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Spiraling anomalous vortex beam arrays in strongly nonlocal nonlinear media
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We introduce a class of spiraling anomalous vortex beam (AVB) arrays in strongly nonlocal nonlinear media.
The general analytical formula for the arrays is derived, and its propagation properties are analyzed. It is shown
that the spiraling AVB arrays can present three different propagation states (shrink, expansion, and the dynamical
bound state) depending on the absolute value of the transverse velocity parameter (0 < |ξ | < 1, |ξ | > 1, and
|ξ | = 1). Accordingly, we propose the concept of array breathers and array solitons. The topological charge of
the vortex and the number of the constituent AVB also play important roles in the evolution of the AVB arrays.
It is found that the light intensity of the central region of the array’s field under an in-phase incident condition
is not zero during propagation if and only if the ratio between the two parameters is an integer. By using the
derived analytical expression, a series of numerical examples is exhibited to graphically illustrate these typical
propagation properties. In addition, we give a variety of array forms of multibeam interaction. Our results may
provide insight into vortex beam arrays and may be applied in optical communication and particle control.
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I. INTRODUCTION

Spatial beam propagation in nonlocal nonlinear media has
sparked considerable interest both theoretically and exper-
imentally, especially in strongly nonlocal nonlinear media
(SNNM), such as nematic liquid crystals [1,2] and lead glasses
[3–5]. In the physical settings of strongly nonlocality, the
characteristic range of the response function of the medium
is much larger than the space occupied by the beam; the non-
linear polarization of the medium at a particular point depends
not only on the beam intensity at this position but also on the
optical field at a certain space scale [6,7]. This provides a fa-
vorable condition for researchers to study the propagation and
transformation of spatial beams [8–11]. Lu et al. proposed that
beam propagation in SNNM can be regarded as a self-induced
fractional Fourier transform [12], and when multiple beams
propagate in SNNM together each constituent beam can be
regarded as a cross-induced fractional Fourier transform [13].
This provides a powerful theoretical basis for studying the
propagation properties of multiple beams in SNNM.

In recent years, the subject of vortex beams has become
a hot spot due to their unique spiral phase distribution and
their notable feature of carrying orbital angular momen-
tum [14–20], both in fundamental and applied physics. The
progress in generating vortex beams in nonlinear bulk media
opens the possibility to study true interaction of multidimen-
sional vortex waves [21,22]. In SNNM, the natural spreading
of vortex beams due to diffraction can be exactly compensated
by the self-focusing effect, which is modeled as a dependence
of the refractive index on the beam intensity, and thus the
vortex soliton can be formed. Spatial vortex solitons (beams)
can carry or limit other weaker signals to form light-induced
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waveguides and thereby control the signal transmission path
and output position through their trajectories [6], which has
important applications in new mechanisms of interaction be-
tween beams and matter, research on optical communication
[23], and particle control [24]. As early as 1997, the theory
of the motion of spiraling solitons has been proposed [25,26].
The existence of higher-order rotating spatial solitons in non-
local nonlinear media has been demonstrated [27]. Up to now,
various models of multibeam (multisoliton) interaction have
been constructed theoretically and some of them have been
implemented in experiments, such as soliton clusters [28–31]
and soliton pairs [25,32,33]. In this paper, we carry out the
basic principles for constructing the so-called spiraling beam
arrays and take anomalous vortex beam (AVB) arrays as an
example to explore the propagation properties of them in
SNNM.

The structure of this paper is designed as follows. In Sec. II,
the governing equation of the spiraling AVB array is given
by using the equivalent form of the Collins integral formula
in SNNM and the superposition principle. In Sec. III, we
discuss the propagation properties of the AVB arrays based on
propagation expression. The evolution of the intensity pattern,
the projection trajectory, and the phase change are discussed
in detail by means of mathematical technique. In addition,
various beam array forms within the realm of possibility are
given in this section. In Sec. IV, we conclude this paper.

II. MODEL EQUATION

The propagation dynamics of a paraxial laser beam in
nonlocal nonlinear media can often be described theoretically
as an evolution ruled phenomenologically by the nonlocal
nonlinear Schrödinger equation (NNLSE) [6–8,12,13,34–36]

∂�

∂z
= i

2k
�⊥� + ik

δn

n0
�, (1)
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where � is the complex amplitude of the paraxial laser
beams; k = ωn0/c, with ω the circular frequency, is the
wave number in the media without nonlinearity; �⊥ is
the two-dimensional transverse Laplacian operator; n0 is
the linear part of the refractive index of the media; δn =
n2

∫∫
R(r − rc)|�(rc, z)|2d2rc is the nonlinear perturbation

of the refractive index caused by the beam (|δn| � n0); n2

is the nonlinear index coefficient. Thus, the refractive index
of nonlocal nonlinear media can be expressed as n(r) =
n0 + δn(r). r and rc represent two-dimensional transverse
coordinate vectors, and R(r) is the normalized symmetrical
real spatial response function of the media and it satisfies∫∫

R(r)d2r = 1. Equation (1) describes the evolution of a
spatial beam trapped in an effective parabolic graded index
channel with the profile given by the nonlocal response func-
tion R(r), which usually is taken as Gaussian function form
R(r) = 1/(2πw2

R) exp[−r2/(2w2
R)] [7,35–37], where wR is

the characteristic width of R(r).
In the strongly nonlocal nonlinear limit, the response

function R(r) can be expanded into Taylor series, thus the
NNLSE can be simplified [7]. If we only expand the re-
sponse R(r − rc ), with rc = 0, to the second-order term, then
we obtain

δn ≈ n2P0
(
R0 + 1

2 R′′
0r2

)
, (2)

and Eq. (1) reduces to

∂�

∂z
= i

2k
�⊥� − ikγ 2P0r2

2
� + ikn2R0P0

n0
�, (3)

where γ =
√

−n2R
′′
0/n0 is a material constant associated with

the nonlocal effect of the medium and γ 2 > 0 corresponds
to a focusing nonlinear case [R0 = R(0), R

′′
0 = R

′′
(0), R

′′
0 < 0

because R0 is a maximum of R(r)]. P0 = ∫∫ |�(r, 0)|2d2r is
the input power and it is conserved in the process of beam
propagation [7]. By introducing the variable transformation

�(r, z) = E (r, z) exp

(
ik

n2R0P0

n0
z

)
, (4)

Eq. (3) can be simplified as the famous strongly nonlocal
nonlinear model

∂E

∂z
= i

2k
�⊥E − ikr2

2
γ 2P0E . (5)

It should be noted here that in the derivation of Eq. (5) we
assume that the response function is symmetric and twice
differentiable at x = y = 0. However, the response function
of the actual physical system has no rules to follow, so
it cannot be simply transformed into the strongly nonlocal
nonlinear model. However, the strongly nonlocal nonlinear
model retains the main features of SNNM, and the physical
characteristics do not intensively depend on the form of the
response function as long as the nonlocality of the media is
strong enough [38].

The center of mass rc of a single beam traveling in a
parabolic graded index medium satisfies the paraxial ray
equation [6,39]

d

dl

(
n

drc

dl

)
= ∇n, (6)

where l is the length of the center of mass of the beam from
one point to another, rc is the position vector of that point,
and ∇ is the gradient operator. Under paraxial approximation,
dl ≈ dz. Therefore, Eq. (6) can be rewritten as

d

dz

(
n

drc

dz

)
= ∇n, (7)

and then

dn

dz

(
drc

dz

)
+ n

(
d2rc

dz2

)
= ∇n. (8)

In self-focusing nonlocal media the refractive index only has a
transverse distribution and thus dn/dz = 0. Therefore, Eq. (6)
can be reduced as an ordinary differential equation

d2rc

dz2
= −rc

z2
p

, (9)

which describes the trajectory of the center of mass of a
beam in SNNM. zp = (γ 2P0)−1/2 is a parameter related to the
properties of materials and the input power. One can obtain
the solution of Eq. (9) as

rc(z) = rc(0) cos

(
z

zp

)
+ zpr′

c(0) sin

(
z

zp

)
. (10)

Here, the superscript “′” represents the first derivative, and it
can be proved that if E (r, z) is a solution of Eq. (5) then so is

E±(r, z) = E (r ± rc(z), z) exp[∓iu(z)r + iφ(z)], (11)

where u(z) and φ(z) are determined by the following
equations:

u(z) = kr′
c(z), (12)

φ′(z) = k

2

[
r2

c (z)

z2
p

− r′2
c (z)

]
. (13)

In the cylindrical coordinates system, the z axis is taken to
be the propagation axis. The AVB in the source plane z = 0
takes the ansatz form as [21]

E (r0, θ0, 0) = E0

(
r0

w0

)2n+|m|
exp

(
− r2

0

w2
0

)
exp(−imθ0),

(14)

where E0 = {22n+m+1P0/[πw2
0�(2n + m + 1)]}1/2 is a nor-

malized coefficient to ensure that the input power equals
P0, �(·) is the Euler gamma function, n (= 0, 1, 2, . . .) is the
beam order of the AVB, m (= 0,±1,±2, . . .) is the topolog-
ical charge of the vortex and it is also the orbital angular
momentum quantum number, w0 is the beam waist size of
the corresponding fundamental Gaussian beam (m = n = 0)
in transverse space, and r0 and θ0 are radial and azimuthal
coordinates, respectively. When m = 0 and n 	= 0, Eq. (14)
can be used to characterize the electric field of a hollow
Gaussian beam [40]. When m 	= 0 and n = 0, Eq. (14) can be
used to characterize the electric field of an ordinary Gaussian
vortex beam, i.e., a (0, m) mode Laguerre-Gaussian beam
[34]. Thereout, the AVB is an important beam type in that
it can generalize several beams.
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In theory, one can investigate the propagation of the AVB
in SNNM based on Eqs. (5) and (14) directly. However, it
is almost impossible to analytically obtain the propagation
expression of the AVB by reason of the complication in
mathematical calculations. Luckily, in the strongly nonlocal

nonlinear limit, the beam propagation can be solved based on
the matrix optics and the fractional Fourier transform [12,41].
Therefore, the analytical expression of the AVB propagating
in SNNM can be treated by the Collins integral formula with
the following form:

E (r, θ, z) = − ik

2πzp sin(z/zp)
exp

[
ikr2

2zp tan(z/zp)

] ∫ 2π

0

∫ ∞

0
E (r0, θ0, 0) exp

[
ikr2

0

2zp tan(z/zp)
− 2ikrr0 cos(θ − θ0)

zp sin(z/zp)

]
r0dr0dθ0,

(15)

where the phase factor exp(−ikz) is ignored for brevity. The propagation expression of a single AVB in SNNM can be obtained
by substituting Eq. (14) into Eq. (15) and with the aid of the following integral formulas [42]:∫ 2π

0
exp[−inθ1 + ikbr cos(θ1 − θ2)]dθ1 = 2π exp

[
in

(π

2
− θ2

)]
Jn(kbr), (16)∫ ∞

0
exp(−ax2)Jv (2bx)x2n+v+1dx = n!

2
bva−(n+v+1) exp

(
−b2

a

)
Lv

n

(
b2

a

)
, (17)

where Jv (·) is the Bessel function and Lv
n (·) are the generalized Laguerre polynomials. After some complicated integral

calculations, one can obtain the propagation expression as

E (r, θ, z) = i|m|+1E0n!zr

zp sin(z/zp)

[
zrr

w0zp sin(z/zp)

]|m|[
1 + izr

zp tan(z/zp)

]−(n+|m|+1)

exp

{
− z2

r r2

[zp + izr sin(z/zp)]w2
0zp sin2(z/zp)

}

× exp

{
− izrr2

w2
0zp tan(z/zp)

}
L|m|

n

{
zrr2

[zp + izr cot(z/zp)]w2
0zp sin2(z/zp)

}
exp(−imθ ). (18)

What follows is the construction of the AVB arrays. We
consider a coherent superposition of N AVBs; then the slowly
varying field envelope of the AVB arrays can be expressed as

�(r, θ, z) = A0

N∑
j=1

Ej (r, θ, z), (19)

where A0 is the normalized amplitude of the total input
field and Ej is the light field of the jth AVB. Whereas

two-dimensional transverse coordinate vector r = xex + yey

in the Cartesian coordinates system, it has the following trans-
formation relationship in the cylindrical coordinates system:

r = (x, y) = (r cos θ, r sin θ ) = (r, θ ). (20)

Combining the equations above and with the aid of Euler
equation eiθ = cos θ + i sin θ , the propagation expression of
each constituent AVB in the Cartesian coordinate system can
be rewritten as

Ej (x, y, z) = i|m|+1E0n!zr

zp sin(z/zp)

[
zr

√
(x − xc j )2 + (y − yc j )2

w0zp sin(z/zp)

]|m|[
1 + izr

zp tan(z/zp)

]−(n+|m|+1)

× exp

{
−

(
z2

r /zp
)
[(x − xc j )2 + (y − yc j )2]

[zp + izr sin(z/zp)]w2
0 sin2(z/zp)

}
exp

{
− izr[(x − xc j )2 + (y − yc j )2]

w2
0zp tan(z/zp)

}

× L|m|
n

{
(zr/zp)[(x − xc j )2 + (y − yc j )2]

[zp + izr cot(z/zp)]w2
0 sin2(z/zp)

}[
(x − xc j ) − i(y − yc j )√
(x − xc j )2 + (y − yc j )2

]|m|
exp[i(ux j · x + uy j · y + φ j )], (21)

where zr = kw2
0/2 is the Rayleigh length of the fundamental Gaussian beam; zp = √

Pgc/P0zr is a normalized propagation
distance associated with the input power; Pgc = 1/(γ 2z2

r ) is the soliton power for a Gaussian beam in SNNM [7]. Considering
the independence of variables in x and y directions and combining Eqs. (10)–(13), Eq. (21) is expressed as

xc j (z) = cx j cos

(
z

zp

)
+ tx jzp sin

(
z

zp

)
, (22)

yc j (z) = cy j cos

(
z

zp

)
+ ty jzp sin

(
z

zp

)
, (23)
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which jointly govern the trajectory of the center of mass of
each constituent AVB, and

ux j (z) = −kcx j

zp
sin

(
z

zp

)
+ ktx j cos

(
z

zp

)
, (24)

uy j (z) = −kcy j

zp
sin

(
z

zp

)
+ kty j cos

(
z

zp

)
, (25)

φ j (z) = k

4

[
c2

x j + c2
y j

zp
− zp

(
t2
x j + t2

y j

)]
sin

(
2z

zp

)

− k

2
(cx jtx j + cy jty j ) cos

(
2z

zp

)
. (26)

In all of the above equations, cx j = xc j (z)|z=0 and cy j =
yc j (z)|z=0 are the initial transverse coordinates (initial posi-
tion) of the center of mass of each AVB; tx j = x′

c j (z)|z=0 and
ty j = y′

c j (z)|z=0 are the slopes of the projection trajectory of
each beam center on the x-z plane and y-z plane, named as
“initial transverse velocity,” indicating the size of the angle
between the incident direction and the propagation axis. We
borrow the concept of “initial transverse velocity” from clas-
sical physics. That is, the propagation distance z is regarded
as time t , and then the first derivative of position vector rc

to time z is velocity. The term “initial transverse velocity”
is very convenient to help us understand the propagation of
the beam. Of course, we can also call it the “initial incident
slope.” Then the angle between the projection of the incident
direction vector on the x-z (or y-z) plane and the propagation
axis is x j = arctan(tx j ) [or y j = arctan(ty j )]. We can define
the angle  as the initial tilted angle, and in the case of strong
nonlocality  can approach 90 deg in theory [43].

Consider a simple configuration in which the AVB arrays
are arranged in a ringlike geometry with radius r and launched
with a fixed difference between adjacent beams. Then, the
position of each constituent AVB center can be taken as

cx j = r cos ϕ j, cy j = r sin ϕ j, (27)

and the initial transverse velocity of each AVB can be ex-
pressed as

tx j = −ξr sin ϕ j

zp
, ty j = ξr cos ϕ j

zp
, (28)

where ϕ j = 2 jπ/N ( j = 1, 2, . . . , N) is the angle between
the center of the corresponding AVB and the x axis, and ξ is
defined as “transverse velocity parameter.” If ξ = 0, it is the
general case and the interacting beams are periodic collisions
in the form of a simple harmonic oscillator [6,44], which does
not rotate and is well understood. We mainly study the case
of ξ 	= 0 in this paper, i.e., every constituent AVB is launched
with a twisted trajectory at the source plane.

III. PROPAGATION PROPERTIES

A. Three different propagation states

The propagation expression [Eq. (21)] derived here is not
the exact solution to the NNLSE, but an approximate one.
However, it is sufficient to characterize the propagation and
transformation of spatial beams in that it agrees well with
the exact solution of the NNLSE in the strongly nonlocal

nonlinear case, i.e., Eq. (5) [12,41]. We introduce a parameter
μ to describe the degree of nonlocality of the media and define
μ = wR/wB, where wB is the second-order moment width of
the combined optical field. We have compared various analyt-
ical solutions of the strongly nonlocal nonlinear model with
the exact results of numerical simulation of the NNLSE for
different nonlocality degrees. It shows that with the increase
of μ the analytical solutions become better approximations
of the exact numerical results of the NNLSE especially when
μ � 10. Next, we mainly discuss the propagation properties
of AVB arrays in SNNM based on the analytical solutions.

Some interesting phenomena regarding the AVB arrays are
shown when the general analytical formula is considered. It is
found that the evolution of the AVB arrays is periodic, with
the period �zt = 2πzp depending on the input power P0. The
center of mass of the AVB array is always located at the z axis
in that the total transverse spatial momentum [13]

M⊥ = i

2k

∫∫
(�∇⊥�∗ − �∗∇⊥�)dxdy ≡ 0, (29)

where ∇⊥ = ex∂x + ey∂y and the asterisk denotes the complex
conjugate. The distance from the center of each constituent
beam to the propagation axis can be obtained as

d j (z) = r

[
cos2

(
z

zp

)
+ ξ 2 sin2

(
z

zp

)]1/2

(30)

based on Eqs. (22) and (23). The same propagation constant
ensures that the beam array is a regular N-sided shape at
any cross section during propagation. One can obtain the area
around the N-sided-shaped beam array as

S = Nr2

2

[
cos2

(
z

zp

)
+ ξ 2 sin2

(
z

zp

)]
sin

(
2π

N

)
. (31)

The angular velocity of each constituent beam is

ω j (z) = ξ/zp

cos2
(

z
zp

) + ξ 2 sin2
(

z
zp

) . (32)

Because of the synchronism of the motion of each constituent
beam, we can eliminate the subscript j in Eqs. (30) and
(32) and record the equations directly as d (z) and ω(z),
respectively, in the discussion that follows.

Figure 1 illustrates the effect of the transverse velocity
on the AVB arrays during propagation. One sees that if ξ =
1 [Figs. 1(b1)–1(b5)] the size of the AVB array remains
invariant intuitively, though it rotates while propagating. This
can be verified by Eq. (31), when ξ = 1 and S ≡ const. And
the corresponding projection trajectory in the x-y plane is a
circle [solid line in Fig. 1(f)], which has its own equation:

x2 + y2 = r2. (33)

If 0 < ξ < 1 (ξ > 1), the size of the AVB array evolves to be
smaller (larger) first and then larger (smaller) periodically, and
the minimum (maximum)

Smin(max) = Nξ 2r2

2
sin

(
2π

N

)
(34)

appears at z = (p + 1/2)πzp (p = 0, 1, 2, . . .). Each con-
stituent AVB spirals inward and outward simultaneously, as
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FIG. 1. Different regimes of the interaction of the AVB arrays. (a–c) Transverse intensity patterns at different propagation positions.
Marked with a circle is E1; the counterclockwise direction is followed by E2, E3, E4, and E5 successively. The same parameters are chosen
as N = 5, m = n = 3, r = 8w0, P0 = Pgc/5. The transverse velocity parameters are taken as ξ = 1/2, ξ = 1, ξ = 3/2, corresponding to
(a)–(c), respectively. (d, e) The projection trajectories of E1 in the x-z plane and y-z plane, respectively. (f) The projection trajectories of E1

in the x-y plane with different transverse velocity parameters; the arrows indicate the direction of motion. (g) Three-dimensional propagation
trajectories of E1; the line with an arrow indicates the propagation axis and points out the direction of propagation. The velocity parameters
are taken as ξ = 1/2 for the dash-dotted line, ξ = 1 for the solid line, and ξ = 3/2 for the dashed line, respectively.

shown in Figs. 1(a) and 1(c), and the corresponding projection
trajectory in the x-y plane is an ellipse with the equation

(ξ 2 cos2 ϕ j + sin2 ϕ j )x
2 + (ξ 2 sin2 ϕ j + cos2 ϕ j )y

2

+ [(ξ 2 − 1) sin(2ϕ j )]xy = ξ 2r2, (35)

[see dash-dotted and dashed lines in Fig. 1(f)]. For
clarity, only the projection trajectories of E1 are given in
Figs. 1(d)–1(f); other constituent AVBs are similar to this. One
can find from Fig. 1(f) that, other things beimg equal, the short
axis (long axis) of the ellipse when ξ > 1 (ξ < 1) is externally

(internally) tangential to the circular projection trajectory
when ξ = 1. Additionally, whatever the value of ξ , the
projection trajectories of each constituent beam in the x-z
plane and y-z plane always change sinusoidally, which
indicates that every interacting beam undergoes a twisted
trajectory that oscillates around the propagation axis. The
corresponding projection trajectories in the x-z plane and y-z
plane can be described as

xc j (z) = r

2
[(1 − ξ ) cos α + (1 + ξ ) cos β] (36)
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FIG. 2. The same as Figs. 1(f) and 1(g) except that the velocity
parameters are taken as ξ = −1/2 for the dash-dotted line, ξ = −1
for the solid line, and ξ = −3/2 for the dashed line, respectively.

and

yc j (z) = r

2
[(1 − ξ ) sin α + (1 + ξ ) sin β], (37)

respectively, with the auxiliary parameters α = ϕ j − z/zp

and β = ϕ j + z/zp. Note that P0 = Pgc/5 is the critical power
of a single AVB for m = n = 3 [45]. While it ensures that
the second-order moment width of each constituent AVB
remains invariant during propagation, the intensity patterns
of the beams are variable due to the carried orbital angular
momentum. The three ranges (0 < ξ < 1, ξ > 1, and ξ = 1)
of the transverse velocity parameter correspond to the three
states (shrink, expansion, and dynamical bound state) of beam
array propagation.

In Figs. 1(f) and 1(g), we give the three-dimensional prop-
agation trajectories and the projection trajectories in the x-y
plane of E1 for different velocity parameters. We can see that
the constituent beams interact with each other in a spiraling
motion with elliptical or circular orbits in the same period.
When ξ > 1 (0 < ξ < 1), the constituent AVB is away from
(close to) the propagation axis first and then close to (away
from) the propagation axis, but when ξ = 1 its distance to the
propagation axis is invariant from beginning to end. This not
only is intuitively observed from Fig. 1 but also can be proved
strictly from Eq. (30). It can be seen that each constituent
beam revolves counterclockwise around the propagation axis.
The parameters in Figs. 2(a) and 2(b) are the same as those
in Fig. 1 except that the velocity parameters are taken as cor-
responding negative values. Each constituent beam revolves
clockwise around the propagation axis at this time. Combining
Eq. (32) one can come to the conclusion that if ξ > 0 (ξ <

0) then the angular velocity ω(z) > 0 [ω(z) < 0], and each
constituent beam has a counterclockwise (clockwise) rotation
around the propagation axis when it travels along the z axis.
Furthermore, if two beam arrays only have differences in signs
for velocity parameters, the propagation properties between
them are the same except in the opposite direction of rotation.
We can calculate the eccentricity of the elliptical trajectory as

e =

⎧⎪⎨
⎪⎩

(1 − |ξ |2)1/2, 0 < |ξ | < 1,

0, |ξ | = 1,

(1 − 1/|ξ |2)1/2, |ξ | > 1,

(38)

and its varying curve is shown in Fig. 3. As is well known,
the closer the eccentricity gets to 1, the thinner the ellip-
tical trajectory becomes; the closer the eccentricity gets to
zero, the closer the elliptical trajectory gets to a circle. In

ξ

FIG. 3. The eccentricity of elliptical trajectory changes with the
velocity parameter.

Eq. (38), the expression of the absolute value of the velocity
parameter is determined by

|ξ | = zp

r

√
t2
x j + t2

y j . (39)

Figure 4 shows the evolution behavior of the array’s size
for several values of transverse velocity parameter ξ . The
other parameters are chosen to be the same as in Fig. 1. In
the case of ξ > 1 (0 < ξ < 1), the size of the AVB array
is always larger (smaller) than that in the case of ξ = 1,
and it breathes with the period �zs = πzp. For that matter,
the evolution of the array’s size described by Eq. (31) has
similar propagation behaviors to the second-order moment
width of a single AVB [45]. Thus, we can name these two
propagation states as “array breathers.” We search the first
derivative of Eq. (31) and take the resulting sign-dependent
terms as transform parameter κS such that

κS = (ξ 2 − 1) sin

(
2z

zp

)
, (40)

and its curve is shown in Fig. 4(b). One sees that, if ξ >

1, κS is positive within the interval 0 � z � �zs/2 and neg-
ative within the interval �zs/2 � z � �zs; when 0 � z �
�zs/4 and 3�zs/4 � z � �zs, the transform parameter in-
creases with increasing the axial propagation distance; when
�zs/4 � z � 3�zs/4, the transform parameter decreases with
increasing the axial propagation distance [see dashed line in

0

100

200

300

400

π 2π0

(a)

κ

-1

0

1

π 2π0

(b)

FIG. 4. (a) The size of the AVB array vs propagation distance z
for different values of transverse velocity parameter ξ . (b) The trans-
form parameter vs propagation distance. Dash-dotted line, ξ = 1/2;
solid line, ξ = 1; dashed line, ξ = 3/2. Parameters: N = 5, m =
n = 3, r = 8w0, P0 = Pgc/5.
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FIG. 5. (a) Transverse intensity patterns at different propagation positions shown at the top. (b) Transverse intensity distributions in the x
direction. (c) Phase distributions vs propagation distance. Phase images are scaled from −π/2 to π/2. Parameters: N = 5, m = n = 3, r =
5w0, ξ = 1/2, P0 = Pgc/5.

Fig. 4(b)]. If ξ < 1, the variation of the transform parameter
is just the opposite of that when ξ > 1 [see dash-dotted line
in Fig. 4(b)]. The positive (negative) κS indicates that each
constituent AVB is in centrifugal (centripetal) motion, and the
corresponding S is getting bigger (smaller). Of course, if κS ≡
0, i.e., ξ = 1, this means that the array’s size remains invariant
as a function of propagation distance z. Correspondingly, we
name this propagation state as an “array soliton.”

The physical reasons for the above phenomena can be ex-
plained as follows. Two beams interacting in a local medium
attract each other when they are in phase and repel each
other when they are out of phase; two beams interacting in
a strongly nonlocal medium, no matter what the phase is
between them, always attract each other [6]. Qualitatively,
the centrifugal force is inversely proportional to the square
of the beam spacing. When ξ < 1, the attractive force among
the constituent AVBs, which leads to the centripetal motion,
is weaker than the centrifugal force induced by the transverse
velocity at the initial position; as a result, the AVB array is
expanded at the beginning of propagation. Then, as the beam
spacing becomes wider, the centrifugal force becomes weaker
and weaker. When the beam spacing reaches its maximum,
the centrifugal force is already weaker than the attractive
force; the beam array is beginning to be compressed and the
beam spacing is getting narrower gradually. Thus, under the
competition between attractive force and centrifugal force,
the array’s size varies periodically during propagation. If
ξ > 1, the array’s size also varies periodically except that
it is always expanded, not compressed (relative to the case
of ξ = 1), in that the bigger transverse velocity provides a
stronger centrifugal force. Specially, if ξ = 1, the centrifu-
gal force is exactly balanced by attractive force due to the
beam interaction, so the array’s size is neither expanded nor
compressed.

B. The influences of topological charge and the number of the
constituent AVB on light intensity

From Fig. 1(a), we can see that when transverse velocity or
the radius of the ringlike structure is small the transverse light
intensity distribution pattern of the AVB array will become
more complex due to the correlation and interference effects
among the constituent beams. In the following, therefore, we
are going to discuss the intensity patterns of the AVB arrays
in detail numerically, by using the analytical propagation
expression derived above.

A stack of images taken in Fig. 5 illustrates the typical
evolution of the AVB arrays in SNNM when 0 < ξ < 1.
It can be seen that although there are many energy peaks
around the center of the array field during propagation the
central intensity of the array field is always zero, as shown
in Figs. 5(a) and 5(b). Based on the propagation expression,
we have obtained a complete evolution period of the array
as �zt = 2πzp. Here only the first half period (from z = 0
to πzp) is given as follows from the fact that the second
half period (from z = πzp to 2πzp) is a reverse process of
the first half period. That is to say, the AVB arrays can be
revivable at the end of each evolution period. This is similar
to the propagation properties of high-order temporal solitons
(or breathers) in nonlinear fiber [46]. One sees that Figs. 5(a)
and 5(b) are perfectly symmetric with respect to z = 0.5πzp.
However, the images in Fig. 5(c) are complementary with
respect to z = 0.5πzp. If we take one point on each side of
the line z = 0.5πzp, the distance between them and the line is
equal, and we record them as a and b, respectively. Then their
phases satisfy the relation φa + φb = 0.

Figure 6 presents the evolution of AVB arrays with the
same initial parameters as Fig. 5 except that the topological
charge is taken as m = 5. Most of the features of this rotating
array field are the same as those in Fig. 5, but now the central
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FIG. 6. The same as Fig. 5 except that m = 5.

light intensity is no longer zero during propagation, as seen
by comparing the rotations in Figs. 5(b) and 6(b). The bright-
and-dark fringes result from the constructive and destructive
interferences of the superimposed light field. According to the
interference theory, the appearance of each interference fringe
is due to the phase difference of 2π between two coherent
beams. It is well known that the phase of a vortex beam field
has a helical phase variation of an integer multiple of 2π

around the vortex core. m is the very number of 2π phase
cycles around the optical vortex centered on each constituent
AVB, as shown in Figs. 5(c) and 6(c). It governs the vortex
nature of the array field through the phase factor exp(−imθ ).
For a vortex beam with topological charge of m, there will
be a wavefront phase change of 2πm accompanying every
rotation of the azimuth angle. If we consider the ringlike array
consisting of N vortex beams as a single beam, the azimuthal

angle of the ringlike array rotates one cycle, and the phase
change of 2πmN will occur.

Figure 7 graphs the transverse intensity distributions of
the AVB arrays with topological charge from m = 0 to 9,
respectively, for comparison. We take the intensity patterns at
z = 0.3πzp as an example to illustrate its regularity of change.
One sees that the intensity profile is a peak at x = 0 only when
m = 0 and 5, while the intensity profile is a valley at x = 0
when m takes other values. This corresponds to the fact that
the central light intensity is not zero when m = 0 and 5 but it
is always zero when m takes other values. Moreover, through
more numerical simulations, we find that the central light
intensity of the AVB arrays, in the case of in-phase incidence,
is not zero only if the ratio m/N is an integer. To put it another
way, the dark core of the array field exists throughout the
propagation process if the ratio m/N is not an integer. At

FIG. 7. Transverse intensity patterns of the AVB array with different numbers of topological charge m at the same propagation position
z = 0.3πzp; the insets (solid line in each figure) are intensity profiles of the AVB array in the x direction. Parameters: N = 5, n = 3, r =
5w0, ξ = 1/2, P0 = Pgc/5.
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FIG. 8. Examples of the spiraling AVB arrays. Common parameters: m = n = 3, P0 = Pgc/5, ξ = 1. Respective parameters: (a) N =
10, r = 12w0; (b) Ns = 9, r = 8w0; (c) Ns = 12, r = 7.5w0. The subscript s of N means sum.

the same propagation position, the greater the value of m,
the greater the number of light intensity peaks. Of course, it
is inseparable from the diffraction effect of each constituent
AVB and the nonlinear effect of the medium, which cause the
superposition of optical fields between neighboring beams.

C. Other array forms

In the past, there have been many studies on single-beam
[34–36,40,47], double-beam [6,44,48], and ringlike beam ar-
rays [28,29], but relatively few on other types of beam arrays.
Here, we give more forms of multibeam interaction.

To verify the model of our spiraling arrays, we perform a
series of simulations of different N values, as shown in Fig. 8.
In view of the importance of the dynamical bound state (array
soliton), we only give the case of ξ = 1. The spiraling neck-
lacelike, square-matrix-like, and polygonlike fields can be
obtained through appropriately designed radius r. The smaller
the value of r the tighter is the arrangement of the beam arrays,
and the higher the overlap degree between the constituent
beams the more concentrated is the energy. In the process of
constructing Fig. 8(a), we take the parameters as N = 10 and
r = 12w0. In the process of constructing Fig. 8(b),

Ns = 9

⎧⎪⎨
⎪⎩

take j = 1 when N1 = 1 with r1 = 0,

take j = 1, 2, 3, 4 when N2 = 4 with r2 = r,

take j = 1, 3, 5, 7 when N3 = 8 with r3 = √
2r.

In the process of constructing Fig. 8(c),

Ns = 12

{
take j = 1, 2, 3, 4, 5, 6 when N1 = 6 with r1 = r,

take j = 1, 3, 5, 7, 9, 11 when N2 = 12 with r2 = √
3r.

Also, many other desirable fields can be obtained by selecting
appropriate incident parameters. They can be regarded as
generalized high-order spatial soliton forms. The shape of the
array field remains invariant during propagation and rotates
with the period 2πzp. Each constituent AVB revolves
both around the center of mass of the arrays (i.e., the
propagation axis) and on its own axis. If we assume
that the constituent beams do not travel along the z axis,

and the propagation distance z is regarded as time t , then
their motion is confined in the x-y plane. In this case,
the orbits of the AVBs are concentric circles. Of course,
elliptical orbits can also be realized; at this point, the
beam array propagates as array breathers. Each constituent
beam undergoes alternating transformation of dispersion
and aggregation during propagation, as discussed earlier in
Fig. 1.
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FIG. 9. Examples of the spiraling AVB arrays. Common parameters: m = n = 3, P0 = Pgc/5, ξ = 1. Respective parameters: (a) Ns =
2, where we take constituent beams represented by j = 5, 10 when N = 10 with r = 12w0; (b) Ns = 4, where we take constituent beams
represented by j = 2, 3, 7, 8 when N = 10 with r = 12w0; (c) Ns = 6, where we take constituent beams represented by j = 1, 2, 4, 5 when
N1 = 6 with r1 = r and by j = 3, 9 when N2 = 12 with r2 = √

3r, r = 7.5w0.

Taking our model one step further, the array soliton pairs
[Fig. 9(a)] and array soliton groups [Figs. 9(b) and 9(c), each
soliton group consisting of two, three, or even more solitons]
can be constructed. They can all evolve from the simplest
ringlike structure. Certainly, we can regard Figs. 9(b) and 9(c)
as rectanglelike and hexagonal-like array fields, respectively.
Each soliton group has a precession motion around the prop-
agation axis at an equal angular velocity ω(z) = 1/zp. The
spacing between the center of mass of the two soliton groups
in Figs. 9(a)–9(c) can be obtained as

Da(z) = 2d (z), (41)

Db(z) = 2 cos(π/10)d (z), (42)

Dc(z) = (4
√

3/3)d (z), (43)

respectively. It can be verified that Eqs. (41)–(43) are valid
when ξ 	= 1. This provides a theoretical model for simul-
taneous transmission of multiple groups of signals without
interfering with each other. For an actual medium with fixed
length L, the coordinate of each signal at the exit plane can
be separately written as (xc j (L), yc j (L)). Similarly, the length
of the medium can be determined according to the output
position of the signal and the initial incident conditions. In
this respect, these models have potential applications in opti-
cal communication and particle control. No more multibeam
interaction forms are given here, but the interested reader
can establish them according to the approach provided in
this paper.

IV. CONCLUSION

A class of spiraling AVB arrays has been introduced, the
propagation expression of the beam array in SNNM has been
derived, and the propagation properties have been analyzed
analytically and by numerical simulations. Such arrays, which
can be viewed as a generalized single beam, present more
unique forms of propagation and transformation. We roughly
divide the propagation state of the beam array into three situa-
tions (shrink, expansion, and dynamical bound state) based on
the introduced transverse velocity parameter. Two concepts—
the array soliton (the shape and size of the array do not change
during propagation) and the array breather (at least one of the
shape and size of the array changes during propagation)—are
proposed based on our model. Although each constituent AVB
rotates as an individual around its respective beam center, all
the beams are in a synchronous motion during propagation.
In this regard, the spiraling beam array may act as a powerful
tool for dynamic control over multiple particles. In view of
the increasing interest in the optical vortices, it is hoped that
our result will provide a broader basis for further research
into the interaction of the vortex beam arrays. Our results may
have potential applications in optical communication, particle
manipulation, and other related fields.

Here, we give a short discussion about the related physical
generation of input beams needed to observe the spiraling
AVB arrays. The experimental generation of a single AVB
has been reported in Ref. [21]. In terms of the formation of
beam arrays, the experimental setup mentioned in Ref. [49]
(which can generate beam arrays with controllable beam
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order and spatial distributions) may be helpful, and also the
modified holographic beam shaping technique mentioned in
Ref. [22].
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