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Fluctuations and photon statistics in a quantum metamaterial near a superradiant transition
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The analysis of single-mode photon fluctuations and their counting statistics at the superradiant phase
transition is presented. The study concerns the equilibrium Dicke model in a regime where the Rabi frequency,
related to a coupling of the photon mode with a finite-number qubit environment, plays the role of the transition’s
control parameter. We use the effective Matsubara action formalism based on the representation of Pauli
operators as bilinear forms with complex and Majorana fermions. Then, we address fluctuations of superradiant
order parameter and quasiparticles. The average photon number, the fluctuational Ginzburg-Levanyuk region
of the phase transition, and Fano factor are evaluated. We determine the cumulant-generating function which
describes a full counting statistics of equilibrium photon number. Exact numerical simulation of the superradiant
transition demonstrates quantitative agreement with analytical calculations.
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I. INTRODUCTION

The dynamics of quantum metamaterials [1–10] is a sub-
ject of a great interest. These metamaterials are the hybrid
systems where cavity photons interact with multiqubit envi-
ronment. The behavior of such systems is captured by the
Dicke model [11–13]. The interactions can be characterized
by a collective Rabi frequency proportional to a product of the
individual qubit-cavity coupling constant and square root of
the qubit number. If the Rabi frequency is larger than a certain
value then the superradiant phase transition, characterized by
an emergence of a large photon number in a cavity and finite
order parameter, occurs for temperatures lower than a critical
value. The rigorous study of the superradiant phase transition
was proposed in the pioneering work of Fedotov and Popov
[14]. These authors proposed semifermion parametrization of
spin operators and described the phase transition in the frame-
work of Matsubara effective action for the photon field. In
that work, the chemical potential was assumed to be zero and,
consequently, the excitations’ number was not constrained.
Another case of finite chemical potential in the Dicke model
was addressed in Refs. [15,16] and it was shown that the Bose
condensation of polaritons emerged [14,16]. The Keldysh dia-
grammatic approach for finite-N corrections and the effects of
dissipation and external driving were studied in Refs. [17,18].
Zero-temperature description for a limit of large excitations
number was obtained in Ref. [19] by means of Bethe-ansatz
technique.
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As an alternative to the temperature-driven transition dis-
cussed in Ref. [14], the superradiance can be turned on by
an increase of the interaction strength. It takes place if the
Rabi frequency overcomes a critical value. A realization of
a control parameter as the interaction energy is possible
for quantum metamaterials such as superconducting qubits
arrays [1,2,20,21] integrated with a GHz transmission line via
tunable couplers [22–25]. Also, this may be done in hybrid
systems with a controllable amount of nitrogen-vacancy (NV)
centers in a diamond sample which interact with an electro-
magnetic field [26–29].

In the present paper, we address the situation where the
Rabi frequency in quantum metamaterial is varied from weak
to ultrastrong coupling domains while the temperature re-
mains constant. We also keep a constant number of qubits N
assuming that N is large but finite. It is implied that the loss
rate in the cavity is small. The finiteness of N in our consid-
eration means that the superradiant transition is smoothed by
the fluctuations of the order parameter and, besides that, by
the thermal fluctuations of polariton quasiparticles. The aims
of this work are (i) to describe fluctuations of the above two
types and (ii) to formulate a full counting statistics for the
photon numbers in this regime.

Our main results are the explicit expressions for the aver-
age photon number, its fluctuations, and full counting statistics
as functions of the collective Rabi frequency. Proposed for-
malism provides a solution for low-temperature T and large
N provided they satisfy the conditions h̄ω � kBT � h̄ω/N
(in this case, all qubits are assumed to be in a resonance with
the photon mode of the frequency ω). The generalizations
for the high-temperature limit, kBT � h̄ω, and dispersive
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regime, where a spectral density of qubits energies is strongly
broadened, are also discussed.

The paper is organized as follows. In Sec. II, we present
Matsubara action for the Dicke model, where the qubits
degrees of freedom are expressed through the Majorana and
complex fermion variables. This is one possible representation
of Pauli operators acting in a Hilbert space of a two-level
system. Section III has methodological character. We derive
the photon mode’s effective action, which was obtained in
previous works [14,16], by means of the alternative technique
with Majorana fermions. In Sec. IV, we present the general
expressions for the average photon number and their fluctu-
ations in a resonant limit. In Sec. V, we discuss fluctuational
and statistical properties and present a comparison with results
of exact numerical simulations at finite temperature and qubit
number of the order of 10. In Sec. VI, the results are gener-
alized for high temperatures and inhomogeneous broadening
in a qubit ensemble. In Sec. VII, the cumulant-generating
function for the photon number is derived. In Sec. VIII, we
conclude. In the Appendix, we derive the conditions, where
our solution based on the Gaussian approximation for thermal
fluctuations is strict.

II. PATH INTEGRAL FORMULATION

The Dicke Hamiltonian of N qubits reads (we set h̄ = 1
and kB = 1 throughout the text)

Ĥ = ωψ̂†ψ̂ +
N∑

j=1

ε j

2
σ̂ z

j +
N∑

j=1

g j (ψ̂σ̂+
j + ψ̂†σ−

j ). (1)

Here ε j are the qubit excitation energies and g j are the indi-
vidual coupling strengths between jth qubit and the photon
field in a single-mode cavity. The fundamental frequency of
the photon mode is ω. The coupling term is introduced in the
standard rotating-wave approximation.

In a path integral formulation, the photon mode is de-
scribed by a conventional complex bosonic fields ψ̄, ψ . The
Pauli operators, σ̂±

j , σ̂ z
j , acting on the jth qubit degrees of

freedom, may be represented in path integrals in different
ways. It can be bosonic Holstein-Primakoff representation
[30] or bilinear forms of fermions. Concerning other fermion
representations for the Dicke model, techniques based on
semifermions with an imaginary chemical potential [14] or
auxiliary boson field [15] were employed. These representa-
tions allow us to eliminate the emergent unphysical states and
to reduce a Hilbert space to that of spin-1/2. The semifermion
representation for spin operators was generalized for Keldysh
technique in Ref. [31]. Another fermion representation, which
we choose for our calculations, is given by the product of
a complex ĉ j �= ĉ†

j and Majorana d̂ j = d̂†
j fermion operators

[32,33]:

σ̂+
j =

√
2ĉ†

j d̂ j, σ̂−
j =

√
2d̂ j ĉ j . (2)

They correspond to three Grassmann fields c̄, c, and d in a
path integral formalism. The use of Majorana fermion allows
us to avoid auxiliary constraints in the action. Fields c̄, c are
related to usual complex fermion mode with the excitation
energy of a two-level system. Field d stands for Majorana
zero-energy mode with 〈d̂2〉 = 1/2. Majorana representation

of spin operators has been applied to spin-boson model
[34,35] and to a description of spin-spin interaction via helical
Luttinger liquid [36]. Recently, this fermionization has been
applied to the Dicke model with counter-rotating terms in
the interaction Hamiltonian and a regime of quantum chaos
has been studied [37]. In our studies, which are focused
on fluctuation-dominated regime near the superradiant phase
transition and behavior at finite N , Majorana representation
appears as a convenient tool.

Below we demonstrate how one can obtain the effective
action for photon field with the use of the fermionization (2).
The starting point of such consideration is the path-integral
formulation of the partition function Z in terms of the boson
complex fields �τ = [ψ̄τ , ψτ ] and fermion fields c̄, c, d [38]:

Z =
∫

D[�, c̄, c, d] exp(−S[�, c̄, c, d]) (3)

where the action is

S[�, c̄, c, d] = Sph[�] + Sq[c̄, c, d]

+ Sint[�, c̄, c, d] + ln ZphZq . (4)

Here, Sph[�], Sq[c̄, c, d], and Sint[�, c̄, c, d] are the
Matsubara actions of the photon mode, qubit environment,
and their interaction, respectively. The last term ln ZphZq

appears due to a normalization of Z to unity at the decoupled
limit g j → 0.

Below, we consider the terms in (4) in more details. Both
the qubit and photon subsystems are assumed to be in thermal
equilibrium at the temperature T . The photon mode action,
defined on the imaginary time interval τ ∈ [0, β], where
β = 1/T , is

Sph[�] =
∫ β

0
ψ̄τ (−Gph;τ−τ ′ )ψτ ′ dτ, (5)

where the inverse Green’s function of free photon mode is

G−1
ph;τ−τ ′ = δτ−τ ′ (−∂τ ′ − ω). (6)

The Fourier transformations from τ to Matsubara bosonic
frequencies ωn = 2πnT are defined for the fields and for the
Green’s functions as

ψn = T
∫ β

0
ψτ ei2πnT τ dτ, ψ̄n = T

∫ β

0
ψ̄τ e−i2πnT τ dτ (7)

and

G−1
ph;n =

∫ β

0
G−1

ph;τ ei2πnT τ dτ = i2πnT − ω. (8)

In this representation, the photon mode action (5) is trans-
formed into

Sph[�] = β
∑

n

ψ̄n
(−G−1

ph;n

)
ψn. (9)
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The qubit ensemble action is

Sq[c̄, c, d] = 1

2

N∑
j=1

∫ β

0
[c̄ j c j d j]

(−G−1
j;τ−τ ′

)⎡⎢⎣
c j

c̄ j

d j

⎤
⎥⎦dτdτ ′.

(10)

The matrix G−1
j;τ−τ ′ describes the jth qubit. It contains the

inverse Green’s functions for the jth complex fermion and
its conjugate with the energies ±ε j , respectively, and the
Majorana fermion of zero energy:

−G−1
j;τ−τ ′ = δτ−τ ′

⎡
⎢⎢⎢⎣

∂τ ′ + ε j 0 0

0 ∂τ ′ − ε j 0

0 0 ∂τ ′

⎤
⎥⎥⎥⎦ . (11)

Note that a corresponding Fourier transformation of the
fields c̄τ , cτ , and dτ and the elements of G j;τ−τ ′ assumes
the fermionic frequencies ωn = 2πnT + πT . Bilinear forms
c jd j and c̄ jd j appear in S[�, c̄, c, d] due to the qubit-cavity
coupling encoded by the matrix V j[�τ ]:

Sint[�, c̄, c, d] = 1

2

N∑
j=1

∫ β

0
[c̄ j c j d j]δτ−τ ′

× V j[�τ ]

⎡
⎢⎣

c j

c̄ j

d j

⎤
⎥⎦dτdτ ′. (12)

This is the matrix which involves the complex boson fields
ψτ , ψ̄τ as follows:

V j[�τ ] =
√

2g j

⎡
⎢⎢⎢⎣

0 0 −ψτ

0 0 ψ̄τ

−ψ̄τ ψτ 0

⎤
⎥⎥⎥⎦. (13)

The normalization term in (4) is the product of partition
functions of noninteracting photon mode and N qubits.
The logarithms of their partition functions Zph = ∫

D[�]
exp(−Sph[�]) and Zq = ∫

D[c̄, c, d] exp(−Sq[c̄, c, d]) are the
following:

ln Zph = −Tr ln
(− G−1

ph;τ−τ ′
)

(14)

and

ln Zq = 1

2

N∑
j=1

Tr ln
(− G−1

j;τ−τ ′
)
. (15)

The prefactor of 1/2 results from the integration over Grass-
mann variables in the representation (10). The sign “Tr”
means the trace taken over the imaginary time variables, or,
equivalently, by the Matsubara frequency index n; in a case
of qubits, an additional trace is taken over the internal 3 × 3
structure of a matrix G j .

III. EFFECTIVE ACTION

To derive the effective action for the photon field, Seff [�],
from the full one S[�, c̄, c, d], we start from integration over
the the fermion modes c j, c̄ j , and d j . As a result, the path inte-
gral in the partition function is reduced to Z = ∫

D[�]e−Seff [�]

where the effective action is obtained in the most general
form:

Seff [�] = Sph[�] + ln ZphZq

− 1
2 Tr ln

(−G−1
j;τ−τ ′ + δτ−τ ′V j[�τ ]

)
. (16)

Expanding the logarithm in the last term of (16), we obtain
that all odd order terms are equal to zero. This follows
from the diagonal and nondiagonal structures of G j and V j ,
respectively. The resummation back of the nonzero terms of
even orders gives the identity

Tr ln
(−G−1

j;τ−τ ′ + δτ−τ ′V j[�τ ]
)

= ln Zq + 1
2 Tr ln

(−G−1
j;τ−τ ′ + V j[�τ ]G j;τ−τ ′V j[�τ ′]

)
.

(17)

A direct first-order expansion of the logarithm in the
second line of (17) by V[�τ ]Gτ−τ ′V[�τ ′] provides Gaussian
action for all Matsubara modes ψ̄n, ψn. As will be shown
in Sec. IV, this expansion results in divergent number of
photons at the critical Rabi frequency near the transition
into superradiant phase [see Eq. (50)]. This follows from an
infinite occupation of zeroth Matsubara frequency component
of the field

ψ0 ≡ T
∫ β

0
ψτ dτ . (18)

To make correct description of photonic subsystem, we should
leave ψ0 in zeroth-order term of (17) and expand the logarithm
by the fluctuations δψτ ≡ ψτ − ψ0. This results in effective
regularization of the divergency. Note that Fourier transforma-
tion δψτ gives the nonzero Matsubara components ψn �=0. The
field ψ0 is related to the complex amplitude of a superradiant
order parameter while ψn �=0 are related to thermal fluctuations
of polaritonic quasiparticles.

The regularization of the divergency mentioned above as-
sumes a redefinition of the Green’s function, G j → G j[�0]
with �0 = [ψ̄0, ψ0], as follows:

G−1
j;τ−τ ′ [�0] ≡ G−1

j;τ−τ ′ − V j[�0]G j;τ−τ ′V j[�0] . (19)

Here, we introduce the matrix with zero-mode components

V j[�0] = 1

β

∫ β

0
V j[�τ ]dτ . (20)

Below, we limit our consideration of the fluctuations taking
into account bilinear combinations of the fields δψ̄τ and
δψτ ′ . These are gauge-invariant terms δψ̄τ δψτ ′ which provide
normal coupling channel between the photons in the dissi-
pative action S� . In contrast, terms δψ̄τ δ̄ψτ ′ and δψτ δψτ ′

are not gauge invariant and provide an anomalous type of
coupling. At the given step of the derivation, we perform the

063821-3



D. S. SHAPIRO et al. PHYSICAL REVIEW A 99, 063821 (2019)

logarithm expansion in (17) around G−1 in second order by
the matrix

V j[δ�τ ] ≡ V j[�τ ] − V[�0] , (21)

which involves the fluctuating parts in δ�τ = [δψ̄τ , δψτ ]. We
note that the first-order contribution by V j[δ�τ ] equals zero
in this approach. As a result, we obtain

Seff [�] = Sph[�] + SG[�0] + S�[�] + ln Zph . (22)

The first term Sph in (22) is not changed. The second
term SG[�0] ≡ − 1

4

∑
j Tr ln (G jG−1

j [�0]) involves the zero-
frequency mode �0 only. Note that in the Dicke model (1)
the interaction is limited by the rotating-wave approximation,
which conserves the excitation number. In this case, SG de-
pends on the zero mode’s magnitude squared,  ≡ ψ̄0ψ0,
and is independent of its complex phase ϕ ≡ arg ψ0. Thus,
SG[�0] = SG[] and its explicit expression is

SG[] = −
N∑

j=1

ln
cosh

√
ε2

j +4g2
j

2T

cosh ε j

2T

. (23)

This result follows from a representation of the Green’s func-
tions G and G in Matsubara frequencies ωn. After that, SG is
reduced to a calculation of infinite product by n. The third
term in (22) quadratic by quasiparticle fluctuations reads

S�[�] = β

2

∑
n �=0

[ψ̄n ψ−n]

[
�n[�0] �̃n[�0]

(�̃−n[�0])∗ �̃−n[�0]

][
ψn

ψ̄−n

]
.

(24)

This is the dissipative part of the action; it corresponds
to effective photon-photon interaction via qubit degrees of
freedom. The self-energy operators �τ [�0] and �̃τ [�0] pro-
vide normal and anomalous channels of the photon-photon
interactions, respectively. They result from a summation over
the fermionic Matsubara frequencies. From calculations, it
follows that normal self-energy depends on  only, �[�0] =
�[], while the anomalous one depends also on the phase,
i.e., �̃[�0] ≡ �̃[,ϕ]. Their explicit expressions are pre-
sented in the Appendix; see Eqs. (117) and (118). The above
results for SG and S� are in full correspondence with that
derived in Refs. [14,16] using alternative spin representations.

The action Seff allows us to calculate the thermodynamical
average value 〈〉 which is superradiant order parameter.
As shown below, the action indicates the superradiance as a
second-order phase transition. The quadratic expansion by 

in SG[] allows us to capture this transition (it corresponds
to taking into account the non-Gaussian |ψ0|4). As a con-
sequence, if the system is in the normal phase or near the
phase transition, one can simplify SG and S� by assuming
that the relevant values of  belong to a certain region near
 = 0. Namely, analytical calculations presented in this work
assume that we apply second-order expansion by  in SG and
neglect by non-Gaussian cross terms ∝ ψ̄nψn in S� . For the
zero-mode part, it means

SG[] ≈ S′
G[0] + 1

22S′′
G[0] . (25)

For S� part, it means one can neglect the dependencies of self-
energies on  and assume

S�[�] ≈ S�[=0, δ�] . (26)

We obtain that this approximation involves the normal cou-
pling only, i.e.,

S�[=0, δ�] = β
∑
n �=0

�n[0]ψ̄nψn . (27)

It follows from (118) that �̃n[,ϕ] ∝  for small  and,
hence, the anomalous terms do not appear in (26). Note
that S� is purely Gaussian in this case because the terms
proportional to ψ̄nψn are neglected.

The validity of the approximations (25) and (26) is ana-
lyzed in the Appendix by means of the effective action for the
zero Matsubara mode; see Eq. (115). This action is obtained
after the Gaussian integration over all nonzero modes ψn �=0

in Seff from (22). The linear by  contributions to the self-
energies, �n[] ≈ �n[0] + �′

n[0] and �̃n[,ϕ] ∝ , are
investigated as a perturbations for the action (115). It is shown
that such perturbations are small and approximations (25) and
(26) are strict if the condition for the temperature and qubit
number

T � ω

N
(28)

holds. It is assumed here that qubits’ and photon mode’s
frequencies are of the same order, ε j ∼ ω. The condition
(28) also provides the range of parameters where one can
go beyond the thermodynamic limit and study finite-N ef-
fects. The thermodynamic limit, where fluctuations of order
parameter are negligible as 1/N , corresponds to a situation of
simultaneous limits N → ∞ and g → 0 with the constraint√

Ng = const.
As is also shown in the Appendix, the ratio

κc =
√

ω

NT
� 1 (29)

provides the small parameter of this theory near the superradi-
ant transition which allows one to neglect non-Gaussian terms
in a controllable way.

To summarize the above, for a sufficiently large qubit
number dictated by (28), we obtain an effective theory for low
temperatures, ω � T � ω/N . The high-temperature domain
corresponds to T � ω. Two approximations (26) and (25)
yield the effective action Seff,0 which provides a description
of the normal phase and fluctuational region near the superra-
diant transition. It is convenient to represent it as

Seff,0[, ψ̄n, ψn] = Szm[] + Sfl[ψ̄n, ψn] + ln Zph , (30)

where the zero-mode terms are collected in

Szm[] = A + Γ 2 (31)

and that of quasiparticle fluctuations in

Sfl[ψ̄n, ψn] = β
∑
n �=0

(−i2πnT + ω + �n[0])ψ̄nψn . (32)
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The parameters for a general case are

A = βω − β

N∑
j=1

g2
j

ε j
tanh

βε j

2
, (33)

Γ = β

N∑
j=1

g4
j

sinh βε j − βε j

ε3
j (cosh βε j + 1)

, (34)

and

�n[0] =
N∑

j=1

g2
j tanh ε j

2T

2iπnT − ε j
. (35)

In the above formulation, the critical point is A = 0. For
A > 0, the system is in the normal phase and for A < 0
a superradiant phase with a large amount of photons does
emerge. In other words, if A < 0, then Seff,0 has a minimum at
the stationary point  = ∗ with

∗ = − A

2Γ
. (36)

In terms of the complex photon field ψ0, this corresponds to a
saddle line which is a circle in the complex plane.

The control parameter of the phase transition is the collec-
tive Rabi frequency defined as

� =
√

N〈g2〉 j, 〈g2〉 j = 1

N

N∑
j=1

g2
j , (37)

where we denote 〈·〉 j as the average over the qubit ensemble.
The superradiance condition A < 0 corresponds to the Rabi
frequency exceeding a certain critical value � > �c. For the
homogeneous limit where all qubits have the same energy,
ε j = ε̄, the saddle point (36) is given by

∗ = N

(
ε̄

�

)2(
tanh

ε̄

2T
− ε̄ω

�2

)
1 + cosh βε̄

sinh βε̄ − βε̄
. (38)

The critical Rabi frequency of the phase transition follows
from the condition ∗ = 0. From (38), one finds that

�c =
√

ε̄ω coth
ε̄

2T
. (39)

We also introduce the action

Seff,1[�] = Sph[�] + Sfl[ψ̄n, ψn] + SG[], (40)

where, in contrast to Seff,0[�] in (30), the zero mode’s part
(23) is taken into account exactly and its logarithm is not
expanded. This action provides an adequate description of the
superradiant phase where is 〈〉 large. Calculations combine
the exact integration by ψ̄n and ψn and numerical integration
by  in this regime. In what follows, we focus mainly on
the transition between the normal phase and the fluctuational
region, employing the formalism of Seff,0[�]. A behavior in
the superradiant phase is briefly discussed below.

IV. PHOTON NUMBERS AND THEIR FLUCTUATIONS
FOR RESONANT LIMIT

In this part of the paper, we study fluctuational behavior
of the superradiance with the use of Seff,0 in a limit of full

resonance between qubits and photon mode, i.e.,

ε j = ε̄ = ω. (41)

The disorder in g j , in its turn, is taken into account. The
parameters (33, 34) are reduced to

α ≡ Aε j=ω = βω

(
1 − �2

T

ω2

)
, (42)

γ ≡ Γε j=ω = q f (βω)
β�4

T

Nω3
. (43)

We introduced here the collective Rabi frequency renormal-
ized by T ,

�T ≡ �

√
tanh

ω

2T
, (44)

and the function f (x) = sinh x−x
1+cosh x coth2 x

2 ; the parameter q is
a ratio between fourth and second moments for coupling
parameters, q = 〈g4〉 j/〈g2〉2

j . The absence of the disorder in g j

corresponds to q = 1; in disordered case q > 1; q = 9/5 for a
flat distribution ranging from gmin to gmax with gmax � gmin.

In further consideration, the photon number

〈Nph〉 = β−1
∫ β

0
〈ψ̄τψτ 〉dτ (45)

is analyzed. Alternatively, it is given by the following identity,

〈Nph〉 = T
∑

n

(−Gn) − 1

2
, (46)

Gn = −β〈ψ̄nψn〉 (47)

where Gn is nth component of Matsubara Green’s function. If
the quadratic expansion in (17) is applied, then one obtains
Seff,0[, ψ̄n, ψn] with γ = 0. This action is fully Gaussian
with respect to all Matsubara modes. The following expres-
sion for the Green’s function is obtained for arbitrary ε j and
ω within this expansion:

Gn = 1

i2πnT − ω − �n[0]
. (48)

For the resonant limit ε j = ω, it reads

Gn(ε j=ω) = ω − 2iπnT

(2πnT + iω)2 + �2
T

. (49)

It is used in the calculations below. This expression holds for
any n in the Gaussian approach (γ = 0). After the summation,
one obtains the average photon number:

〈Nph〉Gauss = 1

4

[
coth

ω − �T

2T
+ coth

ω + �T

2T

]
− 1

2
. (50)

One can see that 〈Nph〉Gauss is divergent at the critical
value of the renormalized Rabi frequency �T,c = ω and is
negative for �T > ω. This follows from the condition Gn=0 =
− 1

αT . It is divergent at the critical point where α = 0. The
regularization is provided by the expansion with respect to G
in (17), which involves high-order terms by . As we have
shown above, quadratic expansion of Seff by 2 gives Seff,0.
Corresponding zero mode’s Green’s function is changed to
G0 = −〈〉

T , which is not divergent anymore at the critical
point due to γ �= 0.
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Within the Seff,0 action, for nonzero modes the expressions
for Gn �=0 are the same as in (49). We refine the definition for
the average 〈Nph〉 as

〈Nph〉 = 〈〉 +
∑
n �=0

〈ψ̄nψn〉 − 1

2
. (51)

The zero mode’s part is written explicitly here. We empha-
size thereby that it is calculated within the non-Gaussian
(fourth-order) approach by ψ0. Let us calculate both of
the contributions originating from the superradiant order
parameter, 〈〉, and from the thermal excitations 〈ψ̄nψn〉.
As long as there is no explicit dependence on ϕ, one has∫∫

d (Re ψ0) d (Im ψ0) = π
∫∞

0 d. For 〈〉, we find

〈〉 =
∫∞

0 e−Szm[]d∫∞
0 e−Szm[]d

= − α

2γ
+ e− α2

4γ

√
πγ erfc α

2
√

γ

(52)

with the complementary error function is erfcz = 1 − erfz.
Summation over n �= 0 gives the quasiparticle contribution

∑
n �=0

〈ψ̄nψn〉 = 〈Nph〉Gauss − 1

α
. (53)

Finally, for the average photon number (51), we obtain

〈Nph〉 = − α

2γ
+ e− α2

4γ

√
πγ erfc α

2
√

γ

+ 〈Nph〉Gauss − 1

α
. (54)

The fluctuations of the photon number are given by the
second cumulant 〈〈N2

ph〉〉 ≡ 〈N2
ph〉 − 〈Nph〉2. With use of the

above notations, it is reduced to〈〈
N2

ph

〉〉 = 〈2〉 − 〈〉2 + T 2
∑
n �=0

G2
n. (55)

Calculation of the integrals by  and summation over n
provide

〈〈
N2

ph

〉〉 = 1

2γ
+

√
πα

2
√

γ
erfc α

2
√

γ
− e− α2

4γ

πγ erfc2 α
2
√

γ

e− α2

4γ + 〈〈
N2

ph

〉〉
Gauss − 1

α2
. (56)

We introduced here the second cumulant in Gaussian approximation 〈〈N2
ph〉〉 = T 2 ∑

n G2
n. It reads

〈〈
N2

ph

〉〉
Gauss = cosh ω

T

(
cosh �T

T + T
�T

sinh �T
T

)− 1 − T
2�T

sinh 2�T
T

4
(
cosh ω

T − cosh �T
T

)2 . (57)

Similar to (54), the divergent zero-frequency term in the sum
is canceled by 1/α2 in (56).

In Section V, the properties of the photon number and its
second cumulant near the phase transition are analyzed in
detail.

V. PHASE TRANSITION AT LOW TEMPERATURES:
RESONANT LIMIT

A. Average photon number near the phase transition

In the following consideration at low temperatures T � ω,
we should emphasize that there is also a limitation (28) which
means that T cannot be arbitrary small. Namely, it belongs to
the domain

ω � T � ω

N
. (58)

In such a limit, we set f (βω) = 1 and �T = � with the
exponential by βω accuracy. In this section, we continue to
study the case of full resonance between cavity and all the
qubits.

We obtain an analytical expansion of photon number 〈Nph〉
(54) around the critical point �c = ω. The expansion in series

by the dimensionless detuning �−ω
ω

for 〈Nph〉 is

〈Nph〉 ≈
[√

NT

πqω
+ δn0

]
− 1

2
+
[

N (π − 2)

πq
+ δn1

]
� − ω

ω

+ O

[(
� − ω

ω

)2
]

. (59)

The main contribution to 〈Nph〉 follows from the ψ0 mode

as powers of
√

NT
ω

. The prefactors contain the leading term
given by zero mode and small corrections δn. The corrections
follow from the fluctuations of the modes ψn �=0. Their expres-
sions might be obtained from the expansion of (53) as

δn0 = 1

4
− T

4ω
(60)

and

δn1 = 3T 2 − ω2

24T ω
. (61)

The zeroth-order term in (59) gives large but finite photon
number at the critical point

〈Nph〉c =
√

NT

πqω
− 1

4
. (62)

The leading term is much higher than unity under the
condition N � ω/T . If one goes beyond the validity of Seff,0

taking a formal limit of T → 0 in (62), then the unphysical

063821-6



FLUCTUATIONS AND PHOTON STATISTICS IN A … PHYSICAL REVIEW A 99, 063821 (2019)

value of −1/4 is obtained. This demonstrates that for low tem-
peratures the non-Gaussian fluctuations need to be taken into
account. It is known that 〈Nph〉 = 1/2 at the zero-temperature
limit above the critical point. This is because the ground-state
wave function contains 1/2 photon on the average. The ground
state is changed at the critical point from a direct product of
zero photon state and qubits’ ground state, |n=0; σ j= − 1〉
( j = 1, . . . , N), to an entangled state with a single photon and
excited qubits. The field-theoretical approach provided does
not allow us to describe this limit because it is restricted to
finite temperatures T � ω/N . Nevertheless, this formalism
allows us to demonstrate a positive change in the negative
constant value in 〈Nph〉c for very low T , for instance, if
the third-order correction ∝ ψ̄nψn is taken into account in
the action Seff,0. This correction originates from the depen-
dence of the normal part of the self-energy �n on . In the
Appendix, it is shown that the integration over all nonzero
modes provides a correction δS[] = δα to Szm[] due to
the third-order term. At the critical point and low temperatures
T � ω, this coefficient reads as δαc = 3ω

4T N . This results in
the positive shift in (62) as 〈Nph〉′c = 〈Nph〉c + b, where b =
3
8 (1 − 2/π ) ≈ 0.1363.

B. Fluctuations and the Fano factor

At the critical point and low-temperature limit (58), the
fluctuations of photon number are

〈〈
N2

ph

〉〉
c = (π − 2)NT

2πω
+ O[T/ω] . (63)

This is the sum of large leading term due to superradiant order
parameter fluctuations, 〈〈2〉〉, and small correction ∼T/ω �
1 due to weak fluctuations of quasiparticles. The relative value
of fluctuations

r =
〈〈
N2

ph

〉〉
〈Nph〉2

(64)

is large as eω/T in the decoupling limit � = 0 and decays
monotonously due to the decreasing of the second cumulant.
It is less than unity above the phase transition. Using the
expressions for 〈Nph〉 and 〈〈N2

ph〉〉, Eqs. (54) and (56), one
obtains the expansion near the phase transition up to the first
order by the dimensionless detuning:

r ≈ π − 2

2
− (π − 3)

√
πNω

qT

� − ω

ω
. (65)

At the critical point (� = ω), the main contribution is due to

the zero mode and, consequently, rc = 〈〈2〉〉
〈〉2 . The universal

value of the relative fluctuations r at the transition point is

rc = π

2
− 1. (66)

It follows from the  integrals (52) at α = 0 and is exact up
to the small correction ∼N−1/2.

From the expansion (65), the width of the fluctuational
Ginzburg-Levanyuk region, �GL, near the critical Rabi fre-
quency can be defined. This is a domain where fluctuations
and average value of the number of photons are of the same
order. This consideration can be applied straightforwardly to

the superradiant phase where � > �c. The parameter �GL is
obtained from the matching conditions

r(�) ∼ 1, � − �c ∼ �GL, (67)

which give

�GL ∼
√

ωT

N
. (68)

Approaching the critical point from the normal phase, i.e.,
� < �c, fluctuations are always greater that average values
and the definition (67) is not valid. Instead of (67), we
introduce the width �′ where the superradiant order parameter
fluctuations start to grow and become relevant. In this region,
the contribution to 〈Nph〉 due to the non-Gaussian fluctuations
of |ψ0|4 is comparable with the quasiparticle’s part related to
ψn �=0. We define �′ through the value of � = �c − �′, which
provides the matching between the average values obtained in
the Gaussian and non-Gaussian approaches:

〈Nph〉Gauss ∼ 〈Nph〉, �c − � ∼ �′. (69)

From (50) and (54), it follows that 〈Nph〉Gauss ∼ T/�′ and
〈Nph〉 ∼ √

NT/ω. The width �′ of fluctuation-dominated re-
gion appears the same order as in the superradiant phase, i.e.,

�′ ∼ �GL ∼
√

ωT

N
. (70)

It is rather narrow and is much less than the temperature due
to the condition (58).

In order to illustrate the above results, we present in
Figs. 1(a) and 1(c) the data for 〈Nph〉 and

√
〈〈N2

ph〉〉 as functions
of �. We consider the full resonance limit, ε̄ = ω, and low-
temperature regime T = 0.1 ω. The qubit number is N = 100
in Fig. 1(a) and N = 1000 in Fig. 1(c); hence, the constraint
(58) is satisfied. Such a qubit number can be realized in
contemporary quantum metamaterials. White, thin light blue,
and light green sectors correspond to normal (N) phase, fluc-
tuational region, and superradiant (SR) phase, respectively.
The critical point in this low-temperature regime is �c = ω.
The width of the Ginzburg-Levanyuk fluctuational region is
2�GL ≈ 0.063 ω. The red curves are obtained with the use
of the action Seff,0 and the corresponding analytical results
(54) and (56). It is shown that in the normal phase there
are exponential dependencies of the photon number and its
fluctuations, as follows from linear sectors in the logarithmic
scale. Tuning � to the critical value initiates the superradiant
transition where photon number is increased rapidly. Further
increase of � drives the system into superradiant state. The
quadratic expansion for the logarithm in SG , as it should
be, does not work well in this phase. A correct description
assumes that the use of the action Seff,1 from (40). The green
curves are the results obtained by means of Seff,1, where the
integration over  is performed numerically. Dashed parts
of the red curves demonstrate the difference between these
two approaches. Green curves show that 〈Nph〉 and its fluctua-
tions in the superradiant phase grow subexponentially. It also
follows from this plot that in the normal phase the relative
fluctuations value rn > rc and rsr < rc in the superradiant
phase.
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FIG. 1. [(a), (c)] Average photon number 〈Nph〉, fluctuations
√〈〈N2

ph〉〉, and [(b), (d)] Fano factor F as functions of collective Rabi frequency
� = g

√
N (in units of resonator mode frequency ω). All curves are calculated for the full resonance limit between qubits and cavity mode

frequencies, ε̄ = ω. The temperature is low, T = 0.1 ω, and qubit number is N = 100 in panels (a) and (b) and N = 1000 in panels (c) and
(d). White, light blue, and light green areas correspond to normal (N) phase, fluctuational region, and superradiant (SR) phase, respectively.
The critical point is �c = ω and the width of the fluctuational region is 2�GL ≈ 0.063 ω in panels (a) and (b) and 2�GL = 0.02 ω in panels
(c) and (d). Red and green curves stand for calculations based on Seff,0 and Seff,1 actions, respectively. The Fano factor [(b), (d)] in the normal
phase demonstrates that Fmin < F < 1. It means negative correlation between photons (antibunching effect). The horizontal dotted line F = 1
separates the regions of negative (F < 1) and positive (F > 1) photon correlations. The fluctuational region in panels (b) and (d) demonstrates
a growth of the Fano factor with a peak at Fc > 1 which means positive correlations between photons. The superradiant phase shows reentrance
to the negative correlations with the decay of F .

It is also instructive to analyze the Fano factor defined as a
ratio between second and first cumulants as

F =
〈〈
N2

ph

〉〉
〈Nph〉 .

This is a representative parameter bringing an information
about the statistics. The value of F reflects a type of a co-
herence between the photons: F = 1 means that they are un-
correlated, and F < 1 and F > 1 correspond to their negative
and positive correlations, respectively. As shown in Figs. 1(b)
and 1(d), the dependence F (�) demonstrates rich behavior.
The parameters of calculation here are the same as that in
Fig. 1(a): T = 0.1 ω, N = 100, and ε̄ = ω. Red and green
curves correspond to calculations based on Seff,0 and Seff,1,
respectively. In the decoupling limit � = 0, the value of the
Fano factor is

F0 = 1

1 − e−βω
> 1 . (71)

In a low-temperature limit, F0 ≈ 1 + e−βω, which means that
photons are weakly correlated. For a finite �, there is the
entrance into the negative correlations domain where the

dependence is nonmonotonous with Fmin < F < 1. There is
a minimum with Fmin ≈ 0.8 for an intermediate strength of �.
It means negative correlation between photons (antibunching
effect) in the normal phase due to the interaction between pho-
tons through the qubit environment. It is remarkable that the
dependence F (�) in the fluctuational region demonstrates a
dramatic change where F grows rapidly and becomes greater
than unity. There is a maximum at the critical point which is
given by

Fc = 1

2
(π − 2)

√
NT

πω
. (72)

The latter means strongly positive coherence between photons
near the superradiant transition. The Fano factor shows the
decay entering into the superradiant phase if � is further
increased. As one can see, there is the reentrance to negative
correlations with Fsr < 1.

The finite width of fluctuational region and the peak in the
Fano factor dependence are finite-size effects. In thermody-
namic limit of N → ∞, the Fano factor peak shrinks to a
singularity at the critical point. This tendency is seen from
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FIG. 2. Comparison of results obtained in effective action techniques and in exact numerical calculations based on equilibrium density
matrix. The data for the average photon number 〈Nph〉 are presented. The temperature is low as T/ω = 0.3 for the panel (a) and T/ω = 0.1
for the panel (b) and qubit number is N = 10. The range of cubit-cavity coupling covers the domain of the normal phase, fluctuational region,
and the superradiant phase. The data obtained from numerical simulations are shown as blue curves. Results of field theoretical approaches
based on Seff,0 and Seff,1 are shown as red dashed and green dotted curves, respectively. We note a surprisingly small deviation of solid blue
lines from the green dotted line. Although the parameters are near the edge of applicability range of the theory, a good agreement between
numerical results and theoretical calculations is clearly observed.

a comparison of Figs. 1(b) and 1(d), where N is changed by
an order.

C. Numerical simulation

In Fig. 2, we compare the results obtained in the field-
theoretical formalism and that in exact numerical simulations.
The qubit number N = 10 means that the system is beyond the
thermodynamic limit. Although κc is not very small compared
to unity, κc ≈ 0.58 in Fig. 2(b), a good quantitative agreement
between the numerical and theoretical results is observed.
Surprisingly, the analytical solution is in a good agreement
with numerical calculations even when κc = 1, as shown in
Fig. 2(b). We represent results for 〈Nph〉 and 〈〈N2

ph〉〉 obtained
in three different ways. The red dotted curves are obtained
with the use of the action Seff,0 and analytical expressions
(54) and (56). Green dashed curves are derived with the use of
Seff,1. There is a difference between them in the superradiant
phase. Blue solid curves represent the results of numerical
calculations based on the definitions

〈Nph〉 = Tr[ρ̂ψ̂†ψ̂]

Tr[ρ̂]
(73)

and

〈〈
N2

ph

〉〉 = Tr[ρ̂(ψ̂†ψ̂ )2]

Tr[ρ̂]
− 〈Nph〉2 . (74)

Here, the equilibrium density matrix is

ρ̂ = exp(−Ĥ/T ) . (75)

It is block diagonal due to the conservation of total excitations
number in the system. This follows from a commutation of
the excitations number operator, M̂ = ψ̂†ψ̂ +∑

j σ̂
+
j σ̂−

j , and

Ĥ . In calculations, the maximum of excitations number is
Mmax = 50. This means that ρ̂ has Mmax blocks, and each
of them has the dimension of 2M , M = 1, . . . , Mmax. For
the above parameters, the most relevant part of the Fock
space belongs to M, which covers a region from one to a
value around 30. We observe a good correspondence be-

tween theoretical curves (red dashed and green dotted) and
numerical simulation (blue solid curves) for the range of Rabi
frequencies 0 < � � ω, which covers the normal phase and
fluctuational region. In the superradiant phase, where � � ω,
the numerical results are in good agreement with more precise
calculations based on Seff,1.

VI. SOME GENERALIZATIONS

A. High temperatures

Below, we discuss results obtained at the critical point
for the high temperature regime T � ω. Note that the phase
transition at α = 0 [see Eq. (33)] is given by the increased
collective coupling:

�c = √
T ω. (76)

We use (54) and (56) to obtain the leading-order expansions
for 〈Nph〉 and 〈〈N2

ph〉〉 by the large parameter T/ω.
In the Appendix, we discuss that the Gaussian approxima-

tion for quasiparticle fluctuations is valid for any N and the
corrections due to cross terms ∝ ψ̄nψn are always small.
This is distinct from N � ω/T � 1 in the low-temperature
limit addressed above.

We obtain that the photon number at the critical point is

〈Nph〉c =
√

3N

π

T

ω
. (77)

In contrast to the low-temperature limit, where it scales as
∝ √

T , in the high-temperature regime under consideration it
grows as ∝ T . The fluctuations of photons,

〈〈
N2

ph

〉〉
c = 3(π − 2)NT 2

2πω2
+ T 5/2

8
√

2ω5/2
, (78)

in contrast to (63), contain not only the contributions from
 (first term), but also from the nonzero modes ψn as well
(second term). Thus, the high-temperature limit is distinct in
that sense that there are two domains of N where fluctuations
have different contributions. The first domain for N is related
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to the thermodynamical limit of very large qubit number. It is
given by (78) as

N �
√

T

ω
, (79)

when only superradiant zero mode is relevant. The second one
is the intermediate region,√

T

ω
� N , (80)

when contribution of fluctuations of the order parameter can
be neglected compared to that of thermal fluctuations of
quasiparticles. The relative value at the transition for this
intermediate domain,

rc = π − 2

2
+ π

√
T

24
√

2N
√

ω
, (81)

shows a deviation from the universal value π/2 − 1 due to
the second term. Thus, N ∼ √

T/ω defines a condition for
the crossover between two types of fluctuational behavior.
Namely, N � √

T/ω corresponds to thermodynamic limit
where fluctuations of superradiant order parameter provide the
leading contribution to fluctuations of the photons number.
In the case of

√
T/ω � N , the contribution due to thermal

fluctuations of quasiparticles becomes dominant.

B. Inhomogeneous broadening

In the above results for the resonant limit, a spread of
coupling energies g j yields the prefactor q−1 for the qubit
number. The inhomogeneous broadening of qubit energies
modifies the expressions in a more significant way described
below.

We also assume that qubit frequencies are distributed in
a certain interval, temperatures are low enough, T � ε j ,
and couplings are homogeneous, g j ≡ g. We assume that the
system is in the critical point, α = 0, and photon number (54)
is contributed by the zero mode only, i.e., 〈Nph〉 = 1√

πγ
, and

quasiparticles contributions are neglected. In the definition for
γ (34), the sum over qubit index is replaced by the integral
over energies,

∑
j → N

∫
ρ(ε) dε with the density of states

ρ(ε) is normalized to unity (ε is a qubit’s energy). We discuss
two cases which correspond to flat distributions with finite and
very broad widths.

In the first case, we consider the distribution with a median
energy at ε and width �; hence, the density of states is

ρ(ε) = 1

�
θ (�/2 − |ε − ε|). (82)

The photon number is obtained as

〈Nph〉 = z(�/ε)

√
NT ε√
πω

, (83)

where dimensionless prefactor z is

z(x) =
(

1

x
− x

4

)
ln

1 + x/2

1 − x/2
. (84)

In the homogeneous limit, � → 0, this prefactor is unity. Note
that the expression (83) provides the photon number at the
critical point for the off-resonant regime, where ε �= ω.

In the second case of the very broad distribution, qubit
energies belong to the interval from εmin up to large εc � εmin

which is the spectrum cutoff. This case is considered as a
thermodynamic limit where the average level spacing can be
introduced, δε ≡ εc/N . Under the assumption

T � {εmin, ω} � εc, (85)

we find that

〈Nph〉 =
√

2T

πδε

εmin

ω
ln

εc

εmin
. (86)

In a physically relevant situation, the lower edge of the qubits
spectrum εmin may be of the order of the resonator mode fre-
quency; hence, their fraction is order of unity. The logarithm
is also not a very large number. Interestingly, in this case we
obtain that the photon number is affected mainly by the ratio
between the smallest energy scales—the temperature and level
spacing.

C. Off-resonant regime

In this subsection, we generalize the result for photon
number, where ω and ε̄ = ε j are out of the resonance. We
assume no disorder in g j . The value of 〈Nph〉 is given by the
same expression as in Eq. (54) but α, γ , and the Gaussian part
are taken in more general form due to ε̄ �= ω. The functional
coefficients are

α(ε̄ �=ω) = ω

T
− �2

T ε̄
tanh

ε̄

2T
, (87)

γ (ε̄ �=ω) = �4

NT ε̄3

sinh ε̄
T − ε̄

T

cosh ε̄
T + 1

, (88)

The Gaussian part is given by the sum (46) with Gn from (48).
In the off-resonant case, it reads as

〈Nph〉(ε̄ �=ω)
Gauss = (ω − ε̄) sinh E (ε̄,�)

2T − E (ε̄, �) sinh ω+ε̄
2T

2E (ε̄, �)
(
cosh E (ε̄,�)

2T − cosh ω+ε̄
2T

) − 1

2
,

(89)

where

E (ε̄, �) =
√

4�2 tanh
ε̄

2T
+ (ε̄ − ω)2. (90)

In the resonant limit of ε̄ = ω, addressed in Sec. IV, the
expression (89) reproduces (50).

In Figs. 3(a) and 3(b), the photon number as the function of
� and qubit energies ε̄ is plotted (in units of ω). The effective
action Seff,1 is employed in this calculation. The data shown
in Fig. 3(a) demonstrate the behavior at low temperature
T = 0.1 ω; those in Fig. 3(b) demonstrate the behavior at
intermediate temperature T = ω. The qubit number N = 100
in both of the plots. The dark (bright) regions in the maps
correspond to normal (superradiant) phases. Red curves depict
dependencies of the critical coupling value �c(ε̄) from (39),
where ω is kept constant. Curves in insets demonstrate the
average photon number as functions of �/ω for cuts in the
plots marked by green dashed lines. Red points in insets stand
for the critical Rabi frequency for a given T and cuts of ε̄

in Fig. 3(a) and Fig. 3(b). These plots demonstrate typical
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FIG. 3. Average photon number 〈Nph〉 obtained by means of Seff,1 as the function of the Rabi frequency � and qubit energies ε j = ε̄ in
nonresonant regimes of ω �= ε̄. The dark regions in the maps correspond to normal phase; bright regions correspond to superradiant phase.
Qubit number N = 100; � and ε̄ are measured in units of resonator frequency ω. (a) Data calculated for low-temperature regime T = 0.1 ω.
(b) Data calculated for intermediate temperature T = ω. Red solid curve corresponds to the critical �c as a function of ε̄ given by the relation
(39). Insets in panels (a) and (b) demonstrate 〈Nph〉 as functions of �/ω for cuts marked by green dashed lines; red points mark the critical
Rabi frequency for a given T and ε̄ in the cut.

scales of photons number in normal and superradiant phases
for low- and intermediate-temperature regimes. Red curves
corresponding to �c(ε̄) relations reproduce asymptotics for
low temperatures in Fig. 3(a), where �c(ε̄) ∝ √

ε̄, and for
high temperatures with �c(ε̄) ∝ const in Fig. 3(b).

VII. FULL COUNTING STATISTICS

A. Generating action

The effective action for quantum fluctuations (30) allows
us to derive the full counting statistics (FCS) for photon num-
bers. These are cumulant- and moment-generating functions
(CGF and MGF). These are functions of real counting variable
ξ . In our consideration, the generating action is introduced on
the imaginary time.

The CGF, K(ξ ), and MGF, M(ξ ), are defined as follows
through the partition function Z (ξ )

K(ξ ) = lnM(ξ ), M(ξ ) = Z (ξ )

Z (0)
, (91)

Z (ξ ) =
∫

D[�] exp

[
− Seff,0[, ψ̄n, ψn]

− iξ

(
 +

∑
n �=0

ψ̄nψn − 1/2

)]
. (92)

T ordering in the imaginary time representation of the path
integrals assumes that the photon number, introduced in (45),
is defined as

Nph = T
∫ β

0
ψ̄τψτ+0dτ (93)

in a generating term. Alternatively, the generating term can be
also represented as a half sum of (93) with +0 and −0, which
is symmetric under T and anti-T ordering. In the Matsubara
representation, we obtain the generating action in the form of
(92) after such a symmetrization. Because of the commutation
of photon operators, we include −1/2 in (92).

The photon number moments 〈Nn
ph〉 ≡ 〈(ψ̂†ψ̂ )n〉 are given

by the derivatives

〈Nn
ph〉 = (i)n ∂n

∂ξ n
M(ξ )

∣∣∣∣
ξ=0

, (94)

while the cumulants are defined as〈〈
Nn

ph

〉〉 = (i)n ∂n

∂ξ n
K(ξ )

∣∣∣∣
ξ=0

. (95)

Path integration in (92) is reduced to the infinite product of
Matsubara Green’s functions involving the counting variable

M(ξ ) = eiξ/2

∫∞
0 e−(α+iξ )−γ2

d∫∞
0 e−α−γ2 d

∏
n �=0

Gn(ξ )

Gn(0)
. (96)

The Green’s function with the counting variable reads as

Gn(ξ ) = 1

2π in − (ω + iξT ) − �n[0]
, n �= 0 . (97)

Calculation of the integrals and product in (96) yields for the
resonant case (ε j = ε̄ = ω)

M(ξ ) = M0(ξ )Mfl(ξ ), (98)

where the zero mode’s and quasiparticles’ parts are

M0(ξ ) = exp

[
2iαξ − ξ 2

4γ

]erfcα+iξ
2
√

γ

erfc α
2
√

γ

(99)

and

Mfl(ξ ) =
[
1+ iξT ω

ω2 − �2
T

] (cosh ω
T − cosh �T

T )eiξ/2

cosh
[
ω
T + iξ

2

]− cosh
√

�2
T

T 2 − ξ 2

4

.

(100)

With the use of this result for MGF, one can obtain the above
expressions for the photon number and its fluctuations (54)
and (56).

063821-11



D. S. SHAPIRO et al. PHYSICAL REVIEW A 99, 063821 (2019)

B. FCS at the phase transition

In the thermodynamic limit of large enough N , the leading
contribution to cumulants is described by that of the zero
mode M0(ξ ). Thus, the CGF for the critical point is

K0(ξ ) = −ξ 2

4γ
+ ln

[
erfc

iξ

2
√

γ

]
. (101)

The first six cumulants, which follow from K0(ξ ), are

〈Nph〉 = 1√
πγ

, (102)

〈〈
N2

ph

〉〉 = π − 2

2πγ
, (103)

〈〈
N3

ph

〉〉 = 4 − π

2(πγ )3/2
, (104)

〈〈
N4

ph

〉〉 = 2(π − 3)

(πγ )2
, (105)

〈〈
N5

ph

〉〉 = 96 − 40π + 3π2

4(πγ )5/2
, (106)

〈〈
N6

ph

〉〉 = 60(π − 2) − 7π2

(πγ )3
. (107)

From a numerical calculation, it follows that higher cumulants
alter their signs, for instance, as seen from the negativity of the
fifth and sixth ones. The nonzero cumulants for n > 2 is the
consequence of that fact that photons’ probability distribution
function is half of a Gaussian because of the positively defined
variable of integration  in (96).

The Fourier transformation of the MGF provides the prob-
ability density to measure Nph photons on average

P (Nph ) =
∫ ∞

−∞
M(ξ )eiξNph dξ . (108)

Note that P is a nonzero function of the continuous variable
Nph. This is because Nph is not an eigenvalue of the Hamil-
tonian (1). Hence, noninteger values Nph are assumed to be
observed as the thermodynamical averages.

As long as the ψn fluctuations are frozen out if the system
is near the critical point and N is large enough, one finds from
(92) and (108) that the probability density is identical to the
exponent in Z (92) as

P0(Nph ) = 2πθ (Nph)
exp

[−αNph − γ N2
ph

]
Z (0)

.

In particular, at the critical point M0(ξ ) from (98), the distri-
bution is

Pc(Nph ) =
{

4
√

πγ exp[−γ N2
ph], if Nph � 0,

0, if Nph < 0.
(109)

This is the half of the Gaussian for Nph > 0, while for un-
physical Nph < 0 it is zero. At the critical point (we assume
below that �c = ω), the distribution’s maximum is located at
Nph = 0. In the superradiant phase, the maximum of P (Nph )
is shifted to a nonzero value. In other words, for higher values
� � ω one obtains from ln[M0(ξ )] that in the leading order
〈Nph〉 = Nω2

2�2 and 〈〈N2
ph〉〉 = NT ω3

2�4 . The higher cumulants are
strongly suppressed by the exponent: For instance, the third
one is 〈〈N3

ph〉〉 ∼ e−N ω
T .

C. FCS for weak interaction and normal phase

In this part, we discuss MGF at the normal phase and weak
coupling limit. It is assumed that the system is far away from
the fluctuational region, i.e., �T � ω [see Eq. (70)]. Taking
the limit γ → 0 in (98), one obtains the MGF for the normal
phase of the Dicke model:

M(ξ ) =
(

cosh ω
T − cosh �T

T

)
eiξ/2

cosh
[

ω
T + iξ

2

]− cosh
√

�2
T

T 2 − ξ 2

4

. (110)

In the decoupled limit, where the Rabi frequency is the
smallest scale �T � {T, ω}, one arrives at the MGF of the
free photon mode of the frequency ω

M(ξ ) = 1 − e−βω

1 − e−iξ−βω
. (111)

Note that it is 2π -periodic function of the counting variable.
The discrete Fourier transformation of (111) at the finite
interval [0; 2π ] of the single period yields the standard Hibbs
distribution probabilities

Pn = (1 − e−βω )e−nβω, n � 0. (112)

Obviously, the infinite integral definition (108) one would
obtains δ peaks in the probability distribution density located
at Nph = n � 0, being the eigenvalues of the free photon mode
Hamiltonian, as

P (Nph) = 1

2π

∑
n�0

Pnδ(Nph − n).

Note that the cumulant generating function for the free mode
is

K(ξ ) = i
ξ

2
− ln

sinh ω+iξT
2T

sinh ω
2T

. (113)

The cumulants itself are

〈〈
Nn

ph

〉〉 =
⎧⎨
⎩

1
2 coth ω

2T − 1
2 , n = 1;

(−1)n−1

2n
∂n−1

∂xn−1 coth x
∣∣∣
x= ω

2T

, n � 2.
(114)

One arrives at the mentioned above Fano factor F0 = (1 −
e−βω )−1 in (71) and the relative fluctuations parameter
r0 = eβω.

VIII. CONCLUSIONS

In this work, we addressed fluctuations near the superra-
diant transition which is driven by an interaction between
a single-mode photons and multiqubit environment. In such
consideration, the collective Rabi frequency is varied (it can
be close to the critical value of superradiant transition), while
the temperature T is kept unchanged. We did not assume the
thermodynamic limit of infinite qubit number N and consider
it as large enough but with finite value. Our analysis was fo-
cused on two types of competing fluctuations: the thermal one
and that of the superradiant order parameter. This regime is
opposite the transition by the temperature studied in Ref. [14].

We used Majorana fermion representation of qubits’ Pauli
operators in order to formulate a path integral approach.
Having started from the Dicke Hamiltonian, we demonstrate
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how one can derive the effective action for the photon
mode, obtained by alternative fermionization techniques in
Refs. [14,16]. After that, we calculated the average photon
number and equilibrium fluctuations in terms of the effective
action formalism. As a generalization, the full counting statis-
tics, providing higher order cumulants of the photon numbers,
was formulated.

Most of the results of this paper address a low-temperature
regime and a resonance between qubits and photon mode
frequency ω. It was shown that the Gaussian approximation
for thermal fluctuations is exact and analytical solution can
be found if h̄ω � kBT � h̄ω/N . In this limit, the critical
value of the collective Rabi frequency is �c = ω and the av-
erage photon number at this point is 〈Nph〉 = √

NkBT/(π h̄ω).
The relative fluctuations parameter rc ≡ 〈〈N2

ph〉〉/〈Nph〉2, where
the second cumulant is 〈〈N2

ph〉〉 = 〈N2
ph〉 − 〈Nph〉2, is universal

at the critical point rc = π/2 − 1. A domain near �c in the
superradiant phase, where r is not suppressed, corresponds
to the fluctuational Ginzburg-Levanyuk region. The width of
such frequency range is proportional to

√
ωkBT/(h̄N ); this

is much smaller than kBT and shrinks at thermodynamic
limit. Another characteristic, Fano factor F ≡ 〈〈N2

ph〉〉/〈Nph〉,
decreases from the unity in decoupled limit � � �c to a
minimum Fmin < 1 at � � �c. The latter indicates a negative
correlation between photons. The further increase of � up to
the critical value results in a significant growth of the Fano
factor to a maximum Fc ≈ 〈Nph〉 � 1. This means signifi-
cantly positive photon-photon correlations at the superradiant
transition. There is a reentrance and no negative correlations
in the superradiant phase as it follows from the decaying of
the Fano factor above the critical point.

As a generalization, for opposite limit of wide
spectral distribution of the qubit environment, we find
〈Nph〉∼

√
kBT/δε ln εc

ω
, where δε and εc are the average

level spacing and upper cut-off energy of the spectrum,
respectively. For high temperatures, kBT � h̄ω, the
neglecting of non-Gaussian fluctuations of quasiparticles
is valid for any N , in contrast to the low-temperature
regime. The finiteness of the qubit number can change a
behavior of fluctuations at the critical point. Namely, for√

kBT/(h̄ω) � N , the quasiparticle fluctuations become

greater than that of superradiant order parameter. This
intermediate region shows a nonuniversal enhancement of rc,
which reveals the two-level nature of the qubit environment.

We believe that the above results can be of an interest in
the context of state-of-the-art hybrid systems and quantum
metamaterials operating in the GHz frequency domain. The
coupling constants g in superconducting systems range from
MHz to several GHz, showing a realization of an ultrastrong
coupling regime. The ratios of g/ω ∼ 0.071 [39], g/ω ∼ 0.6
[3,40], and g/ω ∼ 0.72 − 1.34 [41] have been demonstrated.
Consequently, the critical qubit number Nc = (ω/g)2 needed
for turning on the superradiant transition can be around 100

to 102. Another possibility for realization of the phase tran-
sition are hybrid systems with NV centers in diamonds. Our
estimations are based on Ref. [28], where individual coupling
constant g ∼ 10 Hz and the number of NV centers N ∼ 1012.
The collective Rabi frequency � ∼ 20 MHz is two orders
less than the critical value �c ∼ 2 GHz and, according to our
consideration, the system is in the normal phase. For the above
value of g, the number N should be increased by four orders
up to the critical Nc ∼ 1016 in order to reach the superradiant
phase.
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APPENDIX

In this Appendix, we analyze the role of the leading
non-Gaussian correction ∝ψ̄nψn, which originates from -
dependent self-energies �n[] and �̃n[,ϕ]. The analysis is
based on the low-energy effective action which depends on
variables  and ϕ. Such an action follows from Gaussian in-
tegration in Seff [,ϕ, ψ̄n, ψn] (22) over all fluctuations related
to fields ψ̄n, ψn with n �= 0:

Szm[,ϕ] = βω + SG[,ϕ] + δS[,ϕ] + ln Zph . (115)

The correction δS[,ϕ] here is the result of the integration;
in the most general form it reads as

δS[,ϕ] = 1

2

∑
n �=0

tr ln β

⎡
⎣−i2πnT +ω+�n[] �̃n[,ϕ]

(�̃−n[,ϕ])∗ i2πnT +ω+�̃−n[]

⎤
⎦ . (116)

In what follows, we analyze a contribution to the action δS[,ϕ] due to the dependency of the self-energies on . The normal
and anomalous parts of the self-energies originate from the matrix structure of Sfl introduced in (24). Their explicit expressions
are

�n[] = �2

(
ω2

n + 2iεωn
)

tanh ε
2T

4(iωn − ε)[4g2 + ωn(ωn + 2iε)]
− �2 24g42 + 2g2

(
3ω2

n + 4ε2 + 4iωnε
)+ iωnε

(
ω2

n + 2ε2 + iωnε
)

4
√

4g2 + ε2
(
4g2 + ω2

n + ε2
)
[4g2 + ωn(ωn + 2iε)]

× tanh

√
4g2 + ε2

2T
, (117)

�̃n[,ϕ] = − �4e2iϕ

2
√

4g2 + ε2
(
4g2 + ω2

n + ε2
) tanh

√
4g2 + ε2

2T
, ωn = 2πnT . (118)
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We focus below on the fluctuational region near the superra-
diance, which is a second order phase transition. It means that
the leading contribution from quantum dynamics of  belongs
to a certain region near  = 0. It follows from (117) and (118)
that near  = 0 the leading -dependent contributions in
self-energies are �n[] ≈ �n[0] + �′

n[0] and �̃n[,ϕ] ∝
. We analyze these -dependent parts as perturbations. It
is required that such perturbations give small contributions
to unperturbed part of the effective action (115). Similarly to
the previous studies, we limit ourselves by the second-order
expansion in the unperturbed part:

βω + SG[,ϕ] ≈ α + γ2 .

Note that α can be arbitrarily small at the critical point while
γ is always finite. It means that the linear by  part form
δS[,ϕ] is relevant while higher order terms are not. The
expansion of the logarithm in δS[,ϕ] up to the first order
by  gives

δS[] = δα  , (119)

where

δα =
∑
n �=0

�′
n[0]

−i2πn + βω + β�n[0]
. (120)

In other words, the leading perturbation from δS[,ϕ] is
contributed by the linear part in the normal self-energy �n[].
The anomalous part results in second-order corrections which
provides small corrections to γ and are not relevant. The phase
ϕ does not appear in this consideration.

We calculate δα from (120) for the case of full resonance
ε j = ε̄ = ω and absence of disorder in coupling terms, i.e.
g j = g. At the critical point under consideration, we set � =
ω
√

coth ω
2T and the result is

δαc = coth βω

2

4N

(
6 + β2ω2

1 + cosh βω
− 3βω coth

βω

2

)
.

(121)

The expression (121) has the following asymptotics for low
temperatures:

δαc(T � ω) = − 3ω

4NT
. (122)

Let us estimate a typical value of ′ where the integral
over exp[−(α + δα) − γ2] in the partition function does
converge. In the vicinity of the phase transition (α = 0), it is
given by the Gaussian integrand’s width, i.e., ′ ∼ γ −1/2 ∼√

NT/ω. The requirement that the perturbation δS[] is small
means that it is much less than the unity at the convergence
region, namely, |δS[′]| = |δαc ′| � 1. The latter results in
the following condition for low temperatures:

ω � T � ω

N
. (123)

It defines the range of parameters where our approach based
on the Gaussian approximation in Sfl (32) for fluctuations is
valid.

It is important that this calculation provides the small
parameter of this theory κ ≡ |δS[′]|. At the critical point of
the superradiant transition, it is

κc =
√

ω

NT
� 1. (124)

Note that for much lower temperatures T � ω/N , the
non-Gaussian contributions by ψn as well as �0 dependencies
in �n and �̃n cannot be neglected in Sfl. Technically, it
means that the higher order terms in the expansion of (17)
by V[�τ ]Gτ−τ ′V[�τ ′] should be taken into account.

In the high-temperature limit, T � ω, the critical coupling
is enhanced as �c = √

T ω, and the correction and conver-
gence region are

δαc(T � ω) = − 7

120N

(ω

T

)3
, ′ ∼

√
N

T

ω
. (125)

We obtain the following value of the non-Gaussian correction
|δS[′]| = |δαc ′| ∼ β2ω2/

√
N . The value of |δS[′]| is

small compared to unity for any N , in contrast to the low-
temperature limit (123).
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