
stressed that the above results could also be derived in clas-
sical electromagnetism, although these results are obtained in
the language of photons.

III. GSHEL MANIFESTED AS THE MOMENT OF FORCE

In the preceding section, we presented the GSHEL in terms
of momentum flux and angular momentum flux. As is well
known, the momentum and the angular momentum of light
can manifest as mechanical effects by interaction with matter;
namely, light is capable of exerting force and torque on matter.
From the above conclusion, the key difference between the
predictions of the two E-M tensors is originated from the
spin angular momentum, so the spin-polarized light beam
should be used to perform the possible experimental test.
Naturally, the torque effect is related to angular momentum
and much preferred, but the spin angular momentum of light
is equivalent to the orbital angular momentum of light in many
ways [36–40]. In Fig. 1, if the spin-polarized light carries
orbital angular momentum, the detection plane as a whole
undergoes a torque around the x direction:

τ x =
〈

dJx

dt

〉
� −

∫
M

zyz
dxdy = n(σ + l )h̄ sin θ. (29)

FIG. 2. The detector array consists of individual detection
elements.

Here Eq. (29) is valid irrespective of whether the symmetric
and the canonical angular momentum tensors are employed,
implying that the global torque effect fails to distinguish
between the symmetric and the canonical E-M tensors.

Though the spin and orbital angular momenta of light pro-
duce the same mechanical effect in many respects, they have
different properties which have been verified in numerous
experiments [32–35]. Enlightened by such experiments, we
propose here a scheme to examine the different predictions of
the canonical and the symmetric E-M tensors and determine
which E-M tensor is effective. Let the detection plane be
served by an array of individual detection elements (or take
multiple measurements by placing one detection element at
the typical points which also builds an array on the detection
plane). Each detection element can measure the time-averaged
force f N exerted by the light beam on the area of the de-
tection element A (see Fig. 2). Each detection element is
represented with the coordinate (xN , yN ) of its center point.
The quantity under consideration is the displacement of the
barycenter of f z

N , the longitudinal part of the force f N :

〈y〉 f =
∑

N yN f z
N∑

N f z
N

. (30)

Theoretically, the force f N is the time-averaged rate of
change of the field momentum received by the detection
element (xN , yN ). In fact, calculating the optical force and the
force density within a material is a complicated issue [41–43],
even different electromagnetic tensors lead to different results
[44–46]. For simplicity, considering the case that the detector
fully absorbs the momentum of light across the detection
plane, we have

f z
N =

〈
dPz

N (t )

dt

〉
� −T

zz
(xN , yN )A, (31)

and then the displacement

〈y〉 f �
∑

N yN T
zz

(xN , yN )∑
N T

zz
(xN , yN )

� 〈y〉T . (32)
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Our scheme is based on the measurability of the local
optical force. Suppose that the power of the laser beam
W = 1 mW, the wavelength λ = 0.5 μm, the width of the
laser beam d = 10 μm, the step δy = yN+1 − yN = 1 μm,
and the ratio of the detection element area A to the cross-
sectional area of the beam A0 is about 1 :100. Under these con-
ditions, we could rudely estimate the scale of the force exerted
on one individual detection element  f = (W /c)(A/A0) ∼
0.1 pN. Maybe atomic force microscopy (AFM) is an ideal
tool for the high-resolution measurement of the optical force
required by our scheme. AFMs can be used to measure inter-
action forces between the probe and the sample and also is ap-
plied for highly precise measurement of optical force [47,48].
Nowadays the measurement of force by AFM has made it
possible to investigate the optical force in the femtonewton
range, even in the attonewton range [49–51]. Therefore, the
practical sensitivity of optical force measurement is sufficient
to meet the requirement of the above theoretical estimate.
Although the optical force in our scheme is tiny, we are
confident that the force is detectable. For example, if we set
the optical power W = 10 W and keep the other conditions
unchanged, the force turns out to be about 103 pN and could
be more easily detected.

To illustrate the different predictions of the two forms of
E-M tensor, one can consider a special case: let the laser
beam carry spin and orbital angular momenta s = −l = h̄ or
s = −l = −h̄ per photon. For this case, as seen from Eqs. (27)
and (28), the symmetric E-M tensor predicts the force shift
〈ysym〉 f suddenly disappeared and independent of the tilted
angle θ , but the canonical one suggests the force shift 〈ycan〉 f
should be as a tangent function of the tilted angle θ . Therefore,
for the two predictions of the symmetric and canonical E-M
tensors, they show a striking difference as to the dependence
of the force shift 〈y〉 f on the tilted angle θ . The advantage of

this design is that the effects of the spin angular momentum
and the orbital angular momentum completely cancel out each
other according to the symmetric E-M tensor, but they only
partially cancel out each other according to the canonical
one. In this case, one can choose to analyze the experimental
dependence of the shift 〈y〉 f on the tilted angle θ and compare
the experimental results with the different predictions. Finally,
the experimental results can tell us which prediction is more
fit. Thus, this special design can easily test which E-M tensor
is the more “physical” one.

In conclusion, we have demonstrated the GSHEL of mo-
mentum flux as a natural extension of the GSHEL of energy
flux, and we have proposed a possible experimental scheme
to test this effect by the mechanical effect of light. For the
spin-polarized light beam, the symmetric E-M tensor predicts
an anomalous effect, but the canonical E-M tensor does not.
On the other hand, for both the symmetric and the canonical
E-M tensors, the orbital angular momentum causes the other
anomalous GSHEL concerning momentum flux. Therefore,
for the spin-polarized light beam, we argue that the GSHEL
concerning momentum flux can be regarded as an experi-
mental scheme to test the expressions of E-M tensors. We
strongly urge experimentalists to perform the measurement
we proposed here, not only because it is an interesting effect
but also because it contributes to clarifying our understanding
of E-M and angular momentum tensors.
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