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Accessing the non-equal-time commutators of a trapped ion
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The vibronic dynamics of a trapped ion in the resolved-sideband regime can be described by the explicitly
time-dependent nonlinear Jaynes-Cummings model. It is shown that the expectation value of the interaction
Hamiltonian and its non-equal-time commutator can be determined by measuring the electronic-state evolution.
This yields direct insight into the time-ordering contributions to the unitary time evolution. In order to prove
extraction of the quantities of interest works for possibly real data, we demonstrate the procedure by means of
generated data.
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I. INTRODUCTION

Starting with the development of quantum mechanics and
the introduction of Hilbert-space operators, the noncommuta-
tivity of the latter became an issue. It leads to many fascinating
physical effects, where the most prominent example is most
likely the Heisenberg uncertainty principle [1–3]. Further-
more, noncommutativity plays an important role in quan-
tum field theory [4], quantum many-body systems [5–13],
quantum electrodynamics [14–16], the standard model [17],
and cosmology [18,19]. Here we consider the problem of
non-equal-time commutators from the quantum optics point
of view.

A noteworthy achievement in this context is the experimen-
tal verification of the bosonic commutation relation, [â, â†] =
1̂. Although this relation is of fundamental relevance for the
formulation of quantum mechanics, it was not verified before
2007, in a seminal paper by Bellini and co-authors [20]. Later
on, this subject was analyzed in some more detail [21,22].
Elementary commutation rules of such a type are equal-time
rules introduced in the procedure of canonical quantization.

This leads to another fundamental subject, namely, the
non-equal-time commutation rules, which play an important
role in the context of interaction problems including time
ordering. If the dynamics of an explicitly time-dependent
Hamiltonian is formally solved in terms of the standard time-
evolution operator, one finds that the latter obeys a time-
ordering prescription (cf., e.g., [23–26]). This prescription
must not be omitted as it has a crucial impact on the dynamics
of the system [27–34]. Paradoxically, despite its key role
in basic quantum mechanics, detailed treatments of time-
ordering effects are rarely available. A direct verification of
the non-equal-time commutators of Hamiltonians has, to our
best knowledge, not been studied yet. Of course, the non-
equal-time commutators of interest only occur in the case of
explicitly time-dependent Hamiltonians. We also stress that
the time-dependent commutators are not postulated in the
quantization procedure. Instead, they require the solution of
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the interaction problem under consideration. Hence, it is very
useful to consider an exactly solvable interaction dynamics.
As the latter should also not be a trivial example, we consider
the nonlinear vibronic interaction of a trapped and laser-driven
ion. For a slightly off-resonant driving laser, we are just in the
regime of interest.

In this work, we use basic relations of quantum mechanics
to show that the measurement of the expectation value of an
explicitly time-dependent interaction Hamiltonian yields the
expectation value of a partly integrated non-equal-time com-
mutator of this Hamiltonian. If this commutator is nonzero,
the system undergoes a time-ordered dynamics. In principle,
the latter can be determined for any physical system with
an explicitly time-dependent Hamiltonian. For a rigorous
treatment of the problem, we focus on the mentioned exactly
solvable problem. Note that insight into the non-equal-time
commutators is an issue of relevance for the general dynamics
of quantum systems. In many cases, when exact solutions are
not available, the problem can only by solved numerically. For
the trapped-ion dynamics under study, the advantage is that we
may obtain the expectation value of the interaction Hamilto-
nian directly from the measurement of the excited electronic-
state occupation probability. The specific steps of the proce-
dure will be demonstrated by the use of generated data.

The paper is structured as follows. In Sec. II we introduce
the time evolution in the case of explicitly time-dependent in-
teraction Hamiltonians together with the resulting non-equal-
time commutators. The nonlinear explicitly time-dependent
Jaynes-Cummings model is introduced in Sec. III, which al-
lows us to study the dynamics of interest on the basis of exact
solutions. In Sec. IV we show how one may experimentally
determine the interaction Hamiltonian in Fock basis for the
case of the laser-driven zeroth motional sideband of the ion.
Section V is devoted to the investigation of the relevance of the
non-equal-time commutators of the interaction Hamiltonian.
A summary and some conclusions are given in Sec. VI.

II. TIME EVOLUTION

We start with some fundamental relations of quantum
theory. The properties of a physical system may be compactly
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expressed by its Hamiltonian, ĤS (t ) = Ĥ0,S + Ĥint,S . The in-
dex S denotes the Schrödinger picture, Ĥ0,S is the free evo-
lution of the system, and Ĥint,S is the interaction of different
degrees of freedom. In the interaction picture, denoted by the
index I , and assuming that the interaction Hamiltonian is in
this picture explicitly time dependent, the dynamics of the
system is described by the time-evolution operator

ÛI (t ) = T exp

(
− i

h̄

∫ t

0
Ĥint,I (τ )dτ

)
. (1)

Throughout this work, the explicit time dependence of
the Hamiltonians is presumed. Here, T denotes the time-
ordering prescription which only can be ignored if the inter-
action Hamiltonian commutes with itself at different times,
[Ĥint,I (τ1), Ĥint,I (τ2)] = 0, ∀(τ1, τ2) (see, e.g., [23–26]).

We emphasize that throughout this work the time depen-
dence of the Hamiltonian Ĥint,I (τ ) refers to the explicit time
dependence and not to the (implicit) time dependence of the
operators. The latter is directly caused by the time-evolution
operator ÛI (t ). In general, the interaction Hamiltonian is
proportional to some coupling constant |κ| and, hence, we
may use a power series expansion

ÛI (t ) = 1 − i

h̄

∫ t

0
dτ1Ĥint,I (τ1)

− 1

h̄2

∫ t

0
dτ1

∫ τ1

0
dτ2Ĥint,I (τ1)Ĥint,I (τ2) + O(|κ|3).

(2)

The full time evolution of the interaction Hamiltonian reads
as

Û †
I (t )Ĥint,I (t )ÛI (t )

= Ĥint,I (t )︸ ︷︷ ︸
∝|κ|

+ i

h̄

∫ t

0
dτ1 [Ĥint,I (τ1), Ĥint,I (t )]︸ ︷︷ ︸

∝|κ|2
+O(|κ|3).

(3)

The terms proportional to |κ| and |κ|2 yield the interaction
Hamiltonian and its partly integrated non-equal-time commu-
tator, respectively. However, especially from the experimental
point of view, the determination of the expectation value of
solely the interaction Hamiltonian is not a trivial task. In
the following, we will consider a realistic model, the ex-
plicitly time-dependent nonlinear Jaynes-Cummings Hamilto-
nian, which describes the vibronic dynamics of a trapped ion
in the resolved-sideband regime. We will show that for this
model the expectation value of Eq. (3) can be derived from an
experimentally accessible observable.

III. NONLINEAR JAYNES-CUMMINGS MODEL

The quantized center-of-mass motion of a trapped ion, in
the resolved-sideband limit, can be described by the non-
linear Jaynes-Cummings model [35]. Including a frequency
mismatch �ω, which we assume to be small but nonzero,
such that the Hamiltonian is explicitly time dependent in
the interaction picture. The corresponding kth-order nonlin-
ear interaction Hamiltonian, after a vibrational rotating wave

approximation, reads as

Ĥint,I (t ) = h̄|κ|e−i�ωt+iθ Â21 f̂k (n̂; η)âk + H.c. (4)

(see Ref. [36] for a detailed derivation). Here, κ = |κ|eiθ is
the coupling constant of the ion’s electronic and vibrational
levels and is proportional to the amplitude of the driving
laser. Additionally, â and â† are the annihilation and creation
operators of the vibrational mode and, in the case of a standing
wave, with n̂ = â†â, f̂k (n̂; η) describes the mode structure of
the driving laser field at the position of the ion. It is, in Fock
basis, defined as follows:

f̂k (n̂; η) = 1

2
ei�φ−η2/2

∞∑
n=0

|n〉〈n| (iη)kn!

(n + k)!
L(k)

n (η2) + H.c.,

(5)

with L(k)
n denoting the generalized Laguerre polynomials, η is

the Lamb-Dicke parameter, and �φ determines the position
of the trap potential relative to the laser wave. The atomic
flip operator Âi j = |i〉〈 j| (i, j = 1, 2) describes the | j〉 →
|i〉 transition. Furthermore, the classical driving laser with
frequency ωL = ω21 − kν + �ω is slightly detuned from the
kth sideband by �ω, which yields the time dependence of
the Hamiltonian in Eq. (4). Here, ν is the trap frequency and
ω21 = ω2 − ω1 is the separation of the electronic levels |1〉
and |2〉. Finally, the Hamiltonian describing the free evolution
reads as

Ĥ0,I = h̄νn̂ + h̄ω21Â22. (6)

A detailed discussion of the Hamiltonians can be found in
Refs. [35,36] or Chap. 13 of [24].

The solution of the corresponding dynamics,

ÛI (t ) =
∞∑

n=0

[an(t )|2, n〉〈2, n| − b∗
n(t )e−2iθ |1, n + k〉〈2, n|

+ bn(t )e2iθ |2, n〉〈1, n + k|

+ a∗
n(t )|1, n + k〉〈1, n + k|] +

k−1∑
q=0

|1, q〉〈1, q|, (7)

with

an(t ) = e−i�ωt/2

[
cos(
nt ) + i�ω

2
n
sin(
nt )

]
,

bn(t ) = e−i�ωt/2 |κ|wn

i
n
sin(
nt ),


n =
√(

�ω

2

)2

+ w2
n|κ|2,

wn = cos
(
�φ + π

2
k
)
ηke−η2/2

√
n!

(n + k)!
L(k)

n (η2) (8)

has been derived in Ref. [37].
Let us consider the time evolution of the occupation

probability of the excited electronic state, σ22 = 〈Â22〉. Be-
cause of [Â22, Ĥ0,I ] = 0, σ22 depends solely on the interaction
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Hamiltonian, which yields

σ̇22(t ) = i

h̄
〈Û †

I (t )[Ĥint,I (t ), Â22]ÛI (t )〉. (9)

Using the Hamiltonian in Eq. (4), we obtain

σ̇22(t ) = i|κ|〈−e−i�ωt+iθ Â21(t ) f̂k (n̂(t ); η)âk (t )

+ ei�ωt−iθ Â12(t )â†k (t ) f̂k (n̂(t ); η)〉. (10)

Comparing this expression with the Hamiltonian (4), for
�ω 	= 0 we get

h̄�ωσ̇22(t ) ≡
〈
Û †

I (t )

(
d

dt
Ĥint,I (t )

)
ÛI (t )

〉
. (11)

Note that for �ω = 0, when the Hamiltonian is not explicitly
time dependent, both sides of the latter equation vanish and
hence they yield no physical insight in the interaction dynam-
ics. Since Û †

I (t )[ d
dt Ĥint,I (t )]ÛI (t ) = d

dt [Û †
I (t )Ĥint,I (t )ÛI (t )],

we may integrate Eq. (10) to arrive at

h̄�ω[σ22(t ) − σ22(0)] = 〈Û †
I (t )Ĥint,I (t )ÛI (t )〉

− 〈Û †
I (0)Ĥint,I (0)ÛI (0)〉. (12)

We observe that the measurement of the excited-state
occupation probability σ22(t ), which is achieved via probing
an auxiliary transition for resonance fluorescence [38–40], is
directly related to the expectation value of the time-dependent
interaction Hamiltonian. The consideration of different orders
with respect to |κ| allows one to determine either the inter-
action Hamiltonian itself or the corresponding commutator
in Eq. (3). Without loss of generality, we set θ = 0 in the
following.

In this section, we have briefly recapitulated the detuned
nonlinear Jaynes-Cummings model which describes the quan-
tized motion of a trapped ion in the resolved-sideband regime.
This model was originally introduced for zero detuning [35]
and experimentally proven to properly describe the exper-
imental dynamics of trapped ions [41]. In experiments the
extension of the model to include the detuning under study
here is a minor issue.

For the case of detuning we have shown that the expecta-
tion value of the interaction Hamiltonian can be obtained from
the occupation probability σ22(t ) of the (excited) electronic
state. According to Eq. (3), from the latter we can extract
the expectation value of the interaction Hamiltonian in the
interaction picture (∝|κ|) and the corresponding commutator
(∝|κ|2). In the next two sections we will demonstrate the
procedure step by step by using generated data. The latter are
used to visualize the situation for experimental, i.e., fluctuat-
ing, data.

IV. DETERMINATION OF THE ZEROTH SIDEBAND
INTERACTION HAMILTONIAN

In this section we will consider the determination of
the interaction Hamiltonian in Fock basis, 〈Ĥint,I (t )〉 =
Trel[σ̂ (0)〈n|Ĥint,I (t )|n〉], for k = 0 in Eq. (4). Note that this
Hamiltonian is diagonal in Fock basis. A remark concerning
the case k > 0 is given at the end of this section. Here,
Trel is the trace over the electronic degrees of freedom. The

FIG. 1. The generated data (blue dots) of the excited state oc-
cupation probability together with a nonlinear curve fit [Eq. (16)]
for the excitation to the zeroth sideband, k = 0, at |κ ′|t = 10 (solid
black line). The motional input state is the ground state |n = 0〉. The
quantity c1g is given as the dashed red line. Parameters: η = 0.2,
�ω/|κ ′| = 0.2, � = 0, and ν = 5000.

generation of vibrational Fock states in an ion trap was already
investigated in the 1990s (cf. Refs. [41,42]).

In the following we will use the input density matrix
ρ̂(0) = σ̂ (0) ⊗ ρ̂mot(0), where σ̂ (0) and ρ̂mot(0) describe the
electronic and the motional input state, respectively. An
overview over experimentally possible states of a trapped
ion can be found in Ref. [36], and references therein. If the
electronic state is initially in a superposition,

σ̂ (0) = (γ1|1〉 + γ2|2〉)(γ ∗
1 〈1| + γ ∗

2 〈2|), (13)

with |γ1|2 + |γ2|2 = 1, and ρ̂mot = |n〉〈n|, one readily derives

〈Û †
I (0)Ĥint,I (0)ÛI (0)〉 = h̄|κ| f0(n; η)(γ1γ

∗
2 + γ2γ

∗
1 ). (14)

Here we defined fk (n; η) = 〈n| f̂k (n̂; η)|n〉. Hence, if arg(γ1) −
arg(γ2) = (2m + 1)π

2 for m = 0, 1, . . . , then the expectation
value in Eq. (14) becomes zero. Thus, we set γ1 = eiπ/2/

√
2

and γ2 = 1/
√

2, which leads to σ22(0) = 1/2. Hence, Eq. (12)
simplifies to

〈Û †
I (t )Ĥint,I (t )ÛI (t )〉 = h̄�ω[σ22(t ) − 1/2]. (15)

To demonstrate that our approach applies to experimental
data, we will generate random numbers which approximate
the distribution which σ22 obeys.1 By using this approximated
distribution, a sequence of artificial data points is obtained
which statistically fluctuate around the exact evolution of σ22.
For convenience, we introduce the dimensionless coupling g,
i.e., a rescaling, via |κ| → g|κ ′| and the dimensionless time
|κ ′|t .

A first result of the basic procedure is shown in Fig. 1 for a
fixed time. Therein, each value of σ22 (blue dots) is obtained
from 103 random numbers, to mimic the distribution of σ22 for
a fixed n for the motional input state |n〉〈n|. They are fitted by

1For the generation of random numbers from a given distribution
the Mathematica inbuilt method RandomVariate was used.
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FIG. 2. Generated data (magenta dots) obtained by the technique
in Fig. 1, for motional Fock states |n〉 at |κ ′|t = 10. The other
parameters are the same as in Fig. 1. The gray bars represent the
analytical results according to Eq. (17).

the polynomial

σ̃22 − 1

2
=

∑
l�0

c2l+1g2l+1. (16)

In the fit function only odd orders of g appear, due to the
structure of the Hamiltonian (4)—in this case due to the
algebra of the atomic flip operators—and our choice of the
electronic input state. The parameter c1 leads to the desired
Hamiltonian [cf. Eq. (3)] and is visualized in Fig. 1 via
the dashed red line. It is obvious that especially at g � 1 a
meticulous resolution of the data is important. Here we note
that in experiments the dependence on the coupling strength
g, as considered in Fig. 1, can be well controlled through the
amplitude of the laser driving the trapped ion. For details on
this dependence, we refer to Sec. 13.3 of Ref. [24].

Repeating this procedure for various Fock input states |n〉
yields the interaction Hamiltonian in Fock-space representa-
tion (see Fig. 2). Here we increased the number of random
events to 5 × 103. The theoretical prediction (gray bars) of the
expectation value of the interaction Hamiltonian in the Fock
state |n〉 is easily calculated to be

〈Ĥint,I (t )〉 = h̄|κ| f0(n; η)(γ1γ
∗
2 e−i�ωt + γ2γ

∗
1 ei�ωt ). (17)

On this basis we easily obtain, for the case under study, the
expectation value for an arbitrary motional quantum state
[ρ̂mot(0)] as

Tr{[ρ̂mot(0) ⊗ σ̂ (0)]Ĥint,I (t )} = h̄|κ|(γ1γ
∗
2 e−i�ωt + c.c.)

×
∞∑

n=0

Pn f0(n; η), (18)

in which σ̂ (0) is given in Eq. (13) and Pn is the number
statistics of the motional quantum state under consideration.
The depicted results, which were derived from the generated
data, are close to the analytical results. In certain situations
the extraction of the expectation value of the interaction
Hamiltonian could also serve as a consistency check before
investigating the non-equal-time commutators, which will be
considered in the next section. Hamiltonians which are not

FIG. 3. The generated data (blue dots) of the excited state occu-
pation probability together with a nonlinear curve fit σ̃22 [Eq. (20)]
for the excitation to the second sideband, k = 2, are shown for
|κ ′|t = 40 (solid black line). The quantity c2g2 is given as the dashed
red line. Parameters: α0 = √

12, η = 0.2, �ω/|κ ′| = 0.2, � = 0,
and ν = 5000.

diagonal in the Fock basis can be accessed via its determi-
nation in the coherent state basis. The subsequent integration
over the Glauber-Sudarshan P function yields the expectation
values of the more general interaction Hamiltonians (for k 	=
0) in Eq. (4) (see, e.g., Ref. [24]).

V. ACCESSING THE COMMUTATOR

For this task we use σ̂ (0) = |1〉〈1|. Hence, the ion is
initially in the electronic ground state, so that σ22(0) = 0.
From Eq. (12) we get

〈Û †
I (t )Ĥint,I (t )ÛI (t )〉 = h̄�ωσ22(t ). (19)

Furthermore, we assume that the vibrational input state is a
coherent state |α0〉. Details concerning the preparation of co-
herent motional states can be found, for example, in Ref. [41].

In Fig. 3 we outline the basic procedure, where the statistics
is approximated by using 104 random numbers for each data
point; for explanations see the discussion following Eq. (15).
The generated data are now fitted by the function

σ̃22 =
∑
l�1

c2l g
2l . (20)

For similar reasons as in Eq. (16) now only even orders of
g appear. According to Eq. (3), the parameter c2 yields the
desired time-integrated commutator in Eq. (3). The parameter
c2 is visualized in Fig. 3 by the dashed red line and describes
the quadratic contribution which represents the sought com-
mutator.

To finally obtain the time evolution of the commutator
one has to repeat the measurement for all times. The result
is depicted in Fig. 4 for 2 × 104 random numbers per data
point and time. For each point in time we repeat the step
which is depicted in Fig. 3. Afterward we fit the data and
extract the quadratic slope. The commutator of interest, i.e.,
the theoretical prediction, can be analytically derived and
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FIG. 4. The generated data together with the theoretical predic-
tions of the expectation value of the time-integrated commutator
(black lines) from Eq. (21). The data correspond to the scenarios k =
2 (magenta dots) and k = 0 (green dots). The gray line at |κ ′|t = 40
marks the situation depicted in Fig. 3 for the k = 2 case. The other
parameters are the same as in Fig. 3.

reads as

i

h̄

∫ t

0
dτ1〈1, α0|

[
Ĥint,I (τ1), Ĥint,I (t )

]|1, α0〉

= 2|κ|2h̄

�ω
(1 − cos �ωt )

∞∑
n=0

| fk (n; η)|2 |α0|2(n+k)

n!
e−|α0|2 ,

(21)

which is a harmonic oscillation in time. This result is given as
the black lines in Fig. 4.

The magenta and green dots correspond to the excitation to
the second (k = 2) and the zeroth (k = 0) sideband, respec-
tively. The results derived from the generated data resemble
the theoretical results sufficiently well. It is noteworthy that,
for an explicitly time-dependent Hamiltonian, to certify clear
experimental evidence of the relevance of the non-equal-time
commutators of the interaction Hamiltonian for the system
dynamics, it is sufficient to demonstrate statistically signifi-
cant nonzero contributions in Fig. 4. Here we show that such
a certification is, by the techniques proposed here, rather easy
to do.

VI. SUMMARY AND CONCLUSIONS

To our best knowledge, presently no proposal of a method
for the experimental verification of the non-equal-time com-
mutators of interaction Hamiltonians does exist. A reason
for this is, that usually it is preferred to operate a certain
dynamics under perfect resonance conditions. However, the
general situation with an explicitly time-dependent interaction
needs to be fully understood. The present paper aims to
contribute significantly to this fundamental issue. For this
purpose, we derived analytical expressions for measurable
quantities, which render it possible to experimentally access
the quantities of interest.

We have shown that, for the vibronic dynamics of a
laser-driven trapped ion in the resolved-sideband regime, the
measurement of the electronic-state occupation probability
yields the temporal evolution of the expectation value of
the interaction Hamiltonian. From this value one can derive
both the expectation value of the interaction Hamiltonian in
the interaction picture and the partly integrated non-equal-
time commutator of the interaction Hamiltonian. Statistically
generated data points are only used to demonstrate that the
proposed methods will work under realistic experimental con-
ditions. The obtained results well approximate the analytically
derived ones. Thus, the detuned nonlinear Jaynes-Cummings
Hamiltonian under study is appropriate to access the funda-
mentals of explicitly time-dependent temporal evolutions of
quantum systems.

For the determination of the Hamiltonian we have consid-
ered an input motional Fock state and obtained the interaction
Hamiltonian in the Fock basis for the quasiresonant excitation
of the zeroth motional sideband. In addition, the non-equal-
time commutator, which explicitly accounts for time-ordering
corrections, has been investigated. For an initially prepared
motional coherent state, the evolution of the partly time-
integrated commutator can be determined. This allows one
to directly visualize in experiments the noncommutativity of
the interaction Hamiltonian at different times. Our approach
paves the way to study the explicitly time-dependent dynam-
ics also for other quantum systems of interest. However, this
requires the reformulation of the corresponding measurement
principles for the systems to be studied, which is beyond the
scope of the present paper.
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