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Quantum correlations in optomechanical crystals
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The field of optomechanics provides us with several examples of quantum photon-phonon interface. In this
paper, we theoretically investigate the generation and manipulation of quantum correlations in a microfabricated
optomechanical array. We consider a system consisting of localized photonic and phononic modes interacting
locally via radiation pressure at each lattice site with the possibility of hopping of photons and phonons
between neighboring sites. We show that such an interaction can correlate various modes of a driven coupled
optomechanical array with well-chosen system parameters. Moreover, in the linearized regime of Gaussian
fluctuations, the quantum correlations not only survive in the presence of thermal noise, but may also be
generated thermally. We find that these optomechanical arrays provide a suitable platform for quantum
simulation of various many-body systems.
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I. INTRODUCTION

The impressive experimental progress in fabricating mi-
cromechanical and nanomechanical devices has opened a
route towards the exhibition of quantum behavior at macro-
scopic scales. The interaction between micro- or nanome-
chanical oscillators and the optical field via the radiation
pressure force is the basis of a wide variety of optomechanical
phenomena. Despite their variety in the system sizes, param-
eters, and configurations, optomechanical systems (OMSs)
share common features. Almost all OMSs are described by
the same physics. OMSs offer further insights into the issues
concerning the development of quantum memory for quantum
computers [1], high-precision position, mass or force sens-
ing [2–6], quantum transducers [7], classical and quantum
communication [8], ground-state cooling of mechanical oscil-
lators [9,10], nonclassical correlations between single photons
and phonons [11], generation of nonclassical states [12], and
testing of the foundations of quantum mechanics [13–16].
For a recent review and current areas of focus of quantum
optomechanics see Refs. [17,18].

The extension to multimode systems is an attractive route
for quantum optomechanics. A group of mechanical oscilla-
tors interacting via the radiation pressure with a common opti-
cal mode [19–26], or a group of mechanical oscillators locally
interacting with a single optical mode involving the tunneling
of photons and phonons between neighboring sites [27–37],
are the two realizations of multimode optomechanics. The
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former is realized in a single optical cavity containing multiple
membranes, while the latter is realized experimentally in the
so-called optomechanical crystals (OMCs) in one and two
dimensions.

Cooperative behaviors, emerging due to the mutual cou-
pling, are beneficial to investigate many-body physics of
photons or phonons in OMCs. An OMC is usually fab-
ricated from a thin film of silicon membranes where an
engineered defect in the crystal is used to localize an op-
tical and a mechanical mode. OMCs usually have a large
single-photon optomechanical coupling [31,38–40]. Several
aspects of the array of coupled OMSs have already been
investigated in the literature, involving synchronization dy-
namics [26–28,41,42], slowing and stopping light [32], long-
range collective interactions [19], correlated quantum many-
body states [28], reservoir engineering and dynamical phase
transitions [25], squeezing, entanglement and state trans-
fer between modes [33,43], transport in a one-dimensional
chain [34,44,45], superradiance and collective gain [46],
graphenelike Dirac physics [35], creation of artificial mag-
netic fields for photons on a lattice [36], quantum simulation
of the propagation of the collective excitations of the photon
fluid in a curved spacetime [47], and topological phases of
sound and light [37].

Quantum correlations, in particular entanglement, have
many applications in superdense coding, quantum teleporta-
tion [48], and protocols of quantum cryptography [49]. The
generation and manipulation of entanglement in many-body
systems are of great importance for quantum information
processing. Furthermore, quantum correlations are valuable
in characterizing various phases and corresponding quantum
phase transitions in quantum many-body systems [50–52]. Bi-
partite entanglement plays an important role in characterizing,
classifying, and simulating quantum many-body systems [53].
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FIG. 1. Schematic illustration of a one-dimensional OMC. Lo-
calized photonic and phononic modes couple locally via the op-
tomechanical interaction with strength g0 at each lattice site. Photon
and phonons hop between near-neighbor sites with rates J and K ,
respectively. A laser at frequency ωL and amplitude η j drives each
site.

Physical systems such as Bose-Einstein condensates [54–56],
cold or thermal atoms [57,58], and trapped ions [59,60]
represent promising platforms for the investigation of
many-particle quantum entanglement. In the past decade,
much of the attention has been devoted to entanglement
in OMSs. Entanglement is one of the consequences of the
coherent photon-phonon interaction in OMSs [8,61–67].
For instance, continuous-variable entanglement between two
mechanical modes has recently been realized [68,69]. Since
it is a possible resource for quantum technologies, quantum
discord in many-body systems also requires attention.

Despite considerable efforts to understand the quantum
correlations in OMSs [8,61–66,68,69], a full picture of the
behavior of entanglement and of quantum discord in OMCs
remains elusive. Based on the above motivations, in this paper,
we consider the dynamics of coupled OMSs with a view
towards quantum correlations. Employing the Heisenberg-
Langevin (HL) approach and linearizing HL equations, we
separate the deterministic dynamics and the quantum fluctu-
ation dynamics. We then use HL equations to obtain the co-
variance matrix (CM) in order to study quantum correlations.
With the CM in hand, we can investigate the degree of steady-
state entanglement and the Gaussian quantum discord be-
tween different optical and mechanical modes under different
conditions. We study the influence of the presence of a thermal
reservoir and we show a nonmonotonic behavior of quantum
correlations as a function of the heat-bath temperature.

The paper is organized as follows. In Sec. II, we begin
with describing the system under consideration, i.e., an OMC.
In Sec. III, we derive the HL equations of motion. We then
discuss the classical equations of motion and the linearized
quantum equations. In Sec. IV, we discuss the presence of
entanglement and Gaussian discord in OMCs. Finally, in
Sec. V, we present our concluding remarks.

II. ARRAY OF COUPLED OMSs

As depicted in Fig. 1, the system under consideration
is a finite one-dimensional OMC where each site consists

of a localized photonic and phononic mode coupled locally
via the standard optomechanical interaction. The modes of
nearby sites are connected via photon and phonon tunneling.
The Hamiltonian of such a system is then given by (h̄ =
1) [28,34,37,44]

H = H0 + Ht + Hp, (1)

where

H0 =
∑

j

[ωca†
j a j + ωmb†

jb j − g0a†
j a j (b

†
j + b j )], (2a)

Ht = −
∑
〈 j,l〉

(Ja†
j al + Kb†

jbl ), (2b)

Hp =
∑

j

(iη je
−iωLt a†

j − iη∗
j e

iωLt a j ). (2c)

Here, H0 includes the free energy of each optical mode with
frequency ωc, denoted by the photon operators a j and a†

j , the
harmonic motion of each mechanical mode with frequency
ωm, denoted by phonon operators b j and b†

j , and the usual
optomechanical interaction with strength g0. Further, Ht rep-
resents the hopping of photons and phonons between adjacent
lattice sites with hopping strengths J and K , respectively. The
notation

∑
〈 j,l〉 denotes the summation over all adjacent lattice

sites. Finally, Hp denotes that each lattice site is optically
driven by a laser with frequency ωL and amplitude η j .

III. HEISENBERG-LANGEVIN EQUATIONS

The HL equations of motion for the optical and mechanical
modes in the frame rotating at the laser frequency are, respec-
tively, given by

ȧ j = (i� − κ )a j + ig0(b†
j + b j )a j + iJ (a j−1 + a j+1)

+η j − √
κain

j (t ), (3)

ḃ j = −(iωm + γ )b j + ig0a†
j a j + iK (b j−1 + b j+1)

−√
γ bin

j (t ), (4)

where we have defined the laser detuning � = ωL − ωc. In
addition, κ and γ characterize, respectively, the dissipation of
optical and mechanical modes. The zero-mean-value opera-
tors ain

j (t ) and bin
j (t ) that describe, respectively, the vacuum

optical input noise and the mechanical noise operator satisfy
the commutation relations

[
ain

j (t ), ain,†
j′ (t ′)

] = [
bin

j (t ), bin,†
j′ (t ′)

] = δ j j′δ(t − t ′), (5)

and the Markovian correlation functions
〈
bin,†

j (t )bin
j′ (t

′)
〉 = n̄mδ j j′δ(t − t ′), (6)〈

ain
j (t )ain,†

j′ (t ′)
〉 = δ j j′δ(t − t ′), (7)

where we have assumed that each cavity is at zero tempera-
ture and n̄m = [exp(h̄ωm/kBT ) − 1]−1 is the mean number of
thermal phonons of each mechanical mode at temperature T ,
with kB being the Boltzmann constant.
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A. Classical dynamics

We now employ the mean-field approximation to linearize
the dynamics around the classical solutions by decomposing
the quantum field operators as a j = α j + c j and b j = β j +
d j , where α j and β j are the steady-state mean fields describ-
ing, respectively, the classical behavior of the optical and
mechanical modes, and c j and d j are the quantum fluctuations
with zero-mean value. For the aim of this paper, it is enough
to consider only the translational symmetry α j = α j±1 and
β j = β j±1, which is obtained with an approximately uniform
optical driving η j � η, which therefore excites a background
with a small wave vector k ≈ 0. Using this assumption, the
system dynamics is then simplified to the single-site case. The
equations of motion for the steady-state classical mean fields
can be obtained by averaging Eqs. (3) and (4) over classical
and quantum fluctuations,

α j = α � iη

(� + iκ + 2J + 2g0Reβ )
, (8)

β j = β � g0|α|2
(ωm − iγ − 2K )

, (9)

where Re denotes the real part.

B. Linearized quantum dynamics

We study the quantum statistical properties of the sys-
tem through the small fluctuations of the operators around
the steady-state classical mean values given by Eqs. (8)
and (9). Using the standard definition of the optical
and mechanical mode quadratures Xj = (c j + c†

j )/
√

2, Yj =
(c j − c†

j )/i
√

2, x j = (d j + d†
j )/

√
2, and y j = (d j − d†

j )/i
√

2,
the equations of motion for the quantum fluctuations are

given by

Ẋ j = −(� + 2g0Reβ )Yj − κXj − 2g0Imαx j

−J (Yj−1 + Yj+1) − √
κX in

j (t ), (10)

Ẏj = (� + 2g0Reβ )Xj − κYj + 2g0Reαx j

+J (Xj−1 + Xj+1) − √
κY in

j , (11)

ẋ j = −γ x j + ωmy j − K (y j−1 + y j+1) − √
γ xin

j , (12)

ẏ j = −ωmx j − γ y j + 2g0(ReαXj + ImαYj )

+K (x j−1 + x j+1) − √
γ yin

j , (13)

where Im denotes the imaginary part. We now express the
linearized HL equations in the following compact matrix
form:

u̇(t ) = Au(t ) + n(t ), (14)

where we have defined the vector of fluctuation operators
u = [· · · v j−1, v j, v j+1, · · · ]T with v j = [Xj,Yj, x j, y j]
and the corresponding vector of noises n =
[· · · m j−1, m j, m j+1, · · · ]T with m j = [

√
κX in

j ,
√

κY in
j ,√

γ xin
j ,

√
γ yin

j ], in which X in
j = (ain

j + a†,in
j )/

√
2,

Y in
j = (ain

j − a†,in
j )/i

√
2, xin

j = (bin
j + b†,in

j )/
√

2, and

yin
j = (bin

j − b†,in
j )/i

√
2 are the input noise quadratures of

the optical and mechanical modes. Furthermore, we define
the drift matrix A as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . . 0 0 0

. . . B C 0 0
0 C B C 0

0 0 C B
. . .

0 0 0
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (15)

with the blocks

B =

⎡
⎢⎢⎣

−κ −(� + 2g0Reβ ) −2g0Imα 0
(� + 2g0Reβ ) −κ 2g0Reα 0

0 0 −γ ωm

2g0Reα 2g0Imα −ωm −γ

⎤
⎥⎥⎦, (16)

C =

⎡
⎢⎣

0 −J 0 0
J 0 0 0
0 0 0 −K
0 0 K 0

⎤
⎥⎦. (17)

IV. STEADY-STATE QUANTUM CORRELATIONS

Due to the Gaussian nature of the quantum noises and
to the linearized dynamics, the steady state of the quantum
fluctuations of the OMCs is a continuous-variable 2N-partite
Gaussian state, which is completely determined by its 4N ×
4N CM. The formal solution of Eq. (14) is

u(t ) = M(t )u(0) +
∫ t

0
M(t − s)n(s)ds, (18)

with M(t ) = exp[tA]. The CM defined as

Vpq(t ) = 1
2 〈up(t )uq(t ) + uq(t )up(t )〉 (19)

contains all information about the quantum correlation be-
tween various mechanical and optical modes where up(t ) is
the pth component of the vector u(t ).

The system reaches its steady state when M(∞) = 0.
Our analysis is restricted to the stable regime where all the
eigenvalues of the drift matrix have negative real parts. In
Fig. 2, we plot the region of stability as a function of the
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FIG. 2. Stability domain as a function of the normalized input
power η/J and normalized detuning �/J . The white and blue areas
correspond to the unstable and stable correlated regimes, respec-
tively. The normalized parameters are set with respect to J , κ/J =
0.1, g0/J = 10−4, γ /J = 0.002, ωm/J = 0.1, and K/J = 0.05. Tem-
peratures of the photonic and phononic heat baths are considered to
be zero.

normalized laser pump intensity and detuning. For large laser
drive, the system enters the unstable region. In the steady state,
one gets the CM elements as

Vi j =
∑
k,l

∫ ∞

0
ds

∫ ∞

0
ds′Mik (s)M jl (s

′)
kl (s − s′), (20)

where


kl (s) = 1
2 〈nk (s)nl (s

′) + nl (s
′)nk (s)〉

= Dklδ(s − s′), (21)

where D = diag[· · · F, F, F, · · · ]T with F = diag
[κ, κ, γ (2n̄m + 1), γ (2n̄m + 1)]. When the stability
conditions are satisfied so that M(∞) = 0, the steady-state
CM, V, can be obtained by solving the linearized HL Eq. (14)
for the quantum fluctuations, which fulfill the following
Lyapunov equation:

AV + VAT = −D. (22)

With these classical and quantum steady-state solutions in
hand, we next employ the CM formalism to calculate the
steady-state quantum correlations. We check the presence of
the quantum correlations between the mechanical and optical
modes on the same site, as well as between the mechanical
or optical modes with different site indices. Considering the
following reduced CM of the two modes:

VR =
[

VA VC

VT
C VB

]
, (23)

one can calculate the quantum correlations. Here, VA, VB, and
VC are 2 × 2 matrices where VA and VB account for the local
properties of modes A and B, respectively, while VC describes
intermode correlations. A and B may stand for two different
modes.

A. Steady-state entanglement

We quantify the degree of entanglement in terms of
the logarithmic negativity, which is an entanglement mono-

FIG. 3. The degree of entanglement between optical and me-
chanical modes in terms of the logarithmic negativity for various
values of the laser detuning: (a) �/J = −2.5, (b) �/J = −2.1,
(c) �/J = −1.7, and (d) �/J = −1.3 for 101 coupled OMSs. (e)
The logarithmic negativity between the two optical and mechanical
modes with the same site index j = −50 or j = 50 (blue solid line)
and j = 0 (red dashed line) vs the laser detuning. We set normalized
parameters with respect to J , κ/J = 0.1, η/J = 15, g0/J = 10−4,
γ /J = 0.002, ωm/J = 0.1, and K/J = 0.05. Temperatures of the
photonic and phononic heat baths are considered to be zero.

tone, and it is given by EN = max{0,− ln 2ν̃−} with ν̃− =
2−1/2(�− −

√
�2− − 4 det VR)

1/2
being the smallest of the

two symplectic eigenvalues of the partially transposed CM
and �± = det VA + det VB ± 2 det VC .

1. Photon-phonon entanglement

The degree of entanglement between optical and mechan-
ical modes in terms of the logarithmic negativity for various
laser detuning at zero temperature of both the photonic and
phononic heat baths is shown in Figs. 3(a)–3(d). We can see
that one has mostly on-site optomechanical entanglement, i.e.,
between modes at the same sites, and that there is no long-
range photon-phonon entanglement. However, as suggested
by the zoomed insets, one has that due to the combined action
of the on-site optomechanical interaction and of tunneling
of the photons and phonons between lattice sites, there is
some amount of off-site entanglement between the optical and
mechanical modes. For instance, the optical mode at site j =
0 is entangled with the neighbor mechanical modes at sites
| j| < 1, | j| < 2, | j| < 3, and | j| < 4 for �/J = −2.5, �/J =
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FIG. 4. The degree of entanglement between optical and me-
chanical modes in terms of the logarithmic negativity for various
values of the laser intensity: (a) η/J = 50, (b) η/J = 150, (c) η/J =
250, and (d) η/J = 350 for 101 coupled OMSs. We set �/J = 1.5,
and other parameters are the same as Fig. 3. (e), (f) The logarithmic
negativity between the two optical and mechanical modes with the
same index j = −50 or j = 50 (blue solid line) and j = 0 (red
dashed line) vs the normalized laser pump intensity for two values
of the laser detuning: (e) �/J = −1.5 and (f) �/J = 1.5.

−2.1, �/J = −1.7, and �/J = −1.3. It is also evident that
the detuning has a significant effect on the optomechanical
entanglement. We address this issue in Fig. 3(e), where we
have plotted the logarithmic negativity between the two opti-
cal and mechanical modes with the same site index j = −50
or j = 50 and j = 0 versus the laser detuning.

Our choices for the detuning and laser pump intensity
correspond to the stable region of Fig. 2. Furthermore,
since we did not consider the periodic boundary condi-
tions, one can see a nonuniform behavior at the lattice
edges.

In Figs. 4(a)–4(d), we show how the photon-phonon en-
tanglement varies as a function of the laser pump intensity
for a fixed laser detuning, �/J = 1.5. By increasing the laser
intensity, the entanglement first tends to increase and then
to decrease as we approach the unstable region. Therefore,
there is a nonmonotonic behavior of on-site entanglement.
We show this fact in Figs 4(e) and 4(f), where we have
plotted the logarithmic negativity between the two optical and
mechanical modes with the same site index at the lattice edge
( j = −50 or 50) and at the lattice center ( j = 0) versus the

FIG. 5. Steady-state photon-phonon entanglement for the site
index j = −50 or j = 50 vs the thermal phonon number n̄m for two
values of the normalized laser detuning �/J = −2 (red dashed line)
and �/J = −2.1 (blue solid line) for 101 coupled OMSs. Here, we
consider mechanical resonators with frequency ωm/2π = 9 GHz and
the other parameters are the same as in Fig. 3.

normalized laser pump intensity for two values of the laser
detuning.

Finally, we have also studied the eventual presence of
photon-photon or phonon-phonon entanglement between dif-
ferent sites. We have verified that for all choices of the
parameters, this kind of intersite entanglement is always
zero.

2. Thermal effects on the generated entanglement

Usually, quantum correlations and entanglement in partic-
ular are fragile with respect to thermal noise. Therefore, the
investigation of the effect of thermal fluctuations on the bipar-
tite quantum correlations in OMCs is of particular relevance
for applications.

In Fig. 5, we show how the on-site photon-phonon entan-
glement changes with increasing thermal phonon number n̄m.
Evidently, the on-site photon-phonon entanglement decays
for increasing temperatures and it persists at ultracryogenic
temperatures achievable in dilution refrigerators (for example,
n̄m � 0.06 for mechanical resonance frequency ωm/2π =
9 GHz at a temperature of T = 0.15 K).

B. Steady-state Gaussian quantum discord

It is also interesting to examine if quantum discord [70,71],
a measure of the quantumness of correlations, is present
in the steady state of the system. The Gaussian quantum
discord is an asymmetric quantity and the Gaussian quantum
A-discord of the Gaussian state of two modes, A and B, is
given by [72,73]

D
→ = f (

√
β ) − f (υ−) − f (υ+) − f (

√
ε), (24)

where

f (x) =
(

x+1

2

)
log10

(
x+1

2

)
−

(
x−1

2

)
log10

(
x−1

2

)
,

(25)

υ± =

√√√√�+ ±
√

�2+ − 4 det VR

2
(26)
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FIG. 6. Steady-state symmetrized Gaussian quantum discord be-
tween optical and mechanical modes for various laser detuning
values: (a) �/J = −2.5, (b) �/J = −2.1, (c) �/J = −1.7, and
(d) �/J = −1.3 for 101 coupled OMSs. (e) The symmetrized
Gaussian quantum discord between the two optical and mechanical
modes with the same index j = 0 (blue solid line) and j = 50 (red
dashed line) vs the laser detuning. The heat-bath temperatures for
mechanical and optical modes are considered to be zero. Other
parameters are the same as Fig. 3.

are the two symplectic eigenvalues of the two-mode CM and

ε =
⎧⎨
⎩

2γ 2+(β−1)(δ−α)+2|γ |
√

γ 2+(β−1)(δ−α)

(β−1)2 ,
(δ−αβ )2

(β+1)γ 2(α+δ) � 1
αβ−γ 2+δ−

√
γ 4+(δ−αβ )2−2γ 2(δ+αβ )

2β
, otherwise,

.

(27)
where α = detVA, β = detVB, γ = detVC , and δ = det VR

are the symplectic invariants. One can obtain the Gaussian
quantum B-discord D

← by swapping the roles of the two
modes, A and B, which is equivalent to swapping α and β

in the above formulas. Since we are interested in quantum
correlations in general between the different modes in the
one-dimensional array, from now on we will consider the
symmetrized quantum discord, DG = max{D←,D→}.

1. Photon-phonon steady-state Gaussian quantum discord

Figure 6 shows the behavior of the symmetrized quantum
discord DG for various laser detuning values at zero tempera-
ture of both photonic and phononic modes. Similarly to what
occurred for entanglement, changing the laser detuning has
a significant effect on the photon-phonon Gaussian quantum
discord, and again we have a similar behavior with that of

FIG. 7. Steady-state Gaussian quantum discord between optical
and mechanical modes for various laser intensity values: (a) η/J =
50, (b) η/J = 200, (c) η/J = 350, and (d) η/J = 500 for 101
coupled OMSs. Here, we set �/J = 1.5, and other parameters are
the same as Fig. 3. (e), (f) The steady-state Gaussian quantum discord
between the two optical and mechanical modes with the same site
index j = 50 or j = −50 (red dashed line) and j = 0 (blue solid
line) vs the normalized laser pump intensity for two values of the
laser detuning: (e) �/J = −1.5 and (f) �/J = 1.5.

entanglement with the above choice of parameters, with the
presence of larger on-site discord between the mechanical
and the optical mode and which extends for few sites. One
starts to see a different behavior between Gaussian discord
and entanglement when looking at the dependence upon
the driving power and specifically if we consider increasing
values of the laser drive η. In Fig. 7, we show how steady-
state photon-phonon Gaussian quantum discord varies with
the laser intensity for a fixed laser detuning, �/J = 1.5. In
contrast to the behavior of entanglement, we have that by
increasing the laser intensity, one has a significant increase
of Gaussian quantum discord between optical and mechanical
sites [see Figs. 7(e) and 7(f)]. Moreover, at larger values,
one can see a long-range correlation between optical and
mechanical modes appearing [see Fig. 7(d)].

2. Photon-photon and phonon-phonon steady-state Gaussian
quantum discord

The appearance of long-range quantum correlations also
occurs when considering either only optical modes or only
mechanical modes, at each site of the OMC, in clear contrast
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FIG. 8. Steady-state Gaussian quantum discord between (a)–(c)
optical modes and (e), (f) mechanical modes for various values of
the laser intensity: (a), (d) η/J = 80, (b), (e) η/J = 100, and (c), (f)
η/J = 120 for 101 coupled OMSs. The normalized laser detuning is
set to �/J = −1.5. Other parameters are the same as Fig. 2.

to the case of entanglement which is instead completely
absent, even between neighboring sites. This fact is shown
in Fig. 8. As can bee seen, for a fixed laser detuning, by in-
creasing the laser intensity the steady-state Gaussian quantum
discord between modes of the same nature increases.

3. Thermal effects on the steady-state Gaussian quantum discord

It is relevant to study the robustness of the Gaussian
quantum discord with respect to temperature as we did already
for entanglement. The steady-state Gaussian quantum discord
under different heat-bath phonon number for normalized laser
detuning �/J = 1.5 and laser intensity η/J = 500 is depicted
in Fig. 9. One can see a nonmonotonic behavior in Gaussian
quantum discord by increasing the thermal phonon number.
It first tends to increase, then decreases, and finally increases
again. This behavior is somewhat unexpected and it can be
regarded as evidence of thermally induced Gaussian quantum
discord in OMCs. This is not completely novel, however, in
quantum many-body systems; for instance, the transverse-
field XY model also shows nonmonotonic behavior of its
quantum correlations (for instance, see [74] and references
therein). We remark, however, that our model is not exactly
the same as the XY model regarding the effects of the thermal
environment because, in the latter, the involved excitations
have similar frequencies and therefore similar thermal effects,
while in our case, due to the large difference in frequencies
between optical and mechanical modes, only the phonon

FIG. 9. Steady-state Gaussian quantum discord under different
heat-bath phonon number for normalized laser detuning �/J = 1.5,
driving η/J = 500, and mechanical resonance frequency ωm/2π =
9 GHz: (a) n̄m = 0.1 (T = 0.18 K), (b) n̄m = 0.5 (T = 0.39 K),
(c) n̄m = 2.5 (T = 1.28 K), and (d) n̄m = 12.5 (T = 5.59 K) for 101
coupled OMSs. Legend bar is the same for (a)–(c). Parameters are the
same as Fig. 2. See Fig. 7(d) for zero heat-bath temperature. (e) The
steady-state Gaussian quantum discord between the two optical and
mechanical modes with the same site index j = 50 or j = −50 (red
dashed line), j = 0 (blue solid line), and with the different site index
j = 0 and j = 50 (green dotted line) vs heat-bath phonon number.

modes are appreciably affected by a nonzero reservoir temper-
ature. The phenomenon investigated here instead shares some
similarity with what has already been underlined in [75,76],
where it has been shown that for continuous-variable bipartite
systems, quantum discord can increase for increasing thermal
noise because they represent nonclassical correlations which
are induced and maintained thanks to the mediating action of
the local dissipative bath.

V. CONCLUSIONS

In conclusion, our investigation clearly demonstrates the
presence of appreciable quantum correlations in an OMC
where each site consists of two localized, i.e., optical and
mechanical, modes coupled locally via the optomechanical
interaction. The modes of nearby sites are connected via both
photon and phonon tunneling. In particular, the generation
of on-site or short-range entanglement between optical and
mechanical modes that rely on the optomechanical interac-
tions in OMCs seems feasible at ultracryogenic temperatures.
The generated entanglement is very fragile with respect to
thermal noise. We have also shown that there is no long-range
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entanglement between optical and mechanical modes. More-
over, there is no photon-photon or phonon-phonon entan-
glement in the system. Regarding the absence of strong
entanglement between modes of the same nature, this is
due to the quantum dynamics realized by the chosen model
Hamiltonian. In fact, it does not contain terms of the form of
a†

j a
†
j±1 + a ja j±1 for the photonic modes (or b†

jb
†
j±1 + b jb j±1

for phononic modes). It only contains hopping terms, which
cannot directly entangle modes of the same nature.

We have then examined a weaker form of quantum corre-
lation, i..e., Gaussian quantum discord, and we have studied
if quantum discord is present in the steady state of the system
for various control parameters. The Gaussian quantum discord
behavior is completely different; one has long-range features
in all three possible cases of correlations, i.e., photon-phonon,
photon-photon, and phonon-phonon cases, at variance with
what occurs with entanglement. A further interesting aspect
is the thermal activation of quantum discord, i.e., the fact
that photon-phonon discord increases with increasing temper-
ature. In our opinion, this is a manifestation of the transfer of
nonclassical correlations mediated by the thermal reservoir, as
already discussed for continuous-variable systems in [75,76].

The present study, which paves the way toward the inves-
tigation of many-body entanglement, can be considered as a
step toward controlled quantum correlations between different
quantum processors across the lattice sites, with potential
applications in quantum information processing and storage.
The proposed scheme also provides a suitable platform for
quantum simulation of various many-body systems with op-
tomechanical crystals by tuning the system parameters.

It should be noted that we did not consider the disorder
effect in our study. As an outlook, the system under consid-
eration can be generalized to a more realistic case where the
lattice disorder is also present in the system. Another outlook
may be the generalization to the case of two-dimensional
lattices of coupled optomechanical systems.
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