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The perturbation theory by Ge et al. [Phys. Rev. A 87, 023833 (2013)] for transverse-electric polarized modes
in weakly deformed microdisks omits terms related to the variation of the normal derivative of the magnetic
field along the boundary. Here, we show that these terms are necessary to accurately describe microdisks with
a strongly winding boundary. In particular, it is demonstrated that the corrected perturbation theory allows one
to describe the counterintuitive phenomenon of Q-factor enhancement due to weak boundary deformation. We
discuss in detail the microflower cavity and the limaçon cavity. Good agreement of the corrected perturbation
theory with full numerical results is observed.
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I. INTRODUCTION

Optical microcavities (or microresonators) have attracted
increasing attention because of the possibility of resonantly
confining light on small spatial scales for a long time [1].
There is a wealth of applications such as tiny sensors for the
detection of specific gases, gas compositions, and even single
nanoparticles [2]. Furthermore, microcavity sensors are ver-
satile and highly sensible to different physical quantities, like
electromagnetic fields, temperatures, pressures, and forces as
reviewed in Refs. [3,4]. Lasing is another important applica-
tion that can be accomplished by different cavity designs. Two
prominent ones are micropillars [5,6] that emit light mainly
along their symmetry axis and microdisks [7–9] that emit
mainly in the disk plane.

Microdisks belong to the class of whispering-gallery cavi-
ties which are based on the successive total internal reflection
of light at the curved boundary of the cavity. The rotational
symmetry ensures that the corresponding optical modes, the
whispering-gallery modes (WGMs), have very low losses
which is usually quantified by the quality factor (Q factor).
However, the rotational symmetry also implies isotropic light
emission in the plane of the disk which is especially disadvan-
tageous for lasing.

One possibility of solving this problem is by deforming
the boundary as proposed in Ref. [10] and experimentally
confirmed in Ref. [11]. Emission into a single direction
with small angular spread has been achieved, e.g., with the
limaçon cavity [12–17], the notched cavity [18,19], and the
short-egg geometry [20]. Boundary deformation also helps to
achieve efficient broadband transmission from waveguide to
whispering-gallery microcavity and back [21]. Unfortunately,
deformation often leads to the phenomenon of Q spoiling,
i.e., to an undesired decrease of the Q factor [22]. However,
Q spoiling can also be exploited for mode selection in high-
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power single-frequency lasers by damaging unwanted modes
[18,23–25]. Various other aspects of deformed microdisk cav-
ities, such as non-Hermitian effects and chaotic ray dynamics,
are reviewed in Ref. [26].

In microdisks two types of polarization can be distin-
guished, the transverse-magnetic (TM) polarization where
the electric field is perpendicular to the disk plane, and the
transverse-electric (TE) polarization where this is the case
for the magnetic field. A perturbation theory (PT) for TM-
polarized WGMs in weakly deformed microdisks, which pos-
sess at least one mirror-reflection symmetry, was proposed by
Dubertrand et al. [27]. The general applicability of the theory,
in some cases with additional generalizations or modifica-
tions, was tested multiple times [28–35]. There, it was found
that the theory works well, and for some deformations better
than expected, but characteristic differences between modes
from different symmetry classes could not be reproduced
[30,34]. The analogous theory for TE-polarized WGMs had
been derived by Ge et al. [36] to explain drastic output
sensitivities to very small boundary deformations.

In the present paper, we test the applicability of the TE
PT by studying various boundary deformations with special
attention to the so-called microflower cavity. This cavity was
numerically studied by Boriskina et al. [18,37] because of
its beneficial mode selection properties. Moreover, for small
boundary deformation it can exhibit a peculiar Q-factor en-
hancement, which is the opposite of Q spoiling. Our study
reveals that the PT in Ref. [36] is not able to reproduce this
observation, and that it is generally less accurate than its
TM counterpart. We explain why this is the case and derive
a correction of the TE theory which shines light onto the
phenomenon of Q-factor enhancement.

The paper is organized as follows. Sections II and III
briefly review the mathematics and mode properties of circu-
lar microdisks as well as the basis of the perturbation theories.
The corrections for TE polarization are discussed in Sec. IV;
a detailed derivation can be found in Appendix. The regime of
applicability of the perturbation series is determined in Sec. V.
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Section VI shows the results of the corrected PT compared to
the uncorrected one and full numerical calculations, first for
the microflower and then the limaçon cavity. A conclusion is
given in Sec. VII.

II. CIRCULAR MICRODISK

Microdisks are two-dimensional systems because their
height is negligible in comparison to their other elongations.
As explained in Refs. [38–40] the z direction (perpendicular to
the disk plane) can be separated out using the effective-index
approximation which goes hand in hand with a decoupling of
the two types of polarization.

The optical modes are the solutions of Maxwell’s equations
with harmonic time dependence exp (−iωt ) where ω is the
frequency. With the effective refractive index n j , the two-
dimensional mode equation in polar coordinates is(

�r,ϕ + n2
j k

2
)
Ψ j (r, ϕ) = 0. (1)

Ψ is the electric field Ez for TM polarization or the magnetic
field Bz for TE polarization, the other field components are of
no further interest because they can be calculated from the z
component of the fields. The index j = 1, 2 denotes the inside
or outside of the microdisk, respectively, k = ω/c is the wave
number of the mode, and c is the speed of light in vacuum.

The differential equation has to be accompanied by three
boundary conditions. The first one requires the continuity of
the wave function across the boundary rb(ϕ),

Ψ1|rb = Ψ2|rb . (2)

The second boundary condition describes the behavior of the
derivative of the wave functions across the boundary, which
differ for both types of polarization. While the TM polariza-
tion’s condition accounts for continuity, the TE polarization’s
condition demands discontinuity,

∂Ψ1

∂�ν
∣∣∣∣
rb

= ∂Ψ2

∂�ν
∣∣∣∣
rb

, for TM; (3a)

1

n2
1

∂Ψ1

∂�ν
∣∣∣∣
rb

= 1

n2
2

∂Ψ2

∂�ν
∣∣∣∣
rb

, for TE, (3b)

where �ν(ϕ) is the normal vector to the boundary. Finally, the
last boundary condition is the outgoing-wave condition far
away from the cavity,

Ψ2(r, ϕ) = exp(in2kr)√
n2kr

g(ϕ), (4)

with an angular distribution g(ϕ).
Only special cavity shapes can be treated analytically,

like the circular cavity with the radius rb = R. For simplic-
ity let n1 = n and n2 = 1, i.e., the cavity is surrounded by
air. Because the substitutions n2k = k̃ and n1/n2 = n always
provide this simplification, no generality is lost. The modes
in the circular cavity are typically twofold degenerate but
this degeneracy can be removed by utilizing symmetric and
antisymmetric wave functions. The symmetric inner and outer
wave functions are

Ψ1(r, ϕ) = ãmJm(nkr) cos(mϕ), for r � R,

Ψ2(r, ϕ) = b̃mH (1)
m (kr) cos(mϕ), for r > R,

(5)

respectively. Jm and H (1)
m are the Bessel and Hankel functions

of the first kind and integer order m � 0; the indicator (1) for
the first kind of the Hankel function will be omitted from now
on. The antisymmetric wave functions comprise sines instead
of cosines. Note that the wave functions (5) automatically
fulfill the outgoing-wave condition (4) due to the Hankel
function’s asymptotic behavior for large arguments. Below,
the symmetric solutions are also called even-parity modes and
the antisymmetric ones odd-parity modes.

With the wave functions (5) one can extract the conditional
equations, which are identical for both parities,

Sm(kR) = 0, for TM, (6a)

Tm(kR) = 0, for TE, (6b)

with the definitions,

Sm(kR) = n
J̇m

Jm
(nkR) − Ḣm

Hm
(kR), (7)

Tm(kR) = 1

n

J̇m

Jm
(nkR) − Ḣm

Hm
(kR), (8)

by inserting them into the boundary conditions (2) and (3a) or
(3b), for rb = R, respectively, and then dividing the latter by
the first. Note that the dot defines the derivative with respect
to the argument of the function, i.e., nkr for Jm, kr for Hm, and
later ϕ for rb. Hence, the chain rule has already been applied
in all formulas.

The conditional Eqs. (6) provide complex wave numbers
kl,m = kr + iki and frequencies ωl,m = ckl,m which can be
labeled by the mode numbers l and m. l is the radial mode
number that counts the intensity maxima along the radial
direction while m, the azimuthal mode number, does the same
for half the maxima in the angular direction; one period of
the wave function in ϕ produces two maxima for the intensity.
The real part of the complex frequency determines the usual
frequency while the imaginary part, which has to be negative,
determines the lifetime. If the imaginary part is close to
zero, as it usually is for WGMs, the corresponding mode is
quasistationary.

III. PERTURBATION THEORIES

The boundary of the deformed microdisk is assumed to be
of the form,

rb(ϕ) = R[1 + ε f (ϕ)], (9)

with the dimensionless deformation strength ε and the defor-
mation function f (ϕ). In general the deformation function is
arbitrary; a TM theory for a fully asymmetric cavity can be
found in Ref. [32].

For the perturbation theories by Dubertrand et al. [27] and
Ge et al. [36], however, symmetric deformation functions with
f (−ϕ) = f (ϕ) are considered to circumvent degeneracies.
Then the symmetric wave functions,

Ψ1(r, ϕ) = Jm(nkr)

Jm(nkR)
cos(mϕ)

+
∑
p�=m

ap
Jp(nkr)

Jp(nkR)
cos(pϕ), for r � rb(ϕ),
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Ψ2(r, ϕ) = (1 + bm)
Hm(kr)

Hm(kR)
cos(mϕ) +

∑
p�=m

(ap + bp)

× Hp(kr)

Hp(kR)
cos(pϕ), for r > rb(ϕ), (10)

serve as an ansatz, which are expansions in the symmetric
wave functions of the circular disk. Antisymmetric wave
functions can be used as well by substituting the cosines with
sines. The complex frequencies and coefficients have to be
series in ε, here up to the second order,

x = x0 + εx1 + ε2x2 + O(ε3), (11)

ap = εa1,p + ε2a2,p + O(ε3), (12)

bp = εb1,p + ε2b2,p + O(ε3). (13)

The dimensionless frequency x = ωR/c = kR is used for con-
venience. Note that this expansion is very different from alter-
native approaches where only the mode equation is expanded
in first order in the frequency; see, e.g., for microspheres in
Ref. [41].

The frequencies and coefficients can be calculated by
inserting the ansatz (10) and expansions (11)–(13) into the
boundary conditions (2) and (3a) or (3b), expanding every-
thing at ε = 0, then sorting the equations by power and finally
analyzing those with Fourier harmonics. For a more detailed
explanation that may include some information left out by
Dubertrand et al. in Ref. [27] and Ge et al. in Ref. [36] we
refer the reader to Appendix.

It is mentioned that the ansatz (10) relies on the applica-
bility of the Rayleigh hypothesis. In our case, the hypothesis
states that the cavity’s outer solutions only consist of Hankel
functions of the first kind. A related problem has been studied
by van den Berg and Fokkema in Ref. [42] in regard to
scattering by a two-dimensional obstacle with zero Dirichlet
boundary conditions. As the scattering problem is connected
to the mode structure of a microcavity [43,44] we can use
later the results from van den Berg and Fokkema to roughly
estimate the reliability of our results.

IV. CORRECTION OF THE TE PERTURBATION THEORY

For the purpose of this paper, the important part in Ref. [36]
is that for the TE polarization’s second boundary condition,

1

n2

∂Ψ1

∂r

∣∣∣∣
rb

− ∂Ψ2

∂r

∣∣∣∣
rb

= 0, (14)

is used, meaning that the normal derivative in condition (3b)
was interchanged with a radial one. In the TM PT this was
done by Dubertrand et al. [27] for the reason that parallel
and normal derivatives are continuous along the boundary
[see Eq. (3a)], which ensures that the direction of the deriva-
tive can be chosen freely. But the second boundary condition
(3b) for the TE polarization is not continuous, which means
that the above simplification cannot be used.

Instead, the normal derivative must be accounted for,
which, as a directional derivative, can be written as the scalar
product of the direction and the gradient. In polar coordinates

the product is

∂Ψ j

∂�ν
∣∣∣∣
rb

= (�ν · �∇r,ϕΨ j )
∣∣∣
rb

= 1√
r2

b + ṙ2
b

(
rb

∂Ψ j

∂r

∣∣∣∣
rb

− ṙb

rb

∂Ψ j

∂ϕ

∣∣∣∣
rb

)
. (15)

Putting this into the second boundary condition (3b) for TE
polarization leads to

0 = 1

n2

∂Ψ1

∂r

∣∣∣∣
rb

− ∂Ψ2

∂r

∣∣∣∣
rb

− ṙb

r2
b

(
1

n2

∂Ψ1

∂ϕ

∣∣∣∣
rb

− ∂Ψ2

∂ϕ

∣∣∣∣
rb

)
. (16)

At this point there are two options to proceed because the
normal derivative (15) can be expanded as well as the second
boundary condition (16). We have checked that both options
lead to the same terms in the PT up to second order in ε. We
proceed here with condition (16) because the first part of this
condition equals the boundary condition (14) used by Ge et al.
[36] and therefore the corrections can directly be identified.
The expansions for the additional terms are

ṙb

r2
b

= ε
1

R
ḟ (ϕ) − ε2 2

R
f (ϕ) ḟ (ϕ) + O(ε3), (17)

∂Ψ j

∂ϕ

∣∣∣∣
rb

= ∂Ψ j

∂ϕ

∣∣∣∣
R

+ εR f (ϕ)
∂2Ψ j

∂r∂ϕ

∣∣∣∣
R

+ O(ε2), (18)

and they can be added to the derivation of the PT formulas.
The calculation of the corrected PT then follows the same
steps as in Refs. [27,36], which are unfolded for these addi-
tional terms in Appendix.

Importantly, the expansion (17) contains the derivative of
the deformation function ḟ (ϕ). We call functions where the
maximum of | ḟ (ϕ)| is large strongly winding boundaries and
all others weakly winding. For the latter usage of only the ra-
dial derivative would produce very small deviations, probably
not even recognizable. But for a strongly winding boundary
these deviations are relevant, as we will see later. In Ref. [36]
it is not clear if the utilization of only the radial derivative is
an intentional simplification or if it was not noticed because
only weakly winding boundaries were studied.

The results for the corrected PT are formulated differently
from those extracted by Ge et al. [36]. This is done to circum-
vent the use of derivatives of Bessel and Hankel functions of
order higher than the first. To keep the formulas concise the
following auxiliary functions have been introduced,

Vm(x) = J̇2
m

J2
m

(nx) − Ḣ2
m

H2
m

(x) + m2

n2x2
(n2 − 1), (19)

Wm(x) = n
J̇3

m

J3
m

(nx) − Ḣ3
m

H3
m

(x) + 3

2x
Vm(x) + Sm(x), (20)

Xm(x) = Ḣ2
m

H2
m

(x) − m2

x2
+ 1, (21)

Ym(x) = Tm(x) + m2

n2x
(n2 − 1), (22)

Zm(x) = Ḣm

Hm
(x) − m2

x
+ x. (23)
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Using these auxiliary functions the PT formulas, in which the corrections are underlined, are

b1,p = x0SmAmp, (24)

x1 = −x0

⎡
⎣Amm ± 1

Vm

m

n2x2
0

(n2 − 1)Cmm

⎤
⎦, (25)

a1,p = x0

Tp

⎧⎨
⎩
[

Ḣp

Hp
Sm + m2

n2x2
0

(n2 − 1)

]
Amp ± m

n2x2
0

(n2 − 1)Cmp

⎫⎬
⎭, (26)

b2,p = −x0

⎧⎨
⎩
[

Ḣ2
m

H2
m

(n4 − 1) + n2 − 1

]
x1Amp + 1

2

[
Sm + x0(n2 − 1)

]
Bmp −

∑
q �=m

Sqa1,qAqp +
∑

q

Ḣq

Hq
b1,qAqp

⎫⎬
⎭, (27)

x2 = 1

Vm

⎡
⎢⎢⎣
(

Wm − 1

x0
Vm

)
x2

1 + Xmx1b1,m − Ḣm

Hm
b2,m + Vmx1Amm − 1

2

(
Ḣm

Hm
x2

0 − 3m2

n2x0

)
(n2 − 1)Bmm

−
∑
q �=m

Yqa1,qAqm +
∑

q

Zqb1,qAqm ± 2m

n2x0
(n2 − 1)Dmm ∓ (n2 − 1)

∑
q �=m

q

n2x0
a1,qCqm ∓

∑
q

q

x0
b1,qCqm

⎤
⎥⎥⎦, (28)

a2,p = 1

Tp

⎡
⎣Vpx1a1,p − Xpx1b1,p + Ḣp

Hp
b2,p − Vmx1Amp + 1

2

(
Ḣm

Hm
x2

0 − 3m2

n2x0

)
(n2 − 1)Bmp +

∑
q �=m

Yqa1,qAqp

−
∑

q

Zqb1,qAqp ∓ 2m

n2x0
(n2 − 1)Dmp ± (n2 − 1)

∑
q �=m

q

n2x0
a1,qCqp ±

∑
q

q

x0
b1,qCqp

⎤
⎥⎥⎦. (29)

Here, every Bessel, Hankel, and auxiliary function has to
be evaluated at x0. The corrections differentiate between the
symmetric and antisymmetric wave functions via the signs ±
and ∓, with the upper sign for the symmetric wave functions.
The corrections can also be identified by the coupling integrals
Cqp and Dqp. Note that b1,p receives no corrections and that
b2,p is only influenced by corrections indirectly.

The occurring coupling integrals are the old ones,

Aqp = cp

π

∫ π

0
f (ϕ) cos(qϕ) cos(pϕ)dϕ, (30)

Bqp = cp

π

∫ π

0
f 2(ϕ) cos(qϕ) cos(pϕ)dϕ, (31)

and the two additional integrals,

Cqp = cp

π

∫ π

0
ḟ (ϕ) sin(qϕ) cos(pϕ)dϕ, (32)

Dqp = cp

π

∫ π

0
f (ϕ) ḟ (ϕ) sin(qϕ) cos(pϕ)dϕ (33)

that include the deformation function’s derivative. The con-
stant is

cp =
{

1, p = 0;
2, p �= 0,

(34)

which arises from the Fourier analysis of the boundary
conditions.

By neglecting the latter two coupling integrals (32) and
(33) the formulas yield the uncorrected PT, but if the maxi-
mum absolute value of the deformation function’s derivative is
large these integrals cannot be neglected. Note that the indices
of the coupling integrals are interchanged, in comparison to
Ref. [36], to match the derivation procedure of the PT. This
way the last index belongs to the Fourier order with which the
expanded boundary conditions have been analyzed to reach
the corresponding frequencies and coefficients. Also note the
mixed occurrences of sines and cosines, which result from
the derivatives with respect to ϕ. The integrand, however,
always remains symmetric because for a symmetric deforma-
tion function f (ϕ) the derivative ḟ (ϕ) is antisymmetric and
negates the antisymmetry of every sine.

For the antisymmetric wave functions, as in the previous
perturbation theories [27,36], all sines and cosines have to be
switched while setting cp = 0 for p = 0.

V. APPLICABILITY OF THE PERTURBATION SERIES

In this section we discuss the validity of the perturbation
series. Closely following the discussion for the TM PT in
Ref. [27], our criterium for the validity is that the change of
the wave function inside the cavity is small in the first order
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of the perturbation,

ε|a1,p| � 1, (35)

with p �= m and a1,p from Eq. (26). The deformation strength
ε is here chosen to be nonnegative without loss of generality.
The condition (35) holds if the two following conditions are
simultaneously fulfilled:

ε

[〈∣∣∣∣ 1

Tp

Ḣp

Hp
Sm

∣∣∣∣
〉
x0 +

〈∣∣∣∣ 1

Tp

∣∣∣∣
〉

m2

n2x0
(n2 − 1)

]
|Amp| � 1, (36)

ε

〈∣∣∣∣ 1

Tp

∣∣∣∣
〉

m

n2x0
(n2 − 1)|Cmp| � 1, (37)

where 〈Fp〉 indicates the typical value of Fp. The small imag-
inary part of x0 is ignored here. The conditions (36) and (37)
are challenged by angular momenta p with Tp(x0) ≈ 0. In this
case we approximate 〈∣∣∣∣ 1

Tp

∣∣∣∣
〉

=
∣∣∣∣ 1

Ṫpδx

∣∣∣∣, (38)

with

Ṫp(x0) = − (n2 − 1)p2

n2x2
0

− Ḣp

Hp
Sp, (39)

as derived in Ref. [36] for Tp = 0. In that case Sp can be
replaced by (n2 − 1)Ḣp/Hp by exploiting Eqs. (7)–(8). The
typical distance between two frequencies is estimated using
Weyl’s law in Ref. [27],

δx = 4

n2snx0
, (40)

with

sn = 1 − 2

π

(
arcsin

1

n
+ 1

n

√
1 − 1

n2

)
. (41)

Using the asymptotic behavior of WGMs with azimuthal
mode number q [27],

x0 = q

n
+ O(q1/3), (42)

and the asymptotic of the Hankel function [45],

Ḣq

Hq
(x0) = −

√
q2

x2
0

− 1 + O

(
1

x0

)
, (43)

we find the two criteria for the applicability of the perturbation
series,

εx2
0n2 sn

4
|Amp| � 1, (44)

ε
m2

n2

sn

4

|Cmp|
m

� 1. (45)

The criterium (44) equals the one for the TM PT, which,
however, was further processed in Ref. [27] by introducing
the perturbation area, that is, the area of the region where the
refractive index differs from the one of the circular cavity (see
Fig. 1).

At first glance, it might appear strange that condition (44)
depends on x0 but condition (45) does not. However, Eq. (42)
shows that also condition (45) depends on x0.

FIG. 1. Boundary of the microflower cavity (left) with κ = 10
and ε = 0.1 and the limaçon cavity (right), including the regular
(dash-dotted light gray) and shifted (red or dark gray) boundary,
with ε = 0.4. The unperturbed circular cavity is shown as the dashed
curve. The radial coordinate is here dimensionless as R = 1 is
chosen.

VI. NUMERICAL RESULTS

The microflower cavity is a clear case to show the improve-
ments brought by the corrections, but the limaçon cavity prof-
its as well. Both are described by the deformation function,

f (ϕ) = cos(κϕ), (46)

with the deformation parameter κ . The boundary of the cavity
is then given by r(ϕ) = R[1 + ε cos(κϕ)]. While the limaçon
cavity is defined by κ = 1, let κ � 3 define the microflower
cavity. In Fig. 1 both cavities are illustrated. The derivative of
the deformation function is

ḟ (ϕ) = −κ sin(κϕ), (47)

which is, roughly speaking, κ times larger than the deforma-
tion function itself. This implies that the coupling integrals
Cqp and Dqp mostly are κ times larger than Aqp and Dqp, too.
Hence, for large κ the microflower cavity qualifies as a cavity
with a strongly winding boundary.

With the maximum values of |Amp| = 1/2 and |Cmp| = κ/2
the criteria for the applicability of the perturbation series (44)
and (45) can be written as

ε � 8

x2
0n2sn

, (48)

ε � 8n2

mκsn
. (49)

A. Microflower cavity

Boriskina et al. introduced the microflower cavity in
Ref. [37] as a smooth version of the microgear cavity, which is
a disk having a grating of period κ . This particular boundary
modification enhances the Q factor of the even-parity TE-
polarized mode with the azimuthal mode number m = κ/2
and spoils the Q factor of all other modes [23,24]. The
microgear and the microflower are therefore ideal geometries
for mode selection in lasers.

The deformation parameter used in our studies is κ = 10
and therefore the relevant azimuthal mode number is m = 5.
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FIG. 2. Microflower cavity with n = 2.63, κ = 10, ε = 0.13:
intensity distributions of the even-parity (left) and odd-parity mode
(right) with the mode numbers l = 1 and m = 5 calculated by the
BEM; the deformation strength ε is rather large because it is taken at
the maximum Q factor according to the BEM results in Fig. 4.

Figure 2 shows an example computed from the boundary el-
ement method (BEM) [46] using 10 000 discretization points
along the cavity’s boundary. It can be seen that the even-parity
mode fits into the cavity very well while the odd-parity mode

FIG. 3. Microflower cavity with n = 2.63, κ = 10: real (top) and
imaginary parts (bottom) of the dimensionless frequency in depen-
dence on the dimensionless deformation strength. Solid (dashed)
curves show the results for the even-parity (odd-parity) mode with
the mode numbers l = 1 and m = 5. The triangles (circle and dia-
mond) correspond to the uncorrected (corrected) perturbation theory.
Symbols without curves correspond to the BEM.

FIG. 4. Microflower cavity with n = 2.63, κ = 10, l = 1, m =
5: Q factor versus dimensionless deformation strength; the dotted
vertical line marks the maximum Q factor according to the BEM.

is strongly mismatched. The result is a significant splitting of
the real and imaginary parts, and in turn the Q factor,

Q = − Re(x)

2Im(x)
, (50)

of the modes. While the origin of this splitting is intuitively
clear from the mode pattern, the unexpected observation is
that the Q factor of the even-parity mode increases for small
deformations. As stronger deformations reduce a Q factor in
the end, a maximum of the Q factor occurs for the even-parity
mode. For the microgear cavity, this Q-factor enhancement
was predicted in Ref. [23] and experimentally confirmed in
Ref. [24]. It has been explained in terms of the discontinuous
boundary condition [23,47].

Figures 3 and 4 reveal that the uncorrected PT cannot
reproduce the above phenomenon. In particular, the splitting
in the imaginary part of the frequency and the Q factor is too
small if compared to the full numerical simulations based on
the BEM. Furthermore, in the uncorrected PT both parities
split up falsely since the even parity has the lower Q factor.
This means that the principally correct direction of the real
and imaginary parts’ splitting does not translate to the Q
factor. The reason for this behavior has not been analyzed
further but it has been found in the TM PT as well.

The corrections introduced in Sec. IV solve these problems
as can be seen in Figs. 3 and 4 as well. The splitting between
both parities is very accurately described up to a deformation
strength of ε ≈ 0.03, which is henceforth considered the PT’s
regime of applicability for the given cavity parameters. A
maximum in the even parity’s curve lies at around ε ≈ 0.05
while the antisymmetric one is only descending. This maxi-
mum is not at the same position as the one of the BEM but it
is clearly visible.

An agreement with the BEM up to its maximum cannot
be expected here because such deformations are probably ex-
cluded by the first condition (48) with ε � 0.21. Surprisingly,
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FIG. 5. Microflower cavity with n = 2.63, κ = 10, ε = 0.03:
intensity distributions of the even-parity (left) and odd-parity mode
(right) with the mode numbers l = 1 and m = 5 for the BEM (top)
and corrected PT (bottom).

the second condition (49) with ε � 2.1 is much weaker for the
present cavity. The validity of the Rayleigh hypothesis [42]
with ε ≈ 0.046 (cf. Sec. III) is here a strong bound. It gives
a good prediction of the critical deformation at which the PT
starts to fail.

The difference between the PTs manifests in the formulas
of their frequencies. Using Amm = ±δ2m,κ/2, the uncorrected
PT’s frequencies x̃ can be written as

x̃ = x0 ∓ ε
x0

2
δ2m,κ + ε2C

(
x2

0

)+ O(ε3), (51)

where C(x2
0 ) is a constant independent of the parity. Using

Cmm = −κδ2m,κ/2 an analogous formula is attainable for the
corrected PT, but with an essential difference in the first order,

x = x0 ∓ ε
x0

2
δ2m,κ

[
1 − 1

Vm

mκ

n2x2
0

(n2 − 1)

]
+ ε2C

(
x2

0

)+ O(ε3). (52)

The second order gets corrected, too, but there is no difference
between both parities, which leaves the first order as the most
important contributor to the splitting.

As can be seen in Eq. (51) the factor 1/2 of the uncorrected
theory’s first order does not distinguish the real and imaginary
parts of x0 because it is real. In the corrected theory this
is different. The factor in Eq. (52) is a complex number
because of Vm(x0) and x2

0 in the denominator. Remember
that this complex modification exists solely because of the
angular derivative in Eq. (16) that couples to the boundary
function’s derivative. That complex factor implies that real
and imaginary parts can be modified quite differently. For
example, with n = 2.63, κ = 10, and m = 5 the first order
of the frequency for the uncorrected and the corrected PT,

FIG. 6. Microflower cavity with n = 2.63, ε = 0.03, and l = 1:
dimensionless deviation of the two PT’s real (top) and imaginary
(bottom, on a logarithmic scale) parts of the frequency from the
BEM reference �x = xPT − xBEM versus the azimuthal mode number
m = κ/2.

respectively, is

x̃1 = ∓(1.5988 − 0.0050i),

x1 = ∓(0.8152 − 0.0953i).

The real part of the corrected frequency is about 1/2 of the
uncorrected while the imaginary part is 20 times bigger. This
considerable difference results in a much larger splitting of the
imaginary parts and likewise the Q factors for small ε.

The intensity distributions that can be calculated by the PTs
do not show a significant difference. In the relevant regime of
small deformation strength they are nearly indistinguishable.
For the deformation strength of ε = 0.03 the distributions
are plotted in Fig. 5 for the BEM and the corrected PT.
Both agree well, as does the uncorrected PT (not shown).
Only for considerably larger deformation strength differences
become visible, for the antisymmetric wave functions first.
In small regions close to the boundary the intensity starts to
deviate from their surroundings and these regions grow with
increasing deformation strength. The intensity overshoots the
regular amplitude between deformation strengths of ε = 0.06
and ε = 0.14 and rapidly diverges thereafter.

To present results for modes with different azimuthal mode
numbers m it is convenient to consider the real and imaginary
parts of the differences between the PTs and the BEM, �x =
xPT − xBEM. Figure 6 shows the differences for the mode
numbers m = 5, . . . , 12 and fixed perturbation strength ε =
0.03. For each m the deformation parameter κ is adjusted to
be equal to 2m because the long-lived mode resulting from the
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FIG. 7. Limaçon cavity with n = 2.63, l = 1, and m = 4: dimen-
sionless deviation of the two PTs’ real parts of the frequency from
the BEM reference in dependence on the dimensionless deformation
strength; the lower panel shows the same data on a logarithmic y axis;
the dips appear where the PT results cross those of the BEM.

mode selection is the most interesting one. For those modes
the real parts rise in the interval Re(x) ≈ 3, ..., 6.5 and the
imaginary parts decay in Im(x) ≈ −0.014, ...,−0.03 × 10−4.
Nevertheless, the relative error with respect to the BEM rises
with increasing m. Therefore, the lower panel of Fig. 6 does
not imply that the imaginary parts of the PTs get more
accurate. Instead, it shows that in this case the corrected PT
always outperforms the uncorrected PT.

B. Limaçon cavity

The limaçon cavity was studied using the shifting method
which was introduced in Ref. [29] for the TM PT. The hori-
zontal shifting by −ε places the limaçon cavity centered at the
origin which minimizes the perturbation area [see Fig. 1(b)].
A reduced perturbation area, in turn, increases the accuracy of
the PT. With the shifting method the limaçon cavity can very
well be identified as a disk with a weakly winding boundary,
but even here improvements induced by the corrected PT
manifest.

For the limaçon cavity we consider the real and imaginary
parts of the difference �x as well. Figure 7 shows the real part
of the frequency in a linear and a semilogarithmic scale. It
can be observed that the corrected PT starts off with a bigger
deviation if compared to the uncorrected PT but gets more
accurate after around ε = 0.15. It has to be noted that the
existence and position of the downward dips that tell where
the PT results cross the BEM references, depend on various
parameters. For the uncorrected PT the mode numbers, the

FIG. 8. Limaçon cavity with n = 2.63, l = 1, and m = 4: di-
mensionless deviation of the two PTs’ imaginary parts of the fre-
quency from the BEM reference in dependence on the dimensionless
deformation strength; the lower panel shows the same data on a
logarithmic y axis.

deformation, and its strength decide, via the coupling inte-
grals, if and where a crossing takes place. The shift is also
relevant; it can completely change the behavior of the PT. In
this regard, −ε is not generally the best value for the shift,
which depends on the parameters mentioned before as well. In
our experience it is mostly chance, or at least not systematic,
if the PT crosses the BEM references or not.

Figure 8 shows the imaginary part of the frequency again
in a linear and a semilogarithmic scale. It can be observed
that the corrected PT is more accurate right from the begin-
ning with a considerable lead between ε = 0.1 and ε = 0.2.
For even higher deformation strengths the corrected and the
uncorrected PTs start to align. As for the microflower cavity,
the imaginary part is the more relevant benchmark because
it is generally 1 or 2 orders of magnitude smaller than the
real part and deviations of the same magnitude weigh heavier
on it.

Overall, it can be said that the corrections improve the PT’s
results. Note that for small ε the differences between the BEM
and the PTs do not tend to zero because for very small ε the
BEM suffers from the finite discretization mesh of the cavity’s
boundary.

The first condition (44) evaluated with the perturbation
area introduced in Ref. [27] gives ε ≈ 0.25. However, we
observe that the PT works very well up to ε ≈ 0.32. This is the
value up to which the difference to the BEM result is smaller
than 10−4; see Fig. 8. The second condition (45) is expected
to be even more irrelevant than in the microflower cavity as
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FIG. 9. Limaçon cavity with n = 2.63, l = 1, and m = 4: di-
mensionless deviation of the TM PT and the corrected TE PT
real (top) and imaginary parts (bottom) of the frequency from the
BEM reference versus the dimensionless deformation strength in
semilogarithmic plots; the dip appears where the PT results cross
those of the BEM.

κ = 1. The criterion of the Rayleigh hypothesis [42] with
ε ≈ 2/3 (see Sec. III) overestimates the range of applicability.

A comparison with the TM theory is shown in Fig. 9. While
the real parts of the corrected TE theory start off slightly
worse, they get more accurate than the TM theory’s around
the deformation strength ε = 0.15. In the imaginary parts the
theories are well comparable with a slight lead of the TE PT.

VII. CONCLUSION

The perturbation theory for TE whispering-gallery modes
by Ge et al. [36] has been corrected by including the full
spatial variation of the normal derivative along the boundary
of the cavity. The obtained formulas accurately describe the
microflower cavity with its strongly winding boundary up to a
deformation strength of ε ≈ 0.03. This is consistent with the
derived regime of applicability of the perturbation series and
is close to the rough estimation of ε ≈ 0.046 for a microflower
depending on the Rayleigh hypothesis [42]. While the uncor-
rected perturbation theory exhibits a much too small splitting
of the imaginary part of the frequency and the Q factor, the
splitting of the corrected theory coincides very well with full
numerical results. Most importantly, the corrected theory can
describe the Q-factor enhancement, which allows for a mode
selection without the damaging effect of Q spoiling.

Even for the limaçon cavity with its weakly winding
boundary the results improve, although the normal and radial
derivatives do not deviate much up to quite large deformation

strengths. While the real part profits for higher deformation
strengths only, more importantly, the imaginary parts receive
a higher accuracy of one order of magnitude over most of the
studied regime.

Overall, the corrected TE perturbation theory can be used
to examine cavities with strongly winding boundaries and
slight improvements can be expected for weakly winding
ones. In addition, the corrected TE theory, in contrast to the
uncorrected one, provides results as good as the TM theory.
The corrected theory requires the calculation of two addi-
tional coupling matrices, which include the derivative of the
deformation function, leading to an approximately doubled
calculation time. Compared to the BEM or similar numerical
methods, however, it remains a much faster alternative for
small deformations.
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APPENDIX: DERIVATION OF THE CORRECTIONS

The procedure to derive the PT formulas, as outlined first
by Dubertrand et al. in Ref. [27], is applied in this Appendix
to extract the correction terms for the TE theory. The overall
goal is to expand the boundary conditions (2) and (16) at
ε = 0 in several intermediate steps and to perform a Fourier
analysis. The first step is to expand the derivatives in both
boundary conditions, and in our case the additional quotient
ṙb/r2

b , because rb depends on ε. Here, the expansions needed
are in Eqs. (17) and (18) which have to be inserted into
the additional terms in the second boundary condition (16),
leading to

− ṙb

r2
b

(
1

n2

∂Ψ1

∂ϕ

∣∣∣∣
rb

− ∂Ψ2

∂ϕ

∣∣∣∣
rb

)

= −
[
ε

1

R
ḟ (ϕ) − ε2 2

R
f (ϕ) ḟ (ϕ)

][
1

n2

∂Ψ1

∂ϕ

∣∣∣∣
R

− ∂Ψ2

∂ϕ

∣∣∣∣
R

+ εR f (ϕ)

(
1

n2

∂2Ψ1

∂r∂ϕ

∣∣∣∣
R

− ∂2Ψ2

∂r∂ϕ

∣∣∣∣
R

)]
+ O(ε3). (A1)

Because we expand up to the second order in ε, every higher
order term can be ignored.

To continue, the ansatz (10) is inserted into Eq. (A1)
and the derivatives are calculated; remember to apply the
chain rule. The derivative with respect to ϕ simply produces
terms containing −p sin(pϕ); this means that in the first two
derivatives the Bessel and Hankel functions cancel at r = R.
The derivative with respect to r only works on the Bessel and
Hankel functions which produces the factor nk for the Bessel
and k for the Hankel functions. The explicit presentation of
the Bessel and Hankel functions’ derivative does not need to
be used because the PT uses J̇p/Jp and Ḣp/Hp as standard
elements to keep the formulas as compact as possible.
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The result is

− ṙb

r2
b

(
1

n2

∂Ψ1

∂ϕ

∣∣∣∣
rb

− ∂Ψ2

∂ϕ

∣∣∣∣
rb

)

= −

⎧⎪⎪⎨
⎪⎪⎩ε

1

R
ḟ (ϕ)︸ ︷︷ ︸
I

−ε2 2

R
f (ϕ) ḟ (ϕ)︸ ︷︷ ︸
II

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
(

1

n2
− 1

)
m sin(mϕ)︸ ︷︷ ︸

III

−
∑
p�=m

(
1

n2
− 1

)
pap sin(pϕ) +

∑
p

pbp sin(pϕ)

︸ ︷︷ ︸
IV

−εkR f (ϕ)︸ ︷︷ ︸
V

⎡
⎢⎢⎢⎢⎣
(

1

n

J̇m

Jm

∣∣∣∣
x

− Ḣm

Hm

∣∣∣∣
x

)
m sin(mϕ)︸ ︷︷ ︸

V I

+
∑
p�=m

(
1

n

J̇p

Jp

∣∣∣∣
x

− Ḣp

Hp

∣∣∣∣
x

)
pap sin(pϕ) −

∑
p

Ḣp

Hp

∣∣∣∣
x

pbp sin(pϕ)

︸ ︷︷ ︸
V II

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (A2)

where the argument is x(ε) = k(ε)R [see Eq. (11)], which has
to be considered for the next expansion.

At this state of an expansion terms of third and higher
orders can be sorted out for the first time. In this case the
argumentation is as follows. (a) Term III is a zeroth-order
term and generates a first-order term in combination with term
I as well as a second-order term in combination with term
II. (b) Term IV has first- and second-order terms because of
the coefficients ap and bp [see Eqs. (12) and (13)]. There-
fore, it can be combined with term I to a second-order term
by keeping a1,p and b1,p but discarding a2,p and b2,p. The
combination of terms IV and II can be discarded as well,
because it is of third and higher order. (c) Terms I and V
generate a second-order term so the factor kR in term V and
the term VI have to be accounted for in zeroth order, meaning
kR → x0 and the argument of the Bessel and Hankel functions

has to be x → x0, too [see Eq. (11)]. Term VI then equals the
conditional Eq. (6b) with Tm|x0 = 0, and it therefore vanishes.
(d) Term VII is, just as term IV, of first and second order and
vanishes in the third and fourth order when combined with
terms I and V or the fourth and fifth order in combination with
terms II and V. All in all, because of (c) and (d) the terms V,
VI, and VII are irrelevant.

Note that this simplifies the corrections a lot because
no x(ε) and no Bessel and Hankel functions remain in the
formulas. If those were still present, the expansion (11) would
have to be inserted for x(ε) instead, and more laborious, the
Bessel and Hankel functions would have to be expanded at
ε = 0. The latter would have included the denominator, led
to higher derivations of the Bessel and Hankel functions, and
resulted in many more terms, as it does in the formulas of the
uncorrected PT. This way the remaining expansion is just

− ṙb

r2
b

(
1

n2

∂Ψ1

∂ϕ

∣∣∣∣
rb

− ∂Ψ2

∂ϕ

∣∣∣∣
rb

)
= −ε

m

n2R
(n2 − 1) ḟ (ϕ) sin(mϕ)

+ ε2

⎛
⎝ 2m

n2R
(n2 − 1) f (ϕ) ḟ (ϕ) sin(mϕ) − (n2 − 1)

∑
q �=m

q

n2R
a1,q ḟ (ϕ) sin(qϕ) −

∑
q

q

R
b1,q ḟ (ϕ) sin(qϕ)

⎞
⎠+ O(ε3), (A3)

where the summation index has already been switched to q.
Note that only the second boundary condition gets corrected
by these terms and therefore merely x1, x2, a1,p, and a2,p can
receive corrections; b1,p and b2,p are extracted from the first
boundary condition.

The last step in constructing the PT formulas is a Fourier
analysis. By multiplying a boundary condition by cos(mϕ)
or cos(pϕ) and integrating from −π to π the coupling in-
tegrals Cqp and Dqp are introduced and the frequencies and
coefficients can be calculated. This is because each term
occurs once in combination with cos(mϕ) or in a sum over q
combined with cos(qϕ). By Fourier analysis the ϕ dependence
is eliminated and the sums break down, leaving one of the de-
sired values separately. Because all integrands are symmetric,
the integration interval 0 to π can be used instead of −π to π .

The corrections listed in Eqs. (25) and (28) are acquired
from the first and second order of the expansion (A3), re-
spectively. x1 and x2 follow by analyzing with cos(mϕ),
whereas analysis with cos(pϕ), p �= m, gives a1,p and a2,p.
The factor R/(x0Vm), by which Eq. (A3) has to be multiplied
to get the correct contributions to Eqs. (25) and (28), follow
from the full equations for x1 and x2 that are not shown
here. Note that an additional x0 has to be factored out. The
same applies for the correct contributions to Eqs. (26) and
(29) with a1,p, a2,p, and the factor R/(x0Tp). Furthermore, in
the full formulas x1 and a1,p, as well as x2 and a2,p, have
different signs, which is why those differ in the corrections,
too.

Now consider the difference for the parities. For the sym-
metric wave functions the first derivative of the cosine with
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respect to ϕ produces a negative sign. This does not appear
for the sines of the antisymmetric wave functions. This means
that the sign of the corrections has to be switched in addition

to the usual interchanging of the sines and cosines. With the
signs ± and ∓ both parities can still be presented in one set of
formulas.
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