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We investigate the driven quantum phase transition between the oscillating motion and the classical nearly free
rotations of the Josephson pendulum coupled to a harmonic oscillator in the presence of dissipation. We refer to
this as the Josephson-Rabi model. This model describes the standard setup of circuit quantum electrodynamics,
where typically a transmon device is embedded in a superconducting cavity. We find that by treating the system
quantum mechanically this transition occurs at higher drive powers than expected from an all-classical treatment,
which is a consequence of the quasiperiodicity originating in the discrete energy spectrum of the bound states.
We calculate the photon number in the resonator and show that its dependence on the drive power is nonlinear.
In addition, the resulting multiphoton blockade phenomenon is sensitive to the truncation of the number of states
in the transmon, which limits the applicability of the standard Jaynes-Cummings model as an approximation for
the pendulum-oscillator system. We calculate the nth-order correlation functions of the blockaded microwave
photons and observe the differences between the rotating-wave approximation and the full multilevel Josephson-
Rabi Hamiltonian with the counter-rotating terms included. Finally, we compare two different approaches to
dissipation, namely the Floquet-Born-Markov and the Lindblad formalisms.

DOI: 10.1103/PhysRevA.99.063828

I. INTRODUCTION

The pendulum, which can be seen as a rigid rotor in a
gravitational potential [1], is a quintessential nonlinear sys-
tem. It has two extreme dynamical regimes: the low-energy
regime, where it can be approximated as a weakly anharmonic
oscillator, and the high-energy regime, where it behaves as a
free rotor. Most notably, the pendulum physics appears in sys-
tems governed by the Josephson effect, where the Josephson
energy is analogous to the gravitational energy, and the role
of the momentum is taken by the imbalance in the number of
particles due to tunneling across the weak link. Such a system
is typically referred to as a Josephson pendulum.

In ultracold degenerate atomic gases, several realizations
of the Josephson pendulum have been studied [2–5]. While
the superfluid-fermion case [6,7] still awaits experimental
realization, the bosonic-gas version has been already demon-
strated [8,9]. Also, in this case, two regimes have been
identified: small Josephson oscillations, corresponding to the
low-energy limit case described here, and the macroscopic
self-trapping regime [4,5], corresponding to the free-rotor
situation. Another example is an oscillating LC electrical
circuit with a nonlinear inductance realized as a tunnel barrier
between two superconducting leads. This is the case of the
transmon circuit [10], which is currently one of the most
promising approaches to quantum processing of information,
with high-fidelity operations and good prospects for scala-
bility. Its two lowest eigenstates are close to those of a har-
monic oscillator, with only weak perturbations caused by the
anharmonicity of the potential. The weak anharmonicity also
guarantees that the lowest states of the transmon are immune

to charge noise, which is a major source of decoherence in
superconducting quantum circuits.

In this paper, we consider a paradigmatic model which
arises when the Josephson pendulum is interacting with a
resonator. Circuit quantum electrodynamics offers a rigorous
embodiment of the above model as a transmon device coupled
to a superconducting resonator, fabricated either as a three-
dimensional cavity or as a coplanar waveguide segment. In
this realization, the system is driven by an external field of
variable frequency, and dissipation affects both the transmon
and the resonator.

We study in detail the onset of nonlinearity in the driven-
dissipative phase transition between the quantum and the
classical regimes. We further compare the photon number
in detail with the corresponding transmon occupation and
demonstrate that the onset of nonlinearities is accompanied
by the excitation of all bound states of the transmon and, thus,
it is sensitive to the transmon truncation. We also find that the
onset of the nonlinearities is sensitive to the energy level struc-
ture of the transmon, e.g., on the gate charge which affects
the eigenenergies near and outside the edge of the transmon
potential. The results also show that the full classical treatment
is justified only in the high-amplitude regime, yielding signif-
icant discrepancies in the low-amplitude regime, where the
phenomenology is governed by photon blockade. This means
that the system undergoes a genuine quantum-to-classical
phase transition. Calculations of the nth-order correlation
functions support this conclusion. These correlations are very
small in the blockaded regime and increase beyond unity in
the classical one. Moreover, the effects of the counter-rotating
(Bloch-Siegert) terms in the full multilevel Josephson-Rabi
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system are clearly observable. Overall, our numerical simula-
tions demonstrate that the multiphoton blockade phenomenon
is qualitatively different for a realistic multilevel anharmonic
system compared to the Jaynes-Cummings case studied ex-
tensively in the literature.

To introduce dissipation, we use two models, namely
the conventional Lindblad master equation and the Floquet-
Born-Markov master equation, which is developed especially
to capture the effects of the drive on the dissipation. We
show that both yield relatively close results. However, we
emphasize that the Floquet-Born-Markov approach should be
preferred because its numerical implementation is consider-
ably more efficient than that of the corresponding Lindblad
equation.

While our motivation is to elucidate fundamental physics,
in the burgeoning field of quantum technologies several ap-
plications of our results can be envisioned. For example, the
single-photon blockade can be employed to realize single-
photon sources, and the two-photon blockade can be utilized
to produce transistors controlled by a single photon and filters
that yield correlated two-photon outputs from an input of
random photons [11]. In the field of quantum simulations,
the Jaynes-Cummings model can be mapped onto the Dirac
electron in an electromagnetic field, with the coupling and the
drive amplitude corresponding respectively to the magnetic
and electric field; then, the photon blockade regime is asso-
ciated with a discrete spectrum of the Dirac equation, while
the breakdown of the blockade corresponds to a continuous
spectrum [12]. Finally, the switching behavior of the pendu-
lum in the transition region can be used for designing bifur-
cation amplifiers for the single-shot nondissipative readout of
qubits [13].

The paper is organized as follows. In Sec. II, we introduce
the electrical circuit which realizes the pendulum-oscillator
system, calculate its eigenenergies, and identify the two dy-
namical regimes of the small oscillations and the free rotor.
In Sec. III, we introduce the drive and dissipation. We discuss
two formalisms for dissipation, namely the Lindblad equation
and the Floquet-Born-Markov approach. Section IV presents
the main results for the quantum-to-classical transition and
the photon blockade, focusing on the resonant case. Here, we
also discuss the gate dependence and the ultrastrong coupling
regime, and we obtain the nth-order photon correlations.
Section V is dedicated to conclusions.

II. CIRCUIT-QED IMPLEMENTATION OF A JOSEPHSON
PENDULUM COUPLED TO A RESONATOR

We discuss here the physical realization of the Josephson
pendulum-resonator system as an electrical circuit consisting
of a transmon device coupled capacitively to an LC oscillator,
as depicted in Fig. 1(a). The coupled system is modeled by the
Hamiltonian

Ĥ0 = Ĥr + Ĥt + Ĥc, (1)

where

Ĥr = h̄ωrâ
†â, (2)

Ĥt = 4EC(n̂ − ng)2 − EJ cos ϕ̂, (3)

Ĥc = h̄ g n̂(â† + â) (4)

FIG. 1. Electrical circuit and the corresponding eigenenergy
spectrum. (a) Lumped-element schematic of a transmon-resonator
superconducting circuit. The resonator and the transmon are marked
with blue (left) and magenta (right) rectangles. (b) Numerically
obtained eigenenergies of the resonator-pendulum Hamiltonian in
Eq. (1) are shown in blue (gray) as a function of the resonator
frequency. The bare pendulum eigenenergies h̄ωk are denoted with
dashed horizontal lines and indicated with the label k. The eigenen-
ergies of the uncoupled system, defined in Eqs. (2) and (3), are
given by the dashed lines whose slope increases in integer steps with
the number of quanta in the oscillator as nh̄ωr . We only show the
eigenenergies of the uncoupled system for the case of pendulum in
its ground state, but we note that one obtains a similar infinite fan of
energies for each pendulum eigenstate. Note that in general ωq �= ωp.
We have used the parameters in Table I and fixed ng = 0.

describe the resonator, the transmon, and their coupling, re-
spectively. We have defined â as the annihilation operator of
the harmonic oscillator and used n̂ = −i∂/∂ϕ as the conjugate
momentum operator of the superconducting phase difference
ϕ̂. These operators obey the canonical commutation relation
[ϕ̂, n̂] = i. The angular frequency of the resonator is given by
ωr . We have also denoted the Josephson energy with EJ and
the charging energy with EC = e2/(2C� ), where the capaci-
tance on the superconducting island of the transmon is given
as C� = CB + CJ + Cg. Using the circuit diagram in Fig. 1(a),
we obtain the coupling constant g = 2eCgqzp/(h̄C�Cr ), where
the zero-point fluctuation amplitude of the oscillator charge is
denoted with qzp = √

Cr h̄ωr/2 [10].
Let us briefly discuss the two components of this system:

the Josephson pendulum and the resonator. The pendulum
physics is realized by the superconducting transmon circuit
[10] in Fig. 1(a) and described by the Hamiltonian Ĥt in
Eq. (3). As discussed in Ref. [10], the Hamiltonian of the
transmon is analogous to that of an electrically charged parti-
cle whose motion is restricted to a circular orbit and subjected
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to homogeneous and perpendicular gravitational and magnetic
fields. By fixing the x and z directions as those of the gravity
and the magnetic field, respectively, the position of the particle
is completely determined by the motion along the polar angle
in the xy plane. The polar angle can be identified as the ϕ

coordinate of the pendulum. Thus, the kinetic energy part
of the Hamiltonian (3) describes a free rotor in a homo-
geneous magnetic field. In the symmetric gauge, the vector
potential of the field imposes an effective constant shift for
the ϕ component of the momentum, which is analogous to
the offset charge ng on the superconducting island induced
either by the environment or by a gate voltage. In the fol-
lowing, the “plasma” frequency for the transmon is given by
ωp = √

8ECEJ/h̄ and describes the classical oscillations of
the linearized circuit. The parameter η = EJ/EC is the ratio
between the potential and kinetic energy of the pendulum,
and determines, by the condition η � 1, whether the device
is in the charge-insensitive regime of the free rotor and the
gravitational potential.

The eigenvalues {h̄ωk} and the corresponding eigenvectors
{|k〉}, with k = 0, 1, . . . , of the Hamiltonian in Eq. (3) can be
obtained by solving the Mathieu equation; see Appendix A.
In general, the eigenvalues of the coupled system Hamiltonian
Ĥ0 in Eq. (1) have to be solved numerically. With a sufficient
truncation in the Hilbert spaces of the uncoupled systems
in Eqs. (2) and (3), one can represent the Hamiltonian Ĥ0

in a matrix form. The resulting eigenvalues of the truncated
Hamiltonian Ĥ0 are shown in Fig. 1. We see that the coupling
creates avoided crossings at the locations where the pendulum
transition frequencies are equal to positive integer multiples of
the resonator quantum. Also, the density of states increases
drastically with the energy. The nonlinearity in the system
is characterized by the nonequidistant spacings between the
energy levels. Their origin is the sinusoidal Josephson po-
tential of the transmon. Here, we are especially interested in
the regime where the resonator frequency is (nearly) resonant
with the frequency of the lowest transition of the pendulum,
i.e., when ωr ≈ ωq = ω01 = ω1 − ω0.

The Hamiltonian Ĥ0 in Eq. (1) can be represented in the
eigenbasis {|k〉} of the Josephson pendulum as

Ĥ0 = h̄ωrâ
†â +

K−1∑
k=0

h̄ωk|k〉〈k| + h̄g(â† + â)
K−1∑

k,�=0

�̂k�. (5)

We refer to this as the Josephson-Rabi Hamiltonian. Here, K is
the number of transmon states included in the truncation. We
have also defined �̂k� ≡ 〈k|n̂|�〉|k〉〈�| which is the represen-
tation of the Cooper-pair-number operator in the eigenbasis of
the transmon.

A useful classification of the eigenstates can be obtained
by using the fact that the transmon can be approximated
as a weakly anharmonic oscillator [10], and thus 〈k|n̂|�〉 is
negligible if k and � differ by more than 1. Together with the
rotating-wave approximation, this results in

Ĥ0 ≈ h̄ωrâ
†â +

K−1∑
k=0

h̄ωk|k〉〈k|

+ h̄g
K−2∑
k=0

(
â�̂

†
k,k+1 + â†�̂k,k+1

)
, (6)

Here, we introduce the total excitation-number operator as

N̂ = â†â +
K−1∑
k=0

k|k〉〈k|, (7)

which commutes with the Hamiltonian in Eq. (6). Thus,
the eigenstates of this Hamiltonian can be labeled by the
eigevalues of N̂ , which is a representation that we will find
useful in the discussion of the transitions between these
states. The terms neglected in the rotating-wave approxima-
tion can be treated as small perturbations except for transitions
where the coupling frequency g�k = g〈k|n̂|�〉 becomes a con-
siderable fraction of the corresponding transition frequency
ω�k = ωk − ω� and, thus, enters the ultrastrong coupling
regime with gk� � 0.1×ω�k . In the ultrastrong coupling
regime and beyond, the eigenstates are superpositions of states
with different excitation numbers and cannot thus be labeled
with N .

Another important approximation for the Hamiltonian in
Eq. (5) is the two-state truncation (K = 2), which reduces it
to the Rabi Hamiltonian

ĤR = h̄ωrâ
†â + h̄ωqσ̂+σ̂− + h̄g01(â† + â)σ̂x. (8)

Here g01 = g〈1|n̂|0〉, the qubit annihilation operator is σ̂− =
|0〉〈1|, and the Pauli spin matrix σ̂x = σ̂− + σ̂+. The Rabi
Hamiltonian is a good approximation to the pendulum-
oscillator system as long as the corrections for the low-
energy eigenvalues and eigenstates, arising from the higher
excited states of the pendulum, are taken properly into account
[14–16].

Further, by performing a rotating-wave approximation, we
obtain the standard Jaynes-Cummings model

ĤJC = h̄ωrâ
†â + h̄ωqσ̂+σ̂− + h̄g01(â†σ̂− + âσ̂+), (9)

which also results from a truncation of Eq. (6) to the low-
energy subspace spanned by the lowest two eigenstates of
the transmon. Apart from the nondegenerate ground state
|0, 0〉 with zero energy, the excited-state eigenenergies of the
Jaynes-Cummings Hamiltonian in Eq. (9) form a character-
istic doublet structure. In the resonant case, the excited-state
eigenenergies and the corresponding eigenstates are given by

Enr,± = nr h̄ωr ± √
nr h̄g01, (10)

|nr,±〉 = 1√
2

(|nr, 0〉 ± |nr − 1, 1〉). (11)

Here, nr = 1, 2, . . . , and we have denoted eigenstates of
the uncoupled Jaynes-Cummings Hamiltonian with {|nr, 0〉,
|nr, 1〉} where |nr〉 are the eigenstates of the resonator with
nr = 0, 1, . . ..

Because of the rotating-wave approximation, the Jaynes-
Cummings Hamiltonian commutes with the excitation-
number operator in Eq. (7) truncated to two states and rep-
resented as

N̂ = â†â + σ̂+σ̂−. (12)

Thus, they have joint eigenstates and, in addition, the exci-
tation number N is a conserved quantity. For a doublet with
given nr , the eigenvalue of the excitation-number operator is
N = nr, while for the ground state N = 0. We note that the
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transition energies between the Jaynes-Cummings eigenstates
depend nonlinearly on N . In particular, the transition energies
from the ground state |0, 0〉 to the eigenstate |nr,±〉 are given
by nr h̄ωr ± √

nr h̄g01.

III. MODELS FOR THE DRIVEN-DISSIPATIVE
JOSEPHSON PENDULUM COUPLED
TO THE HARMONIC OSCILLATOR

Here, we provide a master equation approach that incorpo-
rates the effects of the drive and dissipation to the coupled sys-
tem. Previous studies on this system have typically truncated
the transmon to the low-energy subspace spanned by the two
lowest energy eigenstates [17,18], or treated the dissipation
in the conventional Lindblad formalism [19]. Recent studies
[20–23] have treated the dissipation at the detuned limit using
the Floquet-Born-Markov approach. We will apply a similar
formalism for the case where the pendulum and resonator are
in resonance in the low-energy subspace. In particular, we
study the driven-dissipative transition between the low-energy
and the free rotor regimes of the pendulum in terms of the
dependence of the number Nr of quanta in the resonator on
the drive power.

A. Coupling to the drive

The system shown in Fig. 1 and described by the Hamilto-
nian in Eq. (1) can be excited by coupling the resonator to a
monochromatic driving signal modeled with the Hamiltonian

Ĥd = h̄A cos(ωdt )[â† + â], (13)

where A and ωd are the amplitude and the angular frequency
of the drive, respectively. This results in a total system Hamil-
tonian ĤS = Ĥ0 + Ĥd. For low-amplitude drive, only the first
two states of the pendulum have a significant occupation and
thus the Hamiltonian Ĥ0 can be truncated into the form of the
well-known Rabi Hamiltonian in Eq. (8), which in turn, under
the rotating-wave approximation, yields the standard Jaynes-
Cummings Hamiltonian in Eq. (9). The transitions induced
by the drive in the Jaynes-Cummings system are subjected to
a selection rule: The occupation number can change only by
one, i.e., N → N ± 1. This follows from the relations

〈nr,±|(â† + â)|0, 0〉 = 1√
2
δnr,1, (14)

〈nr,±|(â† + â)|�r,±〉 = 1

2
(
√

nr +
√

nr − 1)δnr,�r+1

+ 1

2
(
√

nr + 1 + √
nr )δnr,�r−1. (15)

As a consequence, the system climbs up the Jaynes-
Cummings ladder one step at a time. Particularly, a system
in the ground state is coupled directly only to states |1,±〉.
Indeed, in such a system the Jaynes-Cummings ladder has
been observed [24], as well as the effect of strong drive in
the off-resonant [20] and on-resonant case [25]. The Jaynes-
Cummings model offers a good starting point for understand-
ing the phenomenon of photon blockade in the pendulum-
resonator system, which will be discussed later in detail.
Indeed, it is apparent from Eq. (10) that, as the system is
driven externally by not too intense fields, the excitation to

higher levels in the resonator is suppressed by the higher levels
being off resonant, due to the nonlinearity induced by the
coupling. This is referred to as photon blockade. As the drive
amplitude increases further, the entire Jaynes-Cummings hi-
erarchy breaks down [26].

However, in weakly anharmonic systems such as the
transmon, as the drive amplitude is increased, the higher
excited states of the Josephson pendulum become occupied
and the two-state approximation becomes insufficient. As a
consequence, the system has to be modeled by a multilevel
Josephson-Rabi model [20–23], see Eq. (5), which includes
the higher excitations of the transmon as well as the counter-
rotating (Bloch-Siegert) terms. In the resonant case, the need
to take into account the second excited state of the transmon
has been pointed out already in Ref. [25]. Here, at larger drive
amplitudes, the pendulum escapes the low-energy subspace
defined by the states localized in a well of the cosine poten-
tial and the unbound free rotor states also become occupied
[20–23] even in the case of strongly detuned drive frequency.
In the limit of very high drive power, the pendulum behaves
as a free rotor and the nonlinear potential can be neglected.
Consequently, the resonance frequency of the system is set by
the bare resonator frequency, instead of the normal modes.

B. Dissipative coupling

The dissipation is treated by modeling the environment
as a thermal bosonic bath which is coupled bilinearly to the
resonator. The Hamiltonian of the driven system coupled to
the bath can be written as

Ĥ = ĤS + ĤB + Ĥint, (16)

where

ĤB = h̄
∑

k

�kb̂†
kb̂k, (17)

Ĥint = h̄(â† + â)
∑

k

gk (b̂†
k + b̂k ). (18)

Above, {b̂k}, {�k}, and {gk} are the annihilation operators, the
angular frequencies, and the coupling frequencies of the bath
oscillators. We use this model in the derivation of a master
equation for the reduced density operator of the system. We
proceed in the conventional way and assume the factorized
initial state ρ̂(0) = ρ̂S(0) ⊗ ρ̂B(0), apply the standard Born
and Markov approximations, trace over the bath, and perform
the secular approximation. As a result, we obtain a master
equation in the standard Lindblad form.

C. Lindblad master equation

Conventionally, the dissipation in the circuit QED setup
has been treated using independent Lindblad dissipators for
the resonator and for the pendulum. Formally, this can be
achieved by coupling the pendulum to another heat bath
formed by an infinite set of harmonic oscillators. This inter-
action can be described with the Hamiltonian

Ĥ t
int = h̄n̂

∑
k

fk (ĉ†
k + ĉk ), (19)
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where { fk} and {ĉk} are the coupling frequencies and the
annihilation operators of the bath oscillators. The bath is
coupled to the transmon through the charge operator n̂, which
is the typical source of decoherence in the charge-based
superconducting qubit realizations. By following the typical
Born-Markov derivation of the master equation for the uncou-
pled subsystems, one obtains a Lindblad equation where the
dissipators induce transitions between the eigenstates of the
uncoupled (g = 0) system [27–30]

d ρ̂

dt
= − i

h̄
[ĤS, ρ̂] + κ[nth(ωr ) + 1]L[â]ρ̂

+ κnth(ωr )L[â†]ρ̂ +
∑

k�

�k�L[|�〉〈k|]ρ̂, (20)

where L[Â]ρ̂ = 1
2 (2Âρ̂Â† − Â†Âρ̂ − ρ̂Â†Â) is the Lindblad

superoperator and nth(ω) = 1/[eh̄ω/(kBT ) − 1] is the Bose-
Einstein occupation. Note that the treatment of dissipation
as superoperators acting separately on the qubit and on the
resonator is valid if their coupling strength and the drive
amplitude are weak compared to the transition frequencies
of the uncoupled system-environment. Above, we have also
assumed an ohmic spectrum for the resonator bath.

In the Lindblad master equation (20), we have included
the effects arising from the coupling g and the drive into the
coherent von Neumann part of the dynamics. The first two
incoherent terms cause transitions between the eigenstates of
the resonator and arise from the interaction Hamiltonian in
Eq. (18). The strength of this interaction is characterized with
the spontaneous emission rate κ . The last term describes the
relaxation, excitation, and dephasing of the transmon caused
by the interaction Hamiltonian in Eq. (19). The transition
rates �k� between the transmon eigenstates follow the Fermi’s
golden rule as

�k� = |〈�|n̂|k〉|2S(ωk�). (21)

In our numerical implementation, we have assumed that the
fluctuations of the transmon bath can also be characterized
with an ohmic spectrum S(ω) = γ0ω

1−exp[−h̄ω/kBT ] , where γ0 is
a dimensionless factor describing the bath-coupling strength.
We have also denoted the transition frequencies of the trans-
mon with ωk� = ω� − ωk .

Here, the magnitude of the transition rate from state |k〉
to the state |�〉 is given by the corresponding matrix element
of the coupling operator n̂ and the coupling strength γ0. We
note that in a typical superconducting resonator-transmon re-
alization one has γ = γ0ω01 � κ . In this so-called bad-cavity
limit, the effects of the transmon bath are negligible especially
if the coupling frequency g with the resonator is large. Thus,
the main contribution of the transmon dissipators in the master
equation Eq. (20) is that it results in faster convergence in the
numerical implementation of the dynamics.

D. Floquet-Born-Markov formalism

The dissipators in the Lindblad model above are derived
under the assumption of weak driving and weak coupling
between the transmon and the resonator. However, both the
driving and the coupling affect the eigenstates of the system
and thus have to be taken into account in the derivation of

the master equation. This can be achieved in the so-called
Floquet-Born-Markov approach, where the drive and the
transmon-resonator coupling are explicitly included through-
out the derivation of the dissipators [20–23,31]. For this
purpose, we represent the system in terms of the quasienergy
states which can be obtained only numerically.

Since the drive in Eq. (13) is τ = 2π/ωd periodic, the
solution to the time-dependent Schrödinger equation

ih̄
d

dt
|�(t )〉 = ĤS(t )|�(t )〉, (22)

corresponding to the system Hamiltonian ĤS(t ) in Eq. (16),
can be written in the form

|�(t )〉 = e−iεt/h̄|�(t )〉, (23)

where ε are the quasienergies and |�(t )〉 are the correspond-
ing τ -periodic quasienergy states. By defining the unitary time
propagator as

Û (t2, t1)|�(t1)〉 = |�(t2)〉, (24)

one can rewrite the Schrödinger equation (22) in the form

ih̄
d

dt
Û (t, 0) = ĤS(t )Û (t, 0). (25)

Using Eqs. (23) and (24), we obtain

Û (τ, 0)|�(0)〉 = e−iετ/h̄|�(0)〉, (26)

from which the quasienergies εα and the corresponding
quasienergy states |�α (0)〉 can be solved. Using the propa-
gator Û , one can obtain the quasienergy states for all times
from

Û (t, 0)|�α (0)〉 = e−iεαt/h̄|�α (t )〉. (27)

Because of the periodicity of |�α (t )〉, it is sufficient to find
the quasienergy states for the time interval t ∈ [0, τ ]. Also,
if εα is a solution for Eq. (26), then εα + �h̄ωd is also a
solution. Indeed, all solutions of Eq. (26) can be obtained
from the solutions of a single energy interval of h̄ωd. These
energy intervals are called Brillouin zones, in analogy with the
terminology used in solid-state physics for periodic potentials.

The master equation for the density operator in the
quasienergy basis can be written as [32,33]

ρ̇αα (t ) =
∑

ν

[�ναρνν (t ) − �ανραα (t )],

ρ̇αβ (t ) = −1

2

∑
ν

[�αν + �βν]ραβ (t ), α �= β, (28)

where

�αβ =
∞∑

�=−∞
[γαβ� + nth(|�αβ�|)(γαβ� + γβα−�)],

γαβ� = π

2
κθ (�αβ�)

�αβ�

ωr
|Xαβ�|2. (29)

Above, θ (ω) is the Heaviside step function and h̄�αβ� = εα −
εβ + �h̄ωd is the energy difference between the states α and β

in Brillouin zones separated by �. Also,

Xαβ� = 1

τ

∫ t0+τ

t0

dte−i�ωd t 〈�α (t )|(â† + â)|�β (t )〉, (30)

where t0 is some initial time after the system has reached a
steady state.
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TABLE I. Parameters of the driven and dissipative oscillator-
pendulum system. The numerical values of the angular frequencies
and energies used in the numerical simulations are given in units of
ωr and h̄ωr , respectively. We note that ωq is determined by EC and η;
see the text.

Symbol Parameter Value

ωq Qubit frequency 1.0
ωd Drive frequency 0.98
ωp Plasma oscillation frequency 1.08
g Coupling frequency 0.04
κ Resonator dissipation rate 0.002
kBT Thermal energy 0.13
EC Charging energy 0.07
η Energy ratio EJ/EC 30

From Eq. (28), we obtain the occupation probabilities
pα = ραα (t → ∞) in the steady state as

pα =
∑

ν �=α �να pν∑
ν �=α �αν

, (31)

and the photon number

Nr =
∑

α

pα〈â†â〉α, (32)

where

〈â†â〉α = 1

τ

∫ t0+τ

t0

dt〈�α (t )|â†â|�α (t )〉 (33)

is the photon number in a single quasienergy state. The
occupation probability for the transmon state |k〉 is given by

Pk = 1

τ

∑
α

pα

∫ t0+τ

t0

dt〈�α (t )|k〉〈k|�α (t )〉 . (34)

We emphasize that this method assumes weak coupling to
the bath, but no such restrictions are made for the drive and
pendulum-resonator coupling strengths. As a consequence,
the dissipators induce transitions between the quasienergy
states of the driven coupled system.

E. Parameters

The parameter space is spanned by seven independent
parameters which are shown in Table I. We fix the values
of the energy ratio η = EJ/EC and the coupling strengths g
and κ . The ratio η sets the number Kb of bound states in
the pendulum, see Appendix A, but does not qualitatively
affect the response. We have used a moderate value of η

in the transmon regime, in order to keep Kb low, allowing
more elaborate discussion of the transient effects between
the low-energy oscillator and rotor limits. We use the Born,
Markov, and secular approximations in the description of
dissipation, which means that the value of κ has to be smaller
than the system frequencies. In addition, we work in the
experimentally relevant strong coupling regime where the
oscillator-pendulum coupling g � κ . The choice of parame-
ters is similar to the recently realized circuit with the same
geometry [20].

The transition energies of the transmon are determined
by the Josephson energy EJ and by the charging energy EC,

which can be adjusted by the design of the shunting capacitor
CB; see Fig. 1. The transition energy between the lowest
two energy eigenstates is given by h̄ωq ≈ √

8EJEC − EC =
EC(

√
8η − 1). We will study the onset of the nonlinearities

for different drive detunings δd = ωd − ωr as a function of the
drive amplitude A. We are especially interested in the resonant
case δq = ωq − ωr = 0. The detuned case has been previously
studied in more detail in Refs. [20–23]. We have used a
temperature value of kBT/(h̄ωr ) = 0.13 which corresponds to
T ≈ 30 mK for a transmon with ωq/(2π ) = 5 GHz.

IV. NUMERICAL RESULTS

A. Classical system

Classically, we can understand the behavior of our system
as follows: the pendulum-resonator forms a coupled system,
whose normal modes can be obtained. However, because
the pendulum is nonlinear, the normal-mode frequencies of
the coupled-system depend on the oscillation amplitude of
the pendulum. The resonator acts also as a filter for the
drive, which is thus applied to the pendulum. As the oscilla-
tion amplitude of the pendulum increases, the normal-mode
frequency shifts, an effect which is responsible for photon
blockade. Eventually the pendulum reaches the free rotor
regime, where the Josephson energy becomes negligible. As a
consequence, the nonlinearity no longer plays any role, and
the resulting eigenmode of the system is that of the bare
resonator.

We first solve the classical equation of motion (see
Appendix B) for the driven and damped resonator-transmon
system. We study the steady-state occupation Nr of the res-
onator as a function of the drive amplitude. Classically, one
expects that the coupling to the transmon causes deviations
from the bare resonator occupation

Nbare = 1

4

A2

δ2
d + κ2/4

. (35)

We emphasize that Nbare � A2/κ2 where the equality is ob-
tained if the drive is in resonance, i.e., if δd = 0. The numer-
ical data for δd/ωr = −0.02 is shown in Fig. 2. We compare
the numerical data against the bare-resonator photon number
in Eq. (35), and against the photon number of the linearized
system, see Appendix B,

Nlin = A2

4

1(
δd − g2

eff
δp

δ2
p+γ 2/4

)2
+

(
κ
2 + g2

eff
γ /2

δ2
p+γ 2/4

)2 , (36)

where δp = ωd − ωp, h̄ωp = √
8EJEC, geff = g 4

√
η/32, and γ

is the dissipation rate of the pendulum. The above result is ob-
tained by linearizing the pendulum potential which results in a
system that is equivalent to two coupled harmonic oscillators.
We find in Fig. 2 that for small drive amplitude A/κ = 0.005,
the steady state of the resonator photon number is given by
that of the linearized system. As a consequence, both degrees
of freedom oscillate at the drive frequency and the system is
classically stable. The small deviation between the numerical
and analytic steady-state values is caused by the rotating-wave
approximations that were made for the coupling and the drive
in the derivation of Eq. (36).
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FIG. 2. Classical dynamics of the resonator occupation Nr of
the driven and dissipative resonator-transmon system. We show data
for linear (A/κ = 0.005, bottom line), chaotic (A/κ = 7, middle
line), and the bare-resonator (A/κ = 500, top line) regimes. The
bare-oscillator occupation in the steady state is given by Eq. (35)
and indicated with dashed lines. We also show with dot-dashed
lines the steady-state photon numbers for the linearized system,
as given in Eq. (36). We have used the pendulum dissipation rate
γ /ωr = 2×10−4. The other parameters are listed in Table I.

If the drive amplitude is increased to A/κ = 7, the non-
linearities caused by the cosinusoidal Josephson potential
generate chaotic behavior in the pendulum. As a consequence,
the photon number does not find a steady state but, instead,
displays aperiodic chaotic oscillations around some fixed
value between those of the bare resonator and the linearized
system. This value can be found by studying the long-time
average in the steady state. For very high drive amplitude
A/κ = 500, the photon number in the classical system is given
by that of the bare resonator in Eq. (35). Physically this means
that for strong driving, the pendulum experiences rapid free
rotations and, as a consequence, its contribution to the photon
dynamics is zero on average.

In Fig. 3(a), we study in more detail how the classical
steady-state photon number of the resonator changes as the
coupled system goes through the transition between the lin-
earized oscillations in the weak driving regime and the bare-
resonator oscillations for strong driving. In the absence of
driving, the steady-state photon number is zero in accordance
to Eq. (36). For low drive amplitudes, the resonator-transmon
system can be approximated as a driven and damped Duffing
oscillator. We show in Appendix B that the system has one
stable solution for drive amplitudes A < Amin and A > Acrit ,
and two stable solutions for Amin < A < Acrit , where

Amin = γ̃

√
2
(
ω̃2

p − ω2
d

)√(
ω̃2

r − ω2
d

)2 + κ2ω2
d

gωrωp
, (37)

Acrit =
√

8

27

√(
ω̃2

p − ω2
d

)3

√(
ω̃2

r − ω2
d

)2 + κ2ω2
d

gωrωdωp
, (38)

FIG. 3. Onset of the nonlinearities in the driven system. (a) The
steady-state photon number Nr as a function of the drive ampli-
tude. We compare the Floquet-Born-Markov (FBM) simulation with
seven transmon states against the corresponding solutions for the
Rabi Hamiltonian and the classical system. The classical region of
bistability occurs between Amin/κ = 0.97 and Acrit/κ = 1.2, given
by Eqs. (37) and (38), respectively. The classical simulation demon-
strates switching between the two stable solutions at A ≈ Acrit . We
also show the photon numbers of the linearized system and the bare
resonator, as given by Eqs. (35) and (36), respectively. Note that both
axes are shown in logarithmic scale. (b) Occupation probabilities
Pk of the transmon eigenstates calculated using FBM. We indicate
the regime of classical response with the shaded region in both
figures. Occupation probabilities for states with k � 4 are negligible
for the used parameters. (c) Order parameter � defined in Eq. (39).
We have used ng = 0 and the drive detuning δd/ωr = −0.02. Other
parameters are listed in Table I.

where we have defined the renormalized oscillator frequency
and transmon dissipation rate as ω̃2

r = ω2
r − g2h̄ωr/(4EC)

and γ̃ = γ + gg1κω2
d/[(ω̃2

r − ω2
d )2 + κ2ω2

d], respectively, the
classical oscillation frequency of the linearized transmon as
h̄ωp = √

8EJEC, and the renormalized linearized transmon
frequency as ω̃2

p = ω2
p − g2ω2

d/(ω̃2
r − ω2

d )[h̄ωr/(4EC)].

063828-7



I. PIETIKÄINEN et al. PHYSICAL REVIEW A 99, 063828 (2019)

For amplitudes A < Amin, the classical system behaves as a
two-oscillator system and the photon number has the typical
quadratic dependence on the drive amplitude in Eq. (36).
As the drive amplitude becomes larger than Amin, deviations
from the linearized model emerge. In addition, the system
becomes bistable. If A ≈ Acrit , the number of stable solutions
for the Duffing oscillator is reduced from two to one. This
is displayed by the abrupt step in the photon number of the
classical solution in Fig. 3 around Acrit/κ = 1.2. The remain-
ing high-amplitude stable solution appears as a plateau which
reaches up to the drive amplitude A/κ ≈ 5.6. If the drive
amplitude is further increased, the higher order terms beyond
the Duffing approximation render the motion of the classical
system chaotic, as described already in Fig. 2. For large drives,
the classical photon number approaches asymptotically the
photon number of the bare resonator.

B. Quantum description

The transition between the motion of linearized and bare-
resonator oscillations is characteristic to oscillator-pendulum
systems. However, we show here that in the quantum mechan-
ical context, the onset of the nonlinear dynamical behaviour
turns out to be quantitatively different from that provided by
the above classical model. This was also observed in recent
experimental realization with superconducting circuits [20].

In the quantum-mechanical treatment, we calculate the
steady-state photon number in the resonator as a function of
the drive amplitude using the Floquet-Born-Markov master
equation presented in Sec. III D. We have confirmed that for
the used values of the drive amplitude the simulation has
converged for the truncation of seven transmon states and
60 resonator states. We compare the quantum results against
those given by the classical equation of motion and study
also deviations from the results obtained with the two-state
truncation of the transmon. In Fig. 3, we present the results
corresponding to gate charge ng = 0, where the resonator,
the transmon, and the drive are nearly resonant at low drive
amplitudes. The used parameters are the same as in Fig. 2 and
listed in Table I.

First, we notice in Fig. 3(a) that even in the absence
of driving there always exists a finite photon occupation of
Nr ≈ 10−3 in the ground state, contrary to the classical so-
lution which approaches zero. At zero temperature, the exis-
tence of these ground-state photons [34] originates from the
terms in the interaction Hamiltonian that do not conserve the
number of excitations and are neglected in the rotating-wave
approximation resulting in Eq. (6). For the two-state trunca-
tion of the transmon, one can derive a simple analytic result
for the ground-state photon number by treating these terms as
a small perturbation. In the second order in the perturbation
parameter g/ωr , one obtains that the number of ground-state
photons is given by Nr ≈ (g/2ωr )2. We have confirmed that
our simulated photon number at zero driving is in accordance
with this analytic result if T = 0 and g/ωr � 1. The photon
number at zero driving obtained in Fig. 3(a) is slightly higher
due to additional thermal excitation; in the simulations, we
use a finite value for temperature (see Table I).

As was discussed in the previous section, the resonator
photon number of a classical system increases quadratically

with the drive amplitude. For amplitudes A < Acrit , the clas-
sical system can be approximated with a linearized model
formed by two coupled harmonic oscillators. However, in
the quantum case the energy levels are discrete and thus the
system responds only to a drive which is close to resonance
with one of the transitions. In addition, the energy levels
have nonequidistant separations which leads to a reduction of
the photon number compared to the corresponding classical
case, referred to as the photon blockade. This is also apparent
in Fig. 3(a).

We emphasize that the photon blockade is quantitatively
strongly dependent on the transmon truncation. This can be
seen as the deviation between the two- and seven-state trunca-
tion results for A/κ > 1 in Fig. 3(a). We further demonstrate
this by showing the transmon occupations Pk in Fig. 3(b).
For weak drive amplitudes, the transmon stays in its ground
state. The excitation of the two-level system is accompanied
by excitations of the transmon to several its bound states . If
A/κ � 30, the transmon escapes its potential well and also
the free rotor states start to gain a finite occupation. This can
be interpreted as a transition between the Duffing oscillator
and free rotor limits of the transmon; see Appendix A. As a
consequence, the response of the quantum system resembles
its classical counterpart. We will study the photon blockade in
more detail in the following section.

Order parameter

In order to characterize the transition between the quantum
and classical regime, we can also study the behaviour of the
order parameter � defined as the expectation value of the
coupling part of the Hamiltonian in Eq. (5), normalized with
h̄g, as

� =
∣∣∣∣∣
〈

(â† + â)
∑
k,�

�̂k,�

〉∣∣∣∣∣, (39)

previously introduced and used for the off-resonant case in
Ref. [20]. To get an understanding of its behavior, let us
evaluate it for the resonant Jaynes-Cummings model,

�JC = |〈nr,±|(â† + â)σx|nr,±〉| = √
nr; (40)

therefore, it correctly estimates the absolute value of the cavity
field operator. At the same time, when applied to the full Rabi
model, it includes the effect of the terms that do not conserve
the excitation number.

In Fig. 3(c), we present � as a function of the drive
amplitude A. Much like in the off-resonant case, this order pa-
rameter displays a marked increase by one order of magnitude
across the transition region.

C. Photon blockade: Dependence on the drive frequency

Here, we discuss in more detail the phenomenon of photon
blockade in the pendulum-resonator system as a function of
the drive detuning δd = ωd − ωr. First, we consider the tran-
sition between the ground state and the state |nr,±〉 [Eq. (11)]
of the resonant Jaynes-Cummings system (ωq = ωr). We re-
call that the selection rules in Eqs. (14) and (15) allow only
direct transitions that change the excitation number by one.
However, at higher amplitudes the probability of higher order
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FIG. 4. Steady-state photon number as a function of drive detuning and amplitude for the resonant case with δq = 0.0. Other parameters
used in the simulation are listed in Table I. We present the energy level diagrams of the coupled pendulum-resonator for the (a) two-state
and (b) seven-state truncation for the transmon, and the corresponding simulations (c) and (d) for the average number of photons Nr . In the
diagrams (a) and (b), the states are labeled by the excitation number N which is a good quantum number if the rotating-wave approximation
is valid. We also highlight by blue (gray) rectangles the range of energies accessible by 1-, 2-, 3-, 4-, and 5-photon transitions, corresponding
to the range of drive frequencies δd/ωr ∈ {−0.06, 0.06} in panels (c) and (d). The vertically aligned arrows indicate the locations of transitions
that correspond to the multiphoton blockades in panels (c) and (d), which are denoted with dashed lines. Absent transitions are denoted in red
(gray).

processes is no longer negligible and excited states can be
populated by virtual nonresonant single-photon transitions.
As a consequence, one obtains the resonance condition for
multiphoton transitions as nrωd = nrωr ± √

nrg. Because the
energy-level structure is nonequidistant, the drive couples
only weakly to other transitions in the system. In the absence
of dissipation, the dynamics of the Jaynes-Cummings system
can thus be approximated in a subspace spanned by the states
{|0, 0〉, |nr,±〉}.

Thus, one expects that, due to the driving, the system goes
through nr-photon Rabi oscillations between the basis states
of the subspace. The Rabi frequency �nr,± of such process
is proportional to the corresponding matrix element of the
driving Hamiltonian in Eq. (13) and the drive amplitude A.
Consequently, the time-averaged photon number in the system
is Nr = (nr − 1

2 )/2. The driving does not, however, lead into a
further increase of the photon number either because the drive
is not resonant with transitions from the state |nr,±〉 to higher
excited states or the matrix element of the resonant transitions
are negligibly small. We are referring to this phenomenon as
nr-photon blockade.

Dissipation modifies somewhat this picture, as it causes
transitions outside the resonantly driven subspace. As a conse-
quence, the average photon number decays with a rate which
is proportional to κ . Thus, the steady state of such system
is determined by the competition between the excitation and

relaxation processes caused by the drive and the dissipa-
tion, respectively. At low temperatures, the occupation in the
ground state becomes more pronounced as the dissipation
causes mostly downward transitions. Thus, the steady-state
photon number is reduced compared to the time-averaged
result for Rabi-driven nondissipative transition. This was vis-
ible already in Fig. 3 in which the data were obtained with
the two-state truncation and corresponds to the four-photon
blockade of the Jaynes-Cummings system.

The diagram in Fig. 4(a) represents the eigenenergies of
the Hamiltonian for Eq. (5) in the two-state truncation for the
transmon. The states are classified according to the excitation
number N from Eq. (12). We note that, here, we do not
make a rotating-wave approximation and strictly speaking N
is, therefore, not a good quantum number. However, it still
provides a useful classification of the states since the coupling
frequency is relatively small, i.e., g/ωr = 0.04.

In Fig. 4(c), we show the photon blockade spectrum of the
resonator-transmon system as a function of the drive detun-
ing δd, obtained numerically with the Floquet-Born-Markov
master equation. Here, one can clearly identify the one-
photon blockade at the locations where the drive frequency
is in resonance with the single-photon transition frequency
of the resonator-transmon system [19], i.e., when δd = ±g.
Two-, three-, and higher-order blockades occur at smaller
detunings and higher drive amplitudes, similar to that shown
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in Ref. [26]. Transitions involving up to five drive photons
are denoted in the diagram in Fig. 4(a) and are vertically
aligned with the corresponding blockades in Fig. 4(c). At zero
detuning, there is no excitation as the coupling to the transmon
shifts the energy levels of the resonator so that there is no
transition corresponding with the energy h̄ωr. We also note
that the photon-number spectrum is symmetric with respect
to the drive detuning δd. We see this same symmetry also in
Eq. (36) for the linearized classical system when the classical
linearized frequency of the transmon is in resonance with the
resonator frequency, i.e., when ωp = ωr.

However, in experimentally relevant realisations of such
systems the higher excited states have a considerable quanti-
tative influence to the photon-number spectrum. We demon-
strate this by showing data for the seven-state transmon
truncation in Figs. 4(b) and 4(d). The eigenenergies shown
in Fig. 4(b) are those obtained in Fig. 1 at resonance
(ωr = ωq). We have again confirmed that for our choice
of drive amplitudes and other parameters, this truncation is
sufficient to obtain converged results with the Floquet-Born-
Markov master equation. We observe that the inclusion of
the higher excited states changes considerably the observed
photon number spectrum. However, the states can again be
labeled by the excitation number N which we have confirmed
by numerically calculating N = 〈N̂〉 for all states shown in
Fig. 4(c). The relative difference from whole integers is less
than 1% for each shown state. Corresponding to each N , the
energy diagram forms blocks containing N + 1 eigenstates
with (nearly) the same excitation number, similar to the dou-
blet structure of the Jaynes-Cummings model. Contrary to the
two-state case, these blocks start to overlap if N > 4 for our
set of parameters, as can be seen in Fig. 4(b).

The number of transitions that are visible for our range
of drive frequencies and amplitudes in Fig. 4(d) is, thus,
increased from 10 observed in the Jaynes-Cummings case
to 15 in the seven-state system. However, some of these
transitions are not visible for our range amplitudes because the
corresponding virtual one-photon transitions are not resonant
and/or have small transition matrix elements. In addition, the
spectrum is asymmetric with respect to the detuning as the
multiphoton resonances are shifted toward larger values of δd.
As a consequence, the breakdown of the photon blockade at
δd = 0 occurs at much lower amplitudes as is observed in the
Jaynes-Cummings system [26].

D. Approaching the ultrastrong coupling

For most applications in quantum information processing,
a relative coupling strength g/ωr of a few percent is sufficient.
However, recent experiments with superconducting circuits
have demonstrated that it is possible to increase this coupling
into the ultrastrong regime (g/ωr ∼ 0.1–1) and even further in
the deep strong coupling regime (g/ωr � 1) [35–37]. While
the highest values have been obtained so far with flux qubits,
vacuum-gap transmon devices with a similar electrical circuit
as in Fig. 1(a) can reach g/ωr = 0.07 [38] and g/ωr = 0.19
[39]. To study the multilevel Josephson-Rabi model at higher
couplings, we present in Fig. 5 results for the average number
of photons in the resonator for couplings g/ωr = 0.04, 0.06,

FIG. 5. Steady-state photon number Nr of the multilevel
Josephson-Rabi model as a function of drive amplitude for dif-
ferent coupling strengths. The simulations are realized using the
Floquet-Born-Markov approach with the seven-state truncation for
the transmon. The drive detuning is δd/ωr = −0.02 and also the other
parameters are the same as in Table I.

and 0.1, employing the Floquet-Born-Markov approach to
dissipation.

At low drive powers, the two-level approximation can be
used for the transmon, and the Josephson pendulum-resonator
system maps into the quantum Rabi model. From Fig. 5, we
see that the average number of photons Nr in the resonator is
not zero even in the ground state; this number clearly increases
as the coupling gets stronger. As noted also before, this is
indeed a feature of the quantum Rabi physics: Unlike the
Jaynes-Cummings model, where the ground state contains
zero photons, the terms that do not conserve the excitation
number in Ĥc lead to a ground state which is a superposi-
tion of transmon and resonator states with nonzero number
of excitations. Like in Sec. IV B, the perturbative formula
Nr ≈ (g/2ωr )2 approximates very well the average number
of photons at zero temperature, while in Fig. 5 we observe
slightly higher values due to the finite temperature. As the
drive increases, we observe that the photon blockade tends to
be more effective for large g’s. Interestingly, the transition to a
classical state also occurs more abruptly as the coupling gets
stronger. We have checked that this coincides with many of
the upper levels of the transmon being rapidly populated. As
a result of this effect, the truncation to seven states (which is
the maximum that our code can handle in a reasonable amount
of time) becomes less reliable and artifacts such as the sharp
resonances at some values start to appear.

E. Correlation functions

Photon correlations provide the essential information about
the statistics of the quantum field leaking out of the cavity
[40–42]. Especially interesting is the zero delay correlation
function [43,44]. The nth-order correlation function is defined
as

G(n) = 〈â†nân〉 , (41)

where G(1) = Nr . In Fig. 6, we have calculated numerically the
correlation functions for the seven-state transmon (a) with the
rotating-wave approximation and (b) including the counter-
rotating (Bloch-Siegert) terms present in the Josephson-Rabi
model.
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FIG. 6. Correlations G(n) as a function of the drive amplitude. The system is driven at the two-photon blockade frequency δd/ωr = −0.018.
The calculations are done for a seven-state transmon (a) by performing the rotating-wave approximation, and (b) with the full Josephson-Rabi
Hamiltonian. The solid lines correspond to zero temperature and the dashed lines to kBT/(h̄ωr ) = 0.13, while the other parameters are the
same as in Table I.

At zero driving and zero temperature, the system is in its
ground state. If the rotating-wave approximation is used, this
state is |0, 0〉. This means that all G(n) = 0. This can be seen
in Fig. 6(a). Without the rotating-wave approximation, the
analytic form of the ground state has not been found even for
the two-level Rabi Hamiltonian. We obtain an approximative
ground state of the Rabi Hamiltonian by treating the counter-
rotating terms ∝ (â†σ̂+ + âσ̂−) as a small perturbation. We
obtain in the second order of the perturbation parameter
g01/ωr that the non-normalized ground state can be written
as

|g〉 ≈ |0, 0〉 − g01ωr

2ω2
r − g2

01

|1, 1〉 +
√

2g2
01

2
(
2ω2

r − g2
01

) |2, 0〉. (42)

This gives G(1) = 3.7×10−4 and G(2) = 5.2×10−7 with the
parameters used here. The corresponding values with seven-
state Josephson-Rabi Hamiltonian from Fig. 6(b) are G(1) =
3.6×10−4 and G(2) = 7.9×10−7, demonstrating very good
agreement. As seen from Fig. 6, raising the temperature
reduces the difference between the two cases, since now
the system contains thermally activated photons even at zero
drive amplitude. Overall, as expected, in the quantum regime
the G(n)’s are very small, but once the system approaches
the classical regime as A/κ � 1 the values of G(n) become
larger than one. The marked difference between the rotating-
wave approximation result shown in Fig. 6(a) and that of the
full Josephson-Rabi model in Fig. 6(b) suggests the use of
statistics as a detection method for the ultrastrong-coupling
regime.

F. Dependence on the gate charge

If the transmon is only weakly nonlinear, i.e., η � 1, its
lowest bound eigenstates are insensitive to the gate charge; see
Appendix A. As a consequence, one expects that the value of
the gate charge should not affect the photon-number response
to a weak drive. However, as the amplitude of the drive is

increased, the higher excited states of the transmon become
occupied, as discussed in the context of Fig. 3. In particu-
lar, the transition region between the quantum and classical
responses should be dependent on the gate-charge disper-
sion of the transmon states. We demonstrate this in Fig. 7,
where we show the simulation data for the gate-charge values
ng = 0 and ng = 0.5. Clearly, in the weak driving regime, the
responses for the two gate-charge values are nearly equal. The
deviation in the photon number is of the order of 10−3, which
is explained by our rather modest value of η = 30.

The deviations between the photon numbers of the two
gate-charge values are notable if A/κ = 10 . . . 20. In this
regime, the transmon escapes the subspace spanned by the two
lowest eigenstates and thus the solutions obtained with differ-
ent gate-charge numbers are expected to differ. At very high
amplitudes, the free-rotor states with k � 6 also begin to con-
tribute the dynamics. These states have a considerable gate-
charge dispersion but, however, the superconducting phase
is delocalized. Accordingly, the gate-charge dependence is
smeared by the free rotations of the phase degree of freedom.

We also note that the photon number response displays
two sharp peaks for ng = 0.5 at A/κ ≈ 13 and A/κ ≈ 25.
The locations of the peaks are very sensitive to the value
of the gate charge, i.e., to the energy level structure of the
transmon. Similar abrupt changes in the transmon occupation
were also observed in recent experiments in Ref. [23]. They
could be related to quantum chaotic motion of the system
recently discussed in Ref. [45]. In this parameter regime, also
the Jaynes-Cummings model displays bistability [46].

G. Comparison between different master equations

We have also compared our numerical Floquet-Born-
Markov method against the Lindblad master equation, which
was presented in Sec. III C and has been conventionally used
in the studies of similar strongly driven systems with weak
dissipation. We note that for the case of strong coupling to the
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FIG. 7. Onset of nonlinearity as a function of the gate charge.
(a) The photon number Nr as a function of the drive amplitude.
We compare the numerical data for ng = 0 and ng = 0.5 obtained
with seven transmon states. (b) Corresponding occupations Pk in the
transmon eigenstates. The drive detuning is δd/ωr = −0.02 and also
the other parameters are the same as in Table I.

bath, the possible treatment is by the method of path integrals,
as developed by Feynman and Vernon, which has already been
applied to describe the dynamics of the Rabi model [47].

We recall that in the Lindblad formalism, the environ-
ment induces transitions between the nondriven states of the
system, whereas in the Floquet-Born-Markov approach the
dissipation couples to the drive-dressed states of the system.
Thus, one expects deviations from the Floquet-Born-Markov
results in the limit of strong driving. In Fig. 8, we show a
comparison between the two models in the two-state trunca-
tion approximation for the transmon. We see that the largest
differences between the models appear when the transition
from the quantum to classical response starts to emerge; see
Fig. 3. Based on our numerical calculations, the differences
are the largest at resonance and both models give equivalent
results whenever one of the three frequencies, ωr , ωq, or ωd,
is detuned from the other two.

We emphasize, however, that computationally the Floquet-
Born-Markov master equation is by two orders of magnitude
more efficient than the corresponding Lindblad equation.

FIG. 8. Comparison between the Floquet-Born-Markov (FBM)
and Lindblad models for dissipation in the two-level approximation
for the transmon. The drive detuning is δd/ωr = −0.02 and also the
other parameters are the same as in Table I.

Moreover, in the case of Fig. 4(d) the computing time of the
Floquet-Born-Markov equation was roughly a week with an
ordinary CPU. In such cases, the solution of the Lindblad
equation becomes impractical and one should use a paral-
lelized implementation of the Floquet-Born-Markov master
equation.

V. CONCLUSIONS

We have given a comprehensive treatment of the driven-
dissipative quantum-to-classical phase transition for a Joseph-
son pendulum coupled to a resonator, going beyond the trun-
cated Rabi form of the Hamiltonian through the full inclusion
of the higher energy level of the pendulum. We referred to
this as the multilevel Josephson-Rabi model. We modeled the
open quantum system with the Floquet-Born-Markov method,
in which the dissipative transitions occur between the drive-
dressed states of the system. We compared our results also
against those given by the conventional Lindblad formalism
where the dissipation couples to the eigenstates of the non-
driven system.

We found that the quantitative description of the multipho-
ton blockade phenomenon and of the nonlinearities associated
with the phase transition in this system requires a systematic
inclusion of the higher energy levels of the transmon and a
proper model for dissipation. We also studied approximate
classical models for this system and showed that the dis-
crete energy structure of the quantum system suppresses the
classical chaotic motion of the quantum pendulum. Indeed,
while the classical solution predicts a sudden change between
the low- and high-amplitude solutions, the quantum solu-
tion displays a continuous transition from the normal-mode
oscillations to the freely rotating pendulum regime. Finally,
we analyzed in detail the two models of dissipation and
demonstrated that they produce slightly different predictions
for the onset of the photon blockade.
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APPENDIX A: THE EIGENVALUE PROBLEM
FOR THE JOSEPHSON PENDULUM

The energy eigenstates of the pendulum can be solved from
the Mathieu equation [1,48,49], which produces a spectrum
with bound- and free-particle parts. The high-energy unbound
states are given by the doubly degenerate quantum rotor states,
which are also the eigenstates of the angular momentum
operator.

In analogy with the elimination of the vector potential
by a gauge transformation as usually done for a particle in
magnetic field, one can remove the dependence on ng from
the transmon Hamiltonian in Eq. (3), i.e.,

Ĥt = 4EC(n̂ − ng)2 − EJ cos ϕ̂, (A1)

with the gauge transformation Û ĤtÛ †, where

Û = e−ingϕ̂ . (A2)

As a consequence, the eigenstates |k〉 of the Hamiltonian are
modified into

|k〉 → e−ingϕ̂|k〉. (A3)

The transformed Hamiltonian can be written as

Ĥt = 4ECn̂2 − EJ cos ϕ̂. (A4)

Here, we represent the (Schrödinger) eigenvalue equation for
the transformed Hamiltonian in the eigenbasis of the operator
ϕ̂. As a result, the energy levels of the transmon can be
obtained from the Mathieu equation [1,48,49]

∂2

∂z2
ψk (z) − 2q cos(2z)ψk (z) = −aψk (z), (A5)

where z = ϕ/2, q = −η/2 = −EJ/(2EC), and a = Ek/EC.
We have also denoted the transformed eigenstate |k〉 in the ϕ

representation with ψk (ϕ) = 〈ϕ|e−ingϕ̂|k〉. Note that �k (ϕ) =
eingϕψk (ϕ) is the eigenfunction of the original Hamiltonian in
Eq. (3). Because of the periodic boundary conditions, one has
that �k (ϕ + 2π ) = �k (ϕ). The solutions to Eq. (A5) are gen-
erally Mathieu functions which have a power series represen-
tation but cannot be written in terms of elementary functions
[49]. However, the corresponding energy-level structure can
be studied analytically in the high- and low-energy limits.

In Fig. 9, we present the eigenenergies Ek obtained as so-
lutions of the Mathieu equation (A5). The eigenstates that lie
within the wells formed by the cosine potential are localized
in the coordinate ϕ, whereas the states far above are (nearly)
evenly distributed; see Fig. 9(a). As a consequence, the high-
energy states are localized in the charge basis. The data show
that if plotted as a function of the gate charge, the states inside
the cosine potential are nearly flat; see Fig. 9(b). This implies
that such levels are immune to gate charge fluctuations, which
results in a high coherence of the device. Outside the well,
the energy dispersion with respect to the gate charge becomes
significant and leads to the formation of a band structure
typical for periodic potentials [50].

(a)

(b)

k=0

k=1

k=2

k=3
k=4

k=5

k=6

k=0

k=1

k=2

k=3

k=4
k=5

k=6

FIG. 9. Eigenvalues and eigenstates of the transmon obtained
with the Mathieu equation (A5) for η = 30. (a) Eigenenergies as
a function of the superconducting phase difference ϕ. The cosine
potential is indicated with the blue (gray) line. Inside the well, the
eigenenergies are discrete and denoted with dashed black lines. On
top of each line, we show the absolute square of the corresponding
Mathieu eigenfunction. The energy bands from (b) are indicated with
gray. (b) Eigenenergies as a function of the gate charge. We compare
the numerically exact eigenenergies Ek (solid black) with those of the
perturbative Duffing oscillator (dashed horizontal red) and the free
rotor (dashed diagonal blue). The charge dispersion in the (nearly)
free rotor states leads to energy bands, which are denoted with gray.
We show the Duffing and free rotor solutions only inside and outside
the potential, respectively.

1. High-energy limit: Free rotor

If the energy in the system is very high due to, e.g.,
strong driving, the Josephson energy can be neglected and
the transmon behaves as a free particle rotating in a planar
circular orbit, which can be described solely by its angular
momentum L̂z = n̂. Since the angular momentum is a good
quantum number, the eigenenergies and the corresponding
eigenfunctions are given by

Ek = 4EC(k − ng)2, ψk (ϕ) = ei(k−ng )ϕ, (A6)

where k = 0,±1,±2, . . .. We note that if the magnetic field
is zero (ng = 0), the nonzero free rotor energies are doubly
degenerate. The level spacing is not constant but increases
with increasing k as [1]

�Ek = Ek+1 − Ek = 4EC[2(k − ng) + 1]. (A7)
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In Fig. 9, we show the eigenenergies calculated with
Eq. (A6). Clearly, with large energies outside the potential, the
energy spectrum of the particle starts to resemble that of the
free rotor. Also, the eigenfunctions of the free rotor are plane
waves in the ϕ eigenbasis, yielding a flat probability density
as a function of ϕ. On the other hand, in the momentum
eigenbasis, the free rotor states are fully localized.

2. Low-energy limit: Duffing oscillator

If the pendulum energy is very low, the superconducting
phase of the transmon is localized near ϕ ≈ 0. Thus, the
cosine potential can be approximated with the first terms of
its Taylor expansion. Consequently, the transmon Hamiltonian
reduces to that of a harmonic oscillator with an additional
quartic potential

Ĥt ≈ 4ECn̂2 + EJ
[−1 + 1

2 ϕ̂2 − 1
12 ϕ̂4

]
. (A8)

This is the Hamiltonian operator of the quantum Duffing
model. The Duffing model has received a considerable atten-
tion in the recent literature [51–56], especially in the context
of superconducting transmon realizations. It is worthwhile to
notice that in this regime the potential is no longer periodic
and thus we can neglect the periodic boundary condition of
the wave function. As a consequence, the eigenenergies and
eigenfunctions are not dependent on the offset charge ng.

If η = EJ/EC � 1, the quartic term is small and one can
solve the eigenvalues and the corresponding eigenvectors
perturbatively up to the first order in η. This regime in which
the Josephson energy dominates over the charging energy is
referred to as the transmon limit. One, therefore, obtains the
eigenenergies

Ek

4EC
= −η

4
+

√
η/2

(
k + 1

2

)
− 1

48
(6k2 + 6k + 3), (A9)

where k = 0, 1, 2, . . .. In particular, the transition energy be-
tween the two lowest Duffing oscillator states can be written
as

h̄ωq = E1 − E0 =
√

8EJEC − EC. (A10)

This becomes accurate as η → ∞. The anharmonicity of
a nonlinear oscillator is typically characterized in terms of
the absolute and relative anharmonicity, which are defined,
respectively, as

μ = E12 − E01 ≈ −EC, μr = μ/E01 ≈ −(8η)−1/2, (A11)

where Ei j = Ej − Ei and the latter approximations are valid
in the transmon limit. We emphasize that in the low-excitation
limit the transmon oscillates coherently with frequency ωq ≈
ωp − EC/h̄. Thus, in the quantum pendulum the nonlinearity
is present even in the zero-point energy, whereas the small-
amplitude oscillations in classical pendulum occur at the
angular (plasma) frequency h̄ωp = √

8EJEC.
In Fig. 9, we compare the eigenenergies (A9) of the Duff-

ing model obtained with the perturbation theory against the
exact solutions of the Mathieu equation (A5). We see that in
the low-energy subspace the perturbed Duffing solution repro-
duces very well the full Mathieu results. For the higher excited
states, the momentum dispersion starts to play a dominant role

and deviations arise as expected. This starts to occur close to
the boundary of the potential. One can estimate the number
Kb of bound states by requiring EKb−1 ≈ EJ in Eq. (A9). This
implies that the number of states within the potential scales
with η � 1 as

Kb ∝ √
η. (A12)

For the device with parameters listed in Table I, one has
that

√
η ≈ 5, and the above estimate gives Kb ≈ 5. This

coincides with the number of bound states extracted from the
numerically exact spectrum of the eigenenergies depicted in
Fig. 9.

APPENDIX B: DRIVEN AND DAMPED
CLASSICAL SYSTEM

The classical behavior of the uncoupled pendulum has been
extensively studied in the literature [1,57,58]. If the driving
force is not too strong, one can approximate the pendulum
with a Duffing oscillator with a quartic nonlinearity, as shown
in the previous Appendix. The main feature of such an oscil-
lator is the bistability of its dynamics. Namely, in a certain
range of drive amplitudes and frequency detunings between
the driving signal and the oscillator, two stable solutions with
low and high amplitudes of the oscillations are possible. If
one gradually increases the driving, the pendulum suddenly
jumps from the low- to the high-amplitude solution at the
critical driving strength, at which the low-amplitude solution
vanishes. In the bistable region, the Duffing oscillator may
switch between the two solutions if one includes noise into the
model [57]. This complicated dynamics has been observed in
a classical Josephson junction [59,60].

However, unlike the previous work mentioned above, in
our setup the pendulum is coupled to a resonator and driven
only indirectly. Here, we develop the classical theory of the
coupled system and show that the basic physics of bistability
is present as well. We first linearize the equations of motion
and then introduce systematically the corrections due to the
nonlinearity. The system Hamiltonian ĤS = Ĥ0 + Ĥd, defined
by Eqs. (1) and (13), can be written in terms of the circuit
variables as

ĤS = q̂2

2Cr
+ φ̂2

2Lr
+ 4ECn̂2 − EJ cos ϕ̂ + g̃n̂q̂ + Ã cos(ωdt )q̂.

(B1)

Above, we have denoted the capacitance and inductance of the
LC resonator with Cr and Lr , respectively, the effective cou-
pling with g̃ = h̄g/qzp, the effective drive with Ã = h̄A/qzp,
and the zero-point fluctuations with φzp = √

h̄/(2Crωr ) and
qzp = √

Cr h̄ωr/2. Also, the resonance frequency of the bare
resonator is defined as ωr = 1/

√
LrCr .

The corresponding equations of motion for the expecta-
tion values of the dimensionless operators φ̂r = φ̂/φzp and
q̂r = q̂/qzp can be written as

φ̇r = ωrqr + 2gn + 2A cos(ωdt ) − κ

2
φr, (B2)

q̇r = −ωrφr − κ

2
qr, (B3)
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ϕ̇ = 8EC

h̄
n + gqr − γ

2
ϕ, (B4)

ṅ = −EJ

h̄
sin ϕ − γ

2
n. (B5)

where we have denoted the expectation value of operator x̂
as 〈x̂〉 ≡ x, applied the commutation relations [φ̂r, q̂r] = 2i
and [ϕ̂, n̂] = i, and defined the phenomenological damping
constants κ and γ = γ0ωq for the oscillator and the pendulum,
respectively. The exact solution to these equations of motion
is unavoidably numerical and is given in Figs. 2 and 3. The
resonator occupation is calculated as Nr = 1

4 (q2
r + φ2

r ).

1. Solution of the linearized equation

We study Eqs. (B2)–(B5) in the limit of weak driving. As
a consequence, one can linearize the equations of motion by
writing sin ϕ ≈ ϕ. In addition, by defining

α = 1

2
(qr − iφr ), (B6)

β = 1√
2

(
4

√
η

8
ϕ + i 4

√
8

η
n

)
, (B7)

we obtain

α̇ = − iωrα + geff (β∗ − β ) − iA

2
(eiωdt + e−iωdt ) − κ

2
α,

β̇ = − iωpβ + geff (α + α∗) − γ

2
β, (B8)

where we have introduced an effective coupling as geff =
g 4
√

η/32. The above equations describe two driven and dis-
sipative coupled oscillators.

We assume that both oscillators are excited at the drive
frequency, i.e., α = α0 exp(−iωdt ) and β = β0 exp(−iωdt ).
By making a rotating-wave approximation for the coupling
and the drive, we obtain the resonator occupation Nlin = |α0|2
in the steady state

Nlin = A2

4

1(
δd − g2

eff
δp

δ2
p+γ 2/4

)2
+

(
κ
2 + g2

eff
γ /2

δ2
p+γ 2/4

)2 , (B9)

where δd = ωd − ωr and δp= ωd − ωp, with ωp = √
8EJEC/h̄.

This appeared already in Eq. (36).

2. Correction due to the pendulum nonlinearity

Here, we study the nonlinear effects neglected in the above
linearized calculation. We eliminate the variables φr and n
from Eqs. (B2)–(B5) and obtain

q̈r + κ q̇r + ω̃2
r qr + g1ϕ̇ + 2Aωr cos(ωdt ) = 0, (B10)

ϕ̈ + γ ϕ̇ + ω2
p sin ϕ − gq̇r = 0, (B11)

where we have denoted g1 = gh̄ωr/(4EC) and defined
the renormalized resonator frequency as ω̃2

r = ω2
r − g2h̄ωr/

(4EC). In Eq. (B10), we have included only the term that is
proportional to g2 as it provides the major contribution to the
frequency renormalization, and neglected the other second-
order terms in κ , γ , and g that lead to similar but considerable

smaller effects. We write the solutions formally in terms of
Fourier transform as

qr (t ) =
∫

d�

2π
qr[�]e−i�t , (B12)

ϕ(t ) =
∫

d�

2π
ϕ[�]e−i�t , (B13)

where qr[�] and ϕ[�] are the (complex valued) Fourier
coefficients of qr (t ) and ϕ(t ), respectively. As a consequence,
one can write the equations of motion as∫

d�

2π

{(
ω̃2

r − �2 − iκ�
)
qr[�] − ig1�ϕ[�]

+ 2πAωr[δ(� − ωd ) + δ(� + ωd )]
}
e−i�t = 0, (B14)∫

d�

2π
{(−�2−iγ�)ϕ[�] + ig�qr[�]}e−i�t + ω2

p sin ϕ = 0.

(B15)

We solve qr[�] from the first equation and obtain

qr[�] = ig1�ϕ[�] − 2πAωr[δ(� − ωd ) + δ(� + ωd )]

ω̃2
r − �2 − iκ�

.

(B16)
By replacing this result into Eq. (B15), we obtain∫

d�

2π

{(
−�2 − iγ� − gg1�

2

ω̃2
r − �2 − iκ�

)
ϕ[�]

}
e−i�t

+ω2
p sin ϕ = 2gAωrωd√(

ω̃2
r − ω2

d

)2 + κ2ω2
d

cos(ωdt ), (B17)

where we have neglected a constant phase factor. For weak
drive amplitudes, ϕ[ωd] is the only nonzero Fourier com-
ponent. Thus, one can evaluate the Fourier transform in the
above equation at the drive frequency. Consequently, the
Fourier component of the third term in the equation can be
evaluated as

gg1�
2

ω̃2
r − �2 − iκ�

≈ gg1ω
2
d(

ω̃2
r − ω2

d

)2 + κ2ω2
d

[(
ω̃2

r − ω2
d

) + iκωd
]

≈ gg1ω
2
d

ω̃2
r −ω2

d

+ i
gg1κω3

d(
ω̃2

r −ω2
d

)2+κ2ω2
d

, (B18)

where in the second term we have assumed that the dissipation
is weak, i.e., κ �

√
ω̃2

r − ω2
d and we have taken into account

the dominant terms for the real and imaginary parts. As a
result, we obtain

ϕ̈ + γ̃ ϕ̇ + ω2
p sin ϕ + (

ω̃2
p − ω2

p

)
ϕ = B cos(ωdt ). (B19)

Here, we have defined the renormalized linear oscillation
frequency ω̃p, dissipation rate γ̃ , and drive amplitude B as

ω̃2
p = ω2

p − gg1ω
2
d

ω̃2
r − ω2

d

, (B20)

γ̃ = γ + gg1κω2
d(

ω̃2
r − ω2

d

)2 + κ2ω2
d

, (B21)

B = 2gAωrωd√(
ω̃2

r − ω2
d

)2 + κ2ω2
d

, (B22)

where the two first equations are valid if κ �
√

ω̃2
r − ω2

d.
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Thus, we have shown that in the limit of low dissipation,
the classical resonator-transmon system can be modeled as a
driven and damped pendulum. In the case of weak driving,
we expand the sinusoidal term up to the third order in ϕ.
We obtain the equation of motion for the driven and damped
Duffing oscillator:

ϕ̈ + γ̃ ϕ̇ + ω̃2
p

(
ϕ − ω2

p

6ω̃2
p

ϕ3

)
= B cos(ωdt ). (B23)

This equation can be solved approximatively by applying a
trial solution ϕ(t ) = ϕ1 cos(ωdt ) into Eq. (B23). By applying
harmonic balance, and neglecting superharmonic terms, we
obtain a relation for the amplitude ϕ1 in terms of the drive
amplitude B. By taking a second power of this equation and,
again, neglecting the superharmonic terms, we obtain[(

ω̃2
p − ω2

d − ω2
p

8
ϕ2

1

)2

+ γ̃ 2ω2
d

]
ϕ2

1 = B2. (B24)

The above equation is cubic in ϕ2
1 . It has one real solution

if the discriminant D of the equation is negative, i.e., D < 0.
If D > 0, the equation has three real solutions, two stable and
one unstable. The stable solutions can appear only if ωd < ω̃p,
which is typical for Duffing oscillators with a soft spring
(negative nonlinearity). The bistability can, thus, occur for
amplitudes Bmin < B < Bcrit where the minimal and critical
amplitudes Bmin and Bcrit , respectively, determine the region

of bistability and are obtained from the equation D = 0. By
expanding the resulting Bmin and Bcrit in terms of γ̃ and by
taking into account the dominant terms, we find that

Bmin = γ̃
ωd

ωp

√
8
(
ω̃2

p − ω2
d

) = γ̃

√
27ωd

2
(
ω̃2

p − ω2
d

)Bcrit, (B25)

Bcrit =
√

32

27

(
ω̃2

p − ω2
d

)3/2

ωp
≈ 16

3
√

3

√
ωpδ3

p, (B26)

where the last equality holds if δp = ω̃p − ωd � ωp. The
iterative numerical solution of Eq. (B23) indicates that the
initial state affects the switching location between the two
stable solutions. We note that this approximation neglects all
higher harmonics and thus cannot reproduce any traces toward
chaotic motion inherent to the strongly driven pendulum.

Finally, we are able to write the minimal and critical drive
amplitudes of the coupled resonator-transmon system using
Eqs. (B22), (B25), and (B26). We obtain [see Eq. (38)]

Amin = γ̃

√
2
(
ω̃2

p − ω2
d

)√(
ω̃2

r − ω2
d

)2 + κ2ω2
d

gωrωp
, (B27)

Acrit =
√

8

27

(
ω̃2

p − ω2
d

)3/2

√(
ω̃2

r − ω2
d

)2 + κ2ω2
d

gωrωdωp
. (B28)

Note that these equations are valid for κ �
√

ω̃2
q − ω2

d.
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