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Spectrum of the Dicke model in a superconducting qubit-oscillator system
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We calculate the transmission spectrum of a superconducting circuit realization of the Dicke model and
identify spectroscopic features that can serve as signatures of the superradiant phase. In particular, we calculate
the resonance frequencies of the system as functions of the bias term, which is usually absent in studies on
the Dicke model but is commonly present in superconducting qubit circuits. To avoid over-complicating the
proposed circuit, we assume a fixed coupling strength. This situation precludes the possibility of observing
signatures of the phase transition by varying the coupling strength across the critical point. We show that the
spectrum obtained by varying the bias point under fixed coupling strength can contain signatures of the normal
and superradiant phases: in the normal phase one expects to observe two spectral lines, while in the superradiant
phase four spectral lines are expected to exist close to the qubits’ symmetry point. Provided that parameter
fluctuations and decoherence rates are sufficiently small, the four spectral lines should be observable and can
serve as a signature of the superradiant phase.
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I. INTRODUCTION

The field of cavity quantum electrodynamics (QED), in
which one or more atoms interact with the electromagnetic
field inside a cavity, has been used as a model for study-
ing light-matter interaction at the fundamental level and
to develop a number of technologies over the past several
decades [1].

The collective interaction of an ensemble of atoms with a
cavity field, as described by the Dicke model, gives rise to a
number of interesting phenomena. One of these is superradi-
ance, in which the atoms exhibit an accelerated emission of
photons into the cavity compared with what one might expect
from treating the atoms as independent emitters [2]. Another
interesting phenomenon is the occurrence of a phase transition
and the emergence of strongly correlated atom-cavity states
when the atom-cavity coupling strength exceeds a certain
critical value [3–8]. The situation with strongly correlated
states is sometimes called the superradiant phase, although it
should be emphasized that in this context superradiant states
do not exhibit superradiance in the sense of emitting radiation
that propagates out of the system. In contrast, when the atom-
cavity coupling is weak, the ground state of the atom-cavity
system is one in which the individual atoms and the cavity
are to a good approximation in their respective ground states
with little correlation between them. In this case the system
is said to be in the normal phase. Alternatively, one could say
that the normal phase is associated with a single dynamically
stable state; namely, the ground state, while the superradi-
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ant phase has multiple macroscopically distinct dynamically
stable states.

For several decades, studies on cavity-QED were limited
to very small values of the coupling strength. The recent
development of circuit-QED using superconducting circuits
has led to remarkable advances in the field of cavity-QED.
Among these advances is the demonstration of ultrastrong and
deep-strong coupling between a single superconducting qubit
and a superconducting resonator [9–14]. Superradiance was
also observed recently in a circuit-QED system [15]. There
have also been several recent experiments on superconducting
quantum metamaterials involving large numbers of qubits or
resonators [16–20].

One of the important tools in studying circuit-QED sys-
tems is spectroscopy, in which a probe signal is sent towards
the circuit and the reflected and/or transmitted signal gives
information about the energy-level spacings or frequencies of
oscillation modes in the circuit. For example, spectroscopy
was used in Refs. [9–12,21–23] to demonstrate the realization
of various strong-coupling regimes in circuit-QED systems. It
was also used in Ref. [18] to quantify the coupling strength
between a qubit ensemble and a superconducting resonator.
In this work we investigate the spectral features that could be
used as signatures of the superradiant phase in a circuit-QED
realization of the Dicke model. In particular, we include a
finite bias term in the Hamiltonian of the circuit [24]. This
term is commonly present in superconducting qubit circuits,
especially those involving flux qubits, whereas it is generally
not included in conventional cavity-QED studies. This term is
usually the easiest parameter to vary, and spectra are often
plotted with the bias parameter being one of the variable
parameters in the spectra. It is also common in theoretical
studies to investigate changes in the system as the coupling
strength is varied. Tuning of the coupling strength generally
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requires rather complicated circuitry that has not been used in
ultrastrong or deep-strong coupling circuit-QED experiments
to date. We therefore focus on the case where the coupling
strength is fixed. We then look for signatures of the superradi-
ant phase in spectra where the only variable parameter is the
qubit bias parameter. We find that such signatures do indeed
exist, most notably in the appearance of additional spectral
lines in the superradiant phase. We assess the feasibility
of observing these spectra in superconducting circuits with
realistic parameters.

The remainder of this paper is organized as follows: In
Sec. II we briefly introduce the Dicke model and discuss its
stable states, including the ground state and metastable excited
state. In Sec. III we analyze the spectra that are expected
in the normal and superradiant phases of the Dicke model.
In Sec. IV we discuss the effect of fluctuations in the qubit
parameters on the spectra. In Sec. V we discuss the possibility
of observing the predicted spectra in a typical experimental
setup. We finally give some concluding remarks in Sec. VI.

II. GROUND STATE OF THE DICKE MODEL
IN THE ABSENCE OF FLUCTUATIONS

We consider a system described by the Dicke model, i.e., N
qubits coupled to a single harmonic oscillator. We first assume
that the qubit parameters are identical for all the qubits. The
Hamiltonian of this system is given by

Ĥ = �

2

N∑
i=1

σ̂ (i)
z + ε

2

N∑
i=1

σ̂ (i)
x + h̄ω

(
â†â + 1

2

)

+g
N∑

i=1

σ̂ (i)
x (â + â†), (1)

where � is the qubit gap, ε is the qubit bias parameter, ω is
the cavity’s characteristic frequency, g is the coupling strength
between a single qubit and the cavity, the operators σ̂ (i)

α (with
α = x, y, z) are the Pauli operators of qubit i, and â and â†

are, respectively, the annihilation and creation operators of
the cavity. The signs in this Hamiltonian are one possible
combination out of several other equivalent ones.

In the absence of parameter fluctuations, it is natural to
define the collective spin operators

Ŝα =
N∑

i=1

σ̂ (i)
α

2
, (2)

which obey the standard spin commutation relations up to the
factor h̄, which we have not included in the definition of Ŝα ,
i.e., [Ŝα, Ŝβ ] = iεαβγ Ŝγ , where εαβγ is the Levi–Civita tensor.
If we also define the operators

x̂ = â + â†

2
(3)

and

p̂x = −i
â − â†

2
, (4)

the Hamiltonian can be expressed as

Ĥ = �Ŝz + εŜx + h̄ω

4
(â + â†)2 − h̄ω

4
(â − â†)2

+ 2gŜx(â + â†)

= �Ŝz + εŜx + h̄ωx̂2 + h̄ω p̂2
x + 4gŜxx̂. (5)

If we now take the classical limit, i.e., treat the spin S as a
continuous classical variable [with (S2

x + S2
y + S2

z )1/2 = N/2]
and similarly treat x and p as classical position and momentum
variables, and we look for the ground state of the system by
minimizing the Hamiltonian, we find that this state obeys the
relations

px = 0, Sz = −N

2
cos θ, Sx = −N

2
sin θ,

θ = tan−1 ε + 4gx

�
, x = −2gSx

h̄ω
. (6)

Combining these equations we obtain

x = 2g

h̄ω

N

2

ε + 4gx√
�2 + (ε + 4gx)2

. (7)

For 4g2N/(h̄ω�) < 1, this equation always has a single solu-
tion, regardless of the value of ε. In the special case ε = 0, the
solution is x = 0. For finite values of ε, the equation becomes
less amenable to algebraic manipulation, but a numerical solu-
tion can be obtained straightforwardly. When 4g2N/(h̄ω�) >

1 and ε = 0, Eq. (7) has three solutions: x = 0 (which now
is a local maximum of the energy and therefore does not
correspond to the ground state) and

1 = 4g2N

h̄ω�

1√
1 + (4gx/�)2

, (8)

or in other words

x = ± �

4g

√(
4g2N

h̄ω�

)2

− 1. (9)

The plus and minus signs correspond to two equivalent ground
states, keeping in mind that we are taking the classical limit
and that quantum effects would hybridize the classical solu-
tions and lift the degeneracy. When 4g2N/(h̄ω�) > 1 and ε

is finite but small, Eq. (7) still has three solutions, but no
simple expressions can be derived for them. Two of these
solutions, specifically the smallest and the largest values of x,
correspond to dynamically stable states of the system, while
the middle one corresponds to a dynamically unstable state.
One of the two stable states is the ground state and the other is
a metastable excited state. For sufficiently large values of |ε|,
two of the solutions disappear and Eq. (7) again has a single
solution. In this regime there is no metastable excited state
any more. Hence for any given value of 4g2N/(h̄ω�) above
the critical value 1, there is a critical value of |ε| that separates
the regions of one and three solutions.

The number and nature of the solutions of Eqs. (6) and (7)
can be intuitively understood by considering the single-
particle trapping potential of the form V (x) = εx + ηx2 + x4

[25]. This potential, which is illustrated in Fig. 1, exhibits
bifurcation behavior. This behavior is most easily obtained by
considering the symmetry point (ε = 0): the potential has one
or two minima depending on the sign of η. When η is positive,
there is only one minimum. When η is negative, there are two
local minima and they are equivalent to each other, because
of the symmetry in V (x). Between these two local minima,
which correspond to dynamically stable solutions, there is
a third solution of the equation dV/dx = 0 (namely x = 0)
that is dynamically unstable. The bifurcation point η = 0
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FIG. 1. Schematic diagram showing the stable points in the po-
tential V (x) = εx + ηx2 + x4. The local minima of the potential are
marked by triangles. The circles mark local maxima in the potential.
Panel (a) shows the case of positive η, which gives a single local min-
imum. Here we have taken ε = 0. Panels (b)–(d) show the potential
for negative values of η (specifically η = −1), which generally gives
a double-well potential and hence two local minima of the potential.
Panel (b) shows the symmetric case ε = 0, where two equivalent
local minima exist. Panel (c) shows the weakly asymmetric case
ε = −0.3. In this case, two local minima exist. However, one of
them corresponds to a metastable excited state. The curvature, and
hence the excitation frequency, around the metastable excited state
is smaller than that around the ground state. Panel (d) shows the
strongly asymmetric case ε = −0.6, where the potential has only one
minimum and there is no metastable excited state.

corresponds to the critical point 4g2N/(h̄ω�) = 1. If we take
the case of positive η and move away from the symmetry
point, the term εx causes the single minimum of the potential
to be shifted away from x = 0. When we move away from the
symmetry point in the case of negative η, the term εx tilts the
double-well potential, and one of the local minima becomes
the global minimum, while the other local minimum becomes
an excited metastable state. At a certain critical value of ε, the
metastable excited solution disappears and the potential has a
single minimum. The point where the metastable excited state
disappears corresponds to the ε value that separates the regime
where Eq. (7) has one solution and the regime where Eq. (7)
has three solutions.

We finally note that, in the regime 4g2N/(h̄ω�) > 1 with
small |ε|, where multiple dynamically stable states exist, it is
natural to say that the system is in the superradiant phase with
nontrivial qubit-cavity correlations. When |ε| is large such
that there is only one stable state, it becomes less meaningful
to say that the system is still in the superradiant phase.
According to the definitions used in this work, we say that
the system goes back to the normal phase when |ε| exceeds a
certain (g-dependent) critical value.

III. SPECTRUM IN THE ABSENCE OF FLUCTUATIONS

If a probe signal is applied to the system in its ground state,
it will exhibit some spectral response at the frequencies that
correspond to the excitation modes of the system. Since in
the case of identical qubits we effectively have two degrees
freedom, we expect to have two excitation modes. These can
be found by using the Holstein–Primakoff transformation,
where we replace the spin operators by harmonic-oscillator
operators [26]. One possibility is to use the operators Ŝx and
Ŝz in applying the transformation, and the ensuing derivations
would closely follow Refs. [6,24]. We follow an alternative
approach that gives the same results.

We start by rotating the reference frame for the spin
operators:

S̃x = cos θ Ŝx − sin θ Ŝz,

S̃z = cos θ Ŝz + sin θ Ŝx, (10)

and making the transformation x̃ = x̂ − x0, p̃x = p̂x. Here x0

is the ground-state value of x obtained from Eq. (7), and θ

is the corresponding value of θ obtained from Eq. (6). Upon
making these transformations, the Hamiltonian is transformed
into the form

Ĥ = �(cos θ S̃z − sin θ S̃x ) + ε(cos θ S̃x + sin θ S̃z )

+h̄ω(x̃ + x0)2 + h̄ω p̃2
x + 4g(cos θ S̃x + sin θ S̃z )(x̃ + x0)

= (� cos θ + (ε + 4gx0) sin θ )S̃z + h̄ωx̃2 + h̄ω p̃2
x

+4gcos θ S̃xx̃ + h̄ωx2
0 + [(ε + 4gx0) cos θ − � sin θ ]S̃x

+(4g sin θ S̃z + 2h̄ωx0)x̃. (11)

We know that if θ and x0 satisfy Eq. (6), the coefficients of S̃x

and x̃ in the last two terms in the last line of Eq. (11) vanish to
first order in S̃x and x̃. Furthermore, S̃x = x̃ = 0 in the classical
ground state. As a result, the first nonvanishing term in the last
two terms in Eq. (11) appears at third order in S̃x and/or x̃. The
term before them is a constant. We can therefore ignore these
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terms and consider the Hamiltonian

Ĥ = [� cos θ + (ε + 4gx0) sin θ ]S̃z

+h̄ωx̃2 + h̄ω p̃2
x + 4gcos θ S̃xx̃. (12)

Although so far in this section we have said that we are
considering the classical ground state, the derivation remains
valid when considering the metastable excited state in the
bistability regime.

Now we perform the Holstein–Primakoff transformation:

S̃z = b̂†b̂ − N

2
, S̃x = 1

2
(S̃+ + S̃−),

S̃+ = b̂†
√

N − b̂†b̂, S̃− = S̃†
+, (13)

where b̂ and b̂† are harmonic-oscillator operators. It is useful
here to define the operators

ỹ = b̂ + b̂†

2
(14)

and

p̃y = −i
b̂ − b̂†

2
. (15)

The Hamiltonian can now be expressed as

Ĥ = [� cos θ + (ε + 4gx0) sin θ ]

(
b̂†b̂ − N

2

)
+ h̄ω

(
x̃2 + p̃2

x

)
+2gcos θ (b̂†

√
N − b̂†b̂ +

√
N − b̂†b̂b̂)x̃

≈ [� cos θ + (ε + 4gx0) sin θ ]
(
ỹ2 + p̃2

y

) + h̄ω
(
x̃2 + p̃2

x

)
+4g

√
N cos θ x̃ỹ + constant. (16)

This Hamiltonian describes two bi-linearly coupled harmonic
oscillators. One can redefine the variables in such a Hamilto-
nian such that the coupling term is eliminated and the Hamil-
tonian describes two uncoupled harmonic oscillators. These
are the normal oscillation modes of the system. The eigenen-
ergies of the system then have the form n+h̄ν+ + n−h̄ν− +
constant, where n± are two non-negative integers and ν± are
the frequencies of the oscillation modes, just as one would
expect for the combined energy eigenstates of two uncoupled
harmonic oscillators. Note that Eq. (16) is valid in both
the normal and superradiant phases. The difference between
the normal and superradiant cases enters in the coefficients
of the different operators in Eq. (16). For example, taking
ε = 0, in the normal phase, θ = 0 and x0 = 0, while in the
superradiant phase, x0 is given by Eq. (9) and θ is given by
Eq. (6), which gives cos θ = h̄ω�/(4g2N ). Furthermore, in
the superradiant case, there can be two sets of parameters that
correspond to stable or metastable states that will contribute
spectral lines observed in experiment. For each set of parame-
ters entering in Eq. (16), the oscillation frequencies of the two
oscillation modes are given by

ν2
± = 1

2

(
γ 2 + ω2 ±

√
(γ 2 − ω2)2 + 16g2Nγω cos2 θ/h̄2

)
,

(17)

where we have defined γ = [� cos θ + (ε + 4gx0) sin θ ]/h̄.
The frequency ν+ corresponds to the high-frequency mode

while ν− corresponds to the low-frequency mode in the spec-
trum.

We now use Eq. (17), with x0 calculated from Eq. (7), to
calculate the frequencies of the oscillation modes for a number
of different parameter combinations. In some cases Eq. (7)
has only one solution and we obtain only two resonance
frequencies. In other cases, specifically in the superradiant
phase with small values of |ε|, we find two stable solutions of
Eq. (7), and we therefore obtain four resonance frequencies.

In Fig. 2 we plot the resonance frequencies as functions of
ε for the normal and superradiant phases when � = h̄ω. In the
normal phase [Figs. 2(a) and 2(b)], we obtain the usual circuit-
QED spectrum: away from the symmetry point the oscillator’s
resonance frequency is ω, while the qubit excitation frequency
is approximately ε/h̄. The two lines deviate from this simple
behavior in the vicinity of the symmetry point because of
the hybridization of the oscillator and qubit excitation modes.
For example, the spectral line that coincides with the res-
onator’s frequency at ε → ∞ has a dip at the symmetry point,
which is the point where the qubit’s resonance frequency
approaches it from above. The spectrum in the superradiant
phase is qualitatively different. In Figs. 2(c) and 2(d) we
include the resonance frequencies for the solutions of Eq. (7)
that correspond to both the ground state and the metastable
excited state. The ground state has two excitation modes as in
Figs. 2(a) and 2(b). The metastable state also has two excita-
tion modes with frequencies that are different from those of
the ground state, except at the symmetry point where the two
states become degenerate and hence equivalent ground states.
As a result, there is now a range of ε values where we have
four excitation mode frequencies. The two pairs of excitation
frequencies in the spectrum exhibit crossings at the symmetry
point.

As in Sec. II, the behavior of the two low-frequency modes
in the superradiant phase can be intuitively understood by
thinking of the ground state and metastable excited state
in the double-well potential V (x) = εx − x2 + x4 (Fig. 1).
At the symmetry point (ε = 0), the two local minima are
equivalent to each other and the curvature of the potential
V (x) is the same at these two points. If we move away from
the symmetry point, the term εx tilts the potential, one of
the local minima becomes deeper and its curvature increases,
while the other local minimum becomes shallower. Because
of the asymmetry created between the ground state and the
metastable excited state, each of the two spectral lines is
split into two, resulting in four spectral lines in total. As the
tilting of the potential keeps increasing, the local minimum
corresponding to the metastable excited state keeps becoming
shallower until at some tilting slope it disappears and the
potential has a single minimum. The disappearance of the
metastable excited state coincides with the disappearance of
two spectral lines from the spectrum, which occurs at large
values of |ε|. The point where the metastable excited state
disappears also corresponds to the |ε| value that separates the
regime where Eq. (7) has one solution and the regime where
Eq. (7) has three solutions. As the tilting strength approaches
the critical point, the shallow well that traps the metastable
solution becomes increasingly shallow with the characteristic
oscillation frequency reaching the value zero at the critical
point. In practice, the occupation probability of the metastable
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FIG. 2. Frequencies of the excitation modes ν± as functions of
the bias parameter ε/(h̄ω). The red solid lines are the spectral
lines that correspond to excitation from the ground state, while the
green dashed lines correspond to excitation from the metastable
excited state. Here we set � = h̄ω. The coupling strength is given by
(a)

√
Ng/(h̄ω) = 0.2, (b) 0.4, (c) 0.6, and (d) 0.8. In panels (a) and

(b),
√

Ng/(h̄ω) < 0.5, which corresponds to the normal phase, while
in panels (c) and (d)

√
Ng/(h̄ω) > 0.5, which corresponds to the

superradiant phase. In the normal phase only two spectral lines
are obtained, whereas in the superradiant phase the existence of a
metastable excited state results in two additional spectral lines. As
we move away from the symmetry point, there is a critical value of ε

at which the metastable excited state does not exist any more, and its
spectral lines disappear. In particular, we note that the high-frequency
dashed line disappears at the same value of ε where the frequency of
the lowest spectral line reaches zero, even though this fact might not
be entirely clear from the appearance of the lines in the figure.

excited state will decrease and vanish before we reach that
point (because of either thermal or quantum fluctuations).
As a result, the spectral line will fade and disappear before
it reaches zero frequency. If we assume that even a small
value of ε will eliminate the population of the excited state
in a specific experimental setup, the dashed lines in Figs. 2(c)
and 2(d) disappear and the spectrum exhibits two V-shaped
spectral lines (corresponding to the two oscillation modes of
the ground state) with sharp cusps at the symmetry point. Such
V-shaped spectral lines were obtained in Ref. [24], which did
not consider the metastable excited state.

As mentioned above, the high-frequency mode is mostly
a qubit excitation mode. One might notice that in Figs. 2(c)
and 2(d) even at the symmetry point the frequency of this
mode is now well above the frequency of the other mode.
The reason is that in the superradiant phase x0 has a finite
value even when the externally applied bias corresponds to
the symmetry point, and as a result each qubit is effectively
biased away from the symmetry point, leading to an increased
resonance frequency. The frequency of this oscillation mode
does not vanish even at the critical value of ε at which the low
frequency reaches zero. However, since there is no metastable
state beyond that point, these two spectral lines will disappear
together. If the probe field couples to the oscillator, one will
mainly observe the response from the low-frequency mode,
because that is the mode that has mostly cavity-excitation
character while the high-frequency mode has a mostly qubit-
excitation character.

Since the frequency range that is accessible with typical
measurement methods is often limited (in the range of a few
GHz for superconducting qubit circuits), it can be difficult or
impossible to observe the frequency of the oscillator mode as
it goes all the way down close to zero. Even in this case, the
observation of V- or X-shaped spectral lines (at and around
the symmetry point), as opposed to the smooth dip obtained in
the normal phase, can serve as a signature of the superradiant
phase. For the experimental observation of the V or X shape, it
is crucial to have sufficiently large slopes of the spectral lines
at the symmetry point. In Fig. 3 we plot the slopes of both
the low- and high-frequency spectral lines at the symmetry
point. Note that each pair of intersecting spectral lines have
the same slope but with opposite signs at the symmetry point,
and we shall therefore refer to a single slope for each pair,
specifically taking the spectral line that extends to ε → ∞.
As we can see from the figure, just above the critical point,
the slopes of both lines are very large, which is desirable
for experimental purposes. The slope of the ν+ line quickly
drops and converges to the value one, while the slope of the
ν− line decreases significantly more slowly, asymptotically
approaching zero. It is in fact not very surprising that the
slope of the ν− line diverges as g → g+

c , because as can be
seen from Fig. 2 the spectral line frequencies go down to zero
with infinite slope in the superradiant phase, and at g → g+

c
the edges of the two spectral lines (i.e., ν− for the two stable
states) drop to zero at ε = 0. The fact that the frequency ν−
is very small just above the critical point is undesirable for
purposes of experimental observation, because this small fre-
quency might be outside the measurable frequency range, as
mentioned above. One could use more advanced spectroscopy
techniques to measure these low frequencies, such as the

063822-5



S. ASHHAB et al. PHYSICAL REVIEW A 99, 063822 (2019)

 0

 1

 2

 3

 4

 1  1.2  1.4  1.6  1.8  2
g/g c

hd
ν/

dε

FIG. 3. Slopes of the frequencies ν− (red solid line) and ν+
(green dashed line) with respect to ε (i.e., h̄dν±/dε) at the symmetry
point as functions of coupling strength g (measured relative to the
critical value gc). We take the slopes of the spectral lines that
correspond to the ground state for positive ε, i.e., those that extend to
ε → ∞. As in Fig. 2 we set � = h̄ω. In the normal phase (i.e., when
g/gc < 1), the slopes vanish, because the spectral lines have their
minima at the symmetry point. In the superradiant phase, two pairs
of spectral lines cross with slopes that are equal in magnitude but
with opposite signs. As we approach the transition point g = gc =√

�h̄ω/(4N ) from above, the slope of ν− diverges as (g − gc )−1.

two-tone spectroscopy used recently in Ref. [23]. On the other
hand, for g values that are much higher than the critical value
for superradiance, the slope of the two ν− lines asymptotically
approaches zero, which makes the two spectral lines difficult
to resolve from one another. As a result, if one is probing
the low-frequency spectral line, it can be better not to have
parameters that are very deep in the superradiant phase, where
the spectral response goes back to resembling the spectrum
of an isolated harmonic oscillator, as discussed in Ref. [22].
The slope of the ν+ lines has a weak dependence on g after
the sharp peak just above gc. One could therefore think of
this slope as making a sudden jump from zero (in the normal
phase) to one (in the superradiant phase). The ν+ spectral
lines can therefore clearly distinguish between the normal and
superradiant phases, if these lines can be observed in a specific
experiment setup.

Another possibly important parameter for purposes of ex-
perimental observation is the range of ε values for which the
four spectral lines exist. This quantity is plotted in Fig. 4.
The maximum separation between the two spectral lines in
the upper branch, which occurs at the maximum value of |ε|
before one of the two lines disappears (i.e., the value of |ε|
plotted in Fig. 4) is shown in the Appendix.

So far we have focused on the special case � = h̄ω. We
now take the case where � is much smaller than h̄ω (Fig. 5),
as in the experiment of Ref. [18]. Three features are worth
noting here: (1) When we first enter the superradiant phase
[Fig. 5(c)], the spectral line of the high oscillation frequency
for the metastable excited state is higher than that of the
ground state. The curvature of this spectral line is also dif-
ferent from those seen in Fig. 2. (2) With increasing coupling
strength, the locations of the avoided crossings approach the
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FIG. 4. The maximum value of |ε| at which there exists a
metastable excited state, i.e., the maximum value of |ε| at which
one expects to see four lines in the spectrum, as a function of g/gc.
As above � = h̄ω. Alternatively, this figure can be seen as a phase
diagram: the labels “Normal” and “Superradiant” describe the phase
that is obtained in each region in the g-ε parameter space, where the
superradiance region is defined by the existence of two stable states.

center, such that the avoided crossings occur at a value of
|ε| that is smaller than h̄ω. This feature can be understood
by noting that the cavity field that forms at finite ε acts back
on the qubits and makes an additional contribution to ε such
that the net value of ε felt by the qubits is larger than the
externally applied value. (3) Ignoring the complication of
the inward-shifting avoided crossing point mentioned in (2),
the spectral signature of the superradiant phase, which is seen
at ε = 0, is generally independent of the avoided crossings
at |ε| ≈ h̄ω. Specifically, it is possible that one of these two
features can be observable while the other is not, depending
on the system parameters. Additional plots that summarize
the spectral features expected in the superradiant phase with
� � h̄ω are given in the Appendix. When compared with
the case � = h̄ω, it is clear that in the case � � h̄ω we
have a smaller separation between the two spectral lines in
the upper branch in the superradiant phase, meaning that
the experimental observation might be more difficult. How-
ever, since these figures are all plotted in units of ω, which
is quite large, the experimental observation might also be
possible in this case.

It should also be noted that in Fig. 5, as well as in other
figures, the nature of the excitations of any given spectral line
generally changes as ε changes. For example, in Fig. 5(c) the
cavity excitation mode is described by the spectral line with
frequency close to ω. This association between the spectral
lines and the cavity excitation mode changes depending on the
value of ε. As a result, if the probe used to obtain the spectrum
couples to the cavity but not to the qubits, the observed
spectrum will typically contain only parts of each spectral
line in Fig. 5(c). In particular, one will typically observe three
spectral lines that exhibit avoided crossings at regions where
one of the lines gradually fades out and the next line starts
as one moves along the ε axis. On the other hand, the parts
of the spectral lines that have frequencies far from ω might
not be observed in the experiment, because these parts of the
spectral lines correspond to exciting the qubit mode.
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FIG. 5. Frequencies of the excitation modes as functions of
ε/(h̄ω). As in Fig. 2, the red solid lines are the spectral lines that
correspond to excitation from the ground state, while the green
dashed lines correspond to excitation from the metastable excited
state. Here we take the case of small �. Specifically we set �/h̄ω =
0.2, which gives gc/(

√
Nh̄ω) = 0.224. We set (a)

√
Ng/(h̄ω) = 0.1,

(b) 0.2, (c) 0.3, and (d) 0.5. The inset in panel (c) shows a magnified
view of the region x ∈ [−0.1, 0.1], y ∈ [1.01, 1.03].

IV. EFFECT OF FLUCTUATIONS IN SYSTEM
PARAMETERS; SPECTRAL LINE WIDTHS

We now consider how the situation changes when we
include fluctuations in the parameters �, ε, and g. In partic-
ular, we are interested in how these fluctuations will affect
the observed spectral lines. Before we start the discussion
of the case of nonidentical qubits we note that the case of
identical qubit parameters allowed us to perform rigorous
derivations for the spectra, while here we will have to rely
on some qualitative arguments. We also note that a related
study on the effect of parameter fluctuations on superradiance
in superconducting circuits was performed in Ref. [27].

The ground state in this case has been described in
Ref. [28]. The electromagnetic field of the resonator has an
average value that is determined by the many contributions
from all the interactions with the individual qubits in the
ensemble, and the state of each qubit is determined by its
bias parameter including a contribution from the possibly
finite value of the resonator’s electromagnetic field. If we
consider exciting the qubit modes, we have to take into
account the fact that the qubits now do not behave collectively
as above (at least not having sharp spectral features as in
the case of identical qubits). Let us for a moment consider
a qubit ensemble that is not coupled to the resonator. We can
analyze the excitation modes of the ensemble by considering
the large collection of possible excitations of the individual
qubits. In other words, each qubit has its own values of
� and ε, giving a hyperbolic spectrum, and the spectra of
the individual qubits are then superimposed to produce the
spectrum of the ensemble. As a result, if the parameters of the
individual qubits have large variations, the spectral line for
the qubit ensemble can be very broad. This broadening can
make it more difficult to measure fine features in the spectrum,
such as the appearance of additional spectral lines in the
superradiant phase, if the separation between the spectral
lines is smaller than their widths. The cavity’s oscillation
mode, on the other hand, should exhibit a different behavior.
The picture used in the previous sections (and in Ref. [28])
leads to the conclusion that the single-cavity mode feels the
mean-field force applied by the qubit ensemble, and as a result
its resonance frequency (although possibly strongly modified
by the interaction with the qubit ensemble) should remain
well defined and not drastically broadened by the broad qubit
frequency distribution. Indeed, the spectra in Ref. [18] have
a width that is broadened by a factor of two at the symmetry
point compared with the width far away from the symmetry
point, which shows that the large qubit parameter fluctu-
ations do not significantly broaden the oscillator’s spectral
line.

One possible complication occurs when a significant frac-
tion of the qubit frequencies are resonant with the cavity
frequency (which, as mentioned above, can be different from
the bare cavity frequency because of renormalization). This
situation occurs, for example, at the avoided crossings in
Figs. 5(a)–5(c). There are two competing mechanisms at play
at such avoided crossings. On one hand, if we consider the
case of no parameter fluctuations, the minimum gap of the
avoided crossing is approximately given by geff = √

Ngcos φ,
where tan φ = ε/�. On the other hand, assuming that all qubit
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gaps �i are much smaller than h̄ω, the qubit frequencies have
a spread given by the width of the distribution of εi values,
which we call δε. If geff � δε, one would expect the avoided
crossing to be observed with the width δε determining the
spectral linewidths. If on the other hand geff � δε, one would
expect that no (clear) avoided crossing will be observed.
Considering this situation in detail, one can argue as follows:
the region in which the qubit and cavity frequencies cross
will be broad because of the broad distribution of εi. At any
given point in this region, the qubits with frequencies that are
closer to the cavity frequency than the qubit-cavity coupling
strength will experience avoided crossings with the cavity. In
some sense, the coupling between the cavity and each one of
the resonant qubits gives rise to an avoided crossing whose
size is proportional to the coupling strength. When instead
of one avoided crossing we have a large number of closely
spaced avoided crossings, the many closely spaced spectral
lines merge and we effectively obtain a single broadened
spectral line. As a result the cavity’s spectral line will have
a width that is given by the qubit-oscillator coupling strength
with some partial ensemble enhancement, but this width can
be significantly smaller than the width of the whole qubit
ensemble frequency distribution.

We therefore expect that the conditions needed to observe
the features related to the superradiant phase and the con-
ditions needed to observe the features related to coherent
resonant coupling between the qubit ensemble and the cavity
to be different. The fact that these are two different and
somewhat independent phenomena can be seen in Fig. 5(c).
To observe the signature of superradiance, one can look for
the spectral line shown by the magenta dashed line near ε = 0.
In the superradiant phase, one expects to find a range of ε

values where two spectral lines instead of one appear near
the cavity’s resonance frequency, and these lines cross to
give an X shape [which is more clearly seen in other figures,
e.g., Fig. 5(d)]. The widths of these lines is expected to be
roughly the width of the cavity’s spectral line, which can
be much narrower than the qubit frequency distribution. To
observe coherent resonant coupling, one would look for the
avoided crossings around |ε| ≈ h̄ω. The condition to observe

this avoided crossing is
√

Ng�/(�
2 + ε2)1/2 � δε, where �

and ε are the average values of � and ε, and δε is the standard
deviation in the values of ε at the avoided crossing.

V. EXPERIMENTAL CONSIDERATIONS

As a reference point for the discussion in this section,
we consider the experimental setup of Ref. [18]. The qubit
ensemble has ∼4000 qubits with gaps ∼1 GHz, while the res-
onator frequency is ∼6 GHz. The coupling strength between a
single qubit and the resonator is ∼15 MHz. This combination
of parameters gives 4g2N/(h̄ω�) ∼ 0.6, which corresponds
to the normal phase but is close to the critical point. For
example, if we take the value g ∼ 25–30 MHz, which gives
4g2N/(h̄ω�) ∼ 1.6–2.4, the system parameters will be well
inside the superradiance regime. The metastable excited state
will then exist up to values of |ε|/ω ∼ 0.1–1, which would
be easily accessible experimentally. Unless 4g2N/(h̄ω�) ≈
1.7, the separation between the two spectral lines in the
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FIG. 6. The maximum frequency separation between the two ν+
spectral lines (i.e., at the maximum value of |ε| before one of them
disappears) as a function of g/gc. Here we take the resonant case
� = h̄ω.

high-frequency modes will be at least a few percent of ω, i.e.,
at least tens of MHz.

The lifetime of the metastable state can be estimated by
considering that the energy barrier between the two stable
states at the symmetry point is (Ng)2/(h̄ω). Transforming
the full quantum state from one of these many-body states
to the other would require flipping the states of N qubits.
Since the flipping of qubit states in the basis of σz states is
induced by the σ̂x operator, each flip of a single-qubit state
when moving between the ground and metastable states is
associated with a transition matrix element on the order of
� exp[−2g2/(h̄ω)]. Combining these estimates we obtain a
rough estimate for the metastable state’s decay rate given by
�[h̄ω�/(Ng)2]N exp[−2Ng2/(h̄ω)]. For parameters that are
well into the superradiance regime (e.g., g/gc > 1.5) and more
than a few qubits, we find that the metastable state’s decay
rate close to ε = 0 is orders of magnitude smaller than �

and decreases exponentially with increasing N . Coupling to
environmental degrees of freedom can suppress this decay
rate further, as occurs in the spin-boson model [29]. When the
system is biased away from the symmetry, the lifetime of the
metastable excited state decreases gradually and eventually
goes down to zero as ε approaches the point where the
double-well potential of Fig. 1 turns into a single well. As
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FIG. 7. The frequencies ν± at the symmetry point as functions of
g/gc for the case � = h̄ω, where gc = h̄ω/(2

√
N ).
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FIG. 8. Frequencies of the excitation modes ν± as functions of
ε/(h̄ω). As in Fig. 2 in the main text, the red solid lines are the spec-
tral lines that correspond to excitation from the ground state, while
the green dashed lines correspond to excitation from the metastable
excited state. Here we take the nonresonant case � 
= h̄ω. In panel
(a) we set �/(h̄ω) = 1.2,

√
Ng/(h̄ω) = 0.2. In panel (b) we set

�/(h̄ω) = 1.2,
√

Ng/(h̄ω) = 0.7. In panel (c) we set �/(h̄ω) = 0.8,√
Ng = 0.2. In panel (d) we set �/(h̄ω) = 0.8,

√
Ng/(h̄ω) = 0.7.

The spectra are qualitatively similar to those shown in Fig. 2 in the
main text.
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FIG. 9. Slopes of the frequencies ν− (red solid line) and ν+
(green dashed line) with respect to ε (i.e., h̄dν±/dε) at the symmetry
point as a function of g/gc. As in Fig. 5 in the main text, we set
�/(h̄ω) = 0.2.
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FIG. 10. The maximum value of |ε| at which there exists a
metastable state, i.e., the maximum value of |ε| at which one expects
to see four lines in the spectrum, as a function of g/gc. As above
�/(h̄ω) = 0.2. The labels “Normal” and “Superradiant” describe the
phase that is obtained in each region in the g-ε parameter space.

 0

 0.05

 0.1

 0.15

 1  1.2  1.4  1.6  1.8  2
g/g c

Δν
+,

m
ax

/ω

FIG. 11. The frequency separation between the two ν+ spectral
lines at the maximum value of ε before one of them disappears as a
function of g/gc. The fact that the difference is negative just above
gc means that the spectral lines have a shape resembling the letter W
near the symmetry point, as can be seen in Fig. 5(c) in the main text.
As above �/(h̄ω) = 0.2.
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a result and as mentioned above, the state will be short lived
close to that instability point. One should therefore look for
the signatures of the superradiant phase close to the symmetry
point.

Assuming that the metastable excited state is sufficiently
long lived, it can be accessed by first setting the bias parameter
ε to a large value such that no metastable excited state exists
and then sweeping ε across the symmetry point. This way,
what used to be the ground state adiabatically evolves into the
metastable excited state. Then the observed spectrum will be
that of the metastable excited state until it decays to the ground
state.

We finally note that, to obtain the spectra discussed in
this paper, no coherent superposition is required between
the macroscopically different ground and metastable states,
even at the symmetry point. Realizing such a macroscopic
superposition involving ∼4000 qubits and many-photon co-
herent states in the resonator would be extremely challenging
with currently available superconducting circuits. The recent
experiment in Ref. [12] demonstrated evidence of highly en-
tangled energy eigenstates in a single-qubit-single-oscillator
circuit. However, even in that case, the energy separation
(∼10–100 MHz) between the lowest two energy eigenstates
was one to two orders of magnitude smaller than the energy
scale set by the temperature (∼40 mK). As a result, the
thermal equilibrium entanglement was estimated to be on the
order of a few percent.

VI. CONCLUSION

We have analyzed the spectra that one expects to observe
in a superconducting realization of the Dicke model, with a
qubit ensemble coupled to a single harmonic oscillator. We
have identified the appearance of additional spectral lines as
a possible signature of the superradiant phase. Depending on
the specifics of the experimental setup, such as the measurable
frequency range and the lifetime of the metastable excited
state, different features in the spectrum can be easier to ob-
serve than others. For typical parameters of superconducting
circuits, we expect that one will be able to observe some
signature of the superradiant phase if the coupling strength
exceeds the critical value.
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APPENDIX: ADDITIONAL PLOTS

In this Appendix, we show additional plots that supplement
those shown in the main text.
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FIG. 12. The frequencies ν± at the symmetry point as functions
of g/gc for the case �/(h̄ω) = 0.2, where gc = 0.224h̄ω/

√
N .

1. Resonant case

The maximum separation between the two spectral lines in
the upper branch, which occurs at the maximum value of |ε|
before one of the two lines disappears (i.e., the value of |ε|
plotted in Fig. 4 in the main text) is plotted in Fig. 6. To give
an idea about the frequency ranges where the above spectral
features are expected to be found, Fig. 7 shows the two
frequencies ν± at the symmetry point as functions of coupling
strength. It is worth mentioning that the frequencies shown in
Fig. 7 are well known in the literature (see, e.g., Ref. [6]).

2. Nonresonant case

Figure 8 shows spectra for two cases with � 
= h̄ω. The
spectra look generally similar to those shown in Fig. 2 in the
main text, especially in the superradiant phase.

3. Small qubit gap

Figures 9–11 summarize the spectral features expected in
the superradiant phase with � � h̄ω. In Fig. 9 we plot the
slopes of both the spectral lines at the symmetry point. One
obvious difference that we can see between Fig. 3 in the
main text and Fig. 9 is that the slope of the ν+ line in Fig. 9
is negative just above the critical coupling strength. The ν−
spectral line exhibits qualitatively similar behavior in the two
cases. In Fig. 10 we plot the range of ε values for which
the four spectral lines exist. The behavior is qualitatively
similar to that shown in Fig. 4 in the main text. The maximum
separation between the two spectral lines in the upper branch
is plotted in Fig. 11. In Fig. 12 we plot the two frequencies ν±
at the symmetry point as functions of coupling strength.
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