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Quantum tetrachotomous states: Superposition of four coherent states on a line in phase space
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The well-studied quantum optical Schrödinger cat state is a superposition of two distinguishable states,
with quantum coherence between these macroscopically distinguishable states being of foundational and, in
the context of quantum-information processing, practical use. We refer to these quantum-optical cat states as
quantum dichotomous states, reflecting that the state is a superposition of two options, and we introduce the
term quantum multichotomous state to refer to a superposition of multiple macroscopically distinguishable
options. For a single degree of freedom, such as position, we construct the quantum multichotomous states
as a superposition of Gaussian states on the position line in phase space. Using this nomenclature, a quantum
tetrachotomous state (QTS) is a coherent superposition of four macroscopically distinguishable states. We define,
analyze, and show how to create such states, and our focus on the QTSs is due to their exhibition of much richer
phenomena than for the quantum dichotomous states. Our characterization of the QTS involves the Wigner
function, its marginal distributions, and the photon-number distribution, and we discuss the QTS’s approximate
realization in a multiple-coupled-well system.
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I. INTRODUCTION

Schrödinger’s original quantum-cat paradox arose from the
puzzle that quantum mechanics has enormous ramifications
on dichotomous states such as life and death for a cat [1],
and this notion morphed into the simplified problem of a
superposition of two macroscopically distinguishable (i.e.,
negligibly overlapping) coherent states, each representing a
classical distinct choice. Schrödinger’s coherent state |α〉
is essentially a nonspreading wave-packet solution of the
quadratic harmonic-oscillator potential [2] and also defined as
the eigenstate of the annihilation operator â,

â |α〉 = α |α〉 , α ∈ C, (1)

and the position distribution

〈q|α〉 = e−[q−√
2 Re(α)]2/2+iq

√
2 Im(α)

π1/4
. (2)

Milburn first showed the Q function (Husimi distribution [3])
for this so-called cat state but did not discuss it explicitly [4].

Yurke and Stoler explicitly studied this fascinating super-
position state [5] via the position distribution

pr(q) = |〈q|ψ〉|2, ψ (q) ∈ L2(R), q ∈ R, (3)

and the momentum distribution

p̃r(p) = |〈q|ψ̃〉|2, ψ̃ (p) =
∫
R

dq ψ (q) eiqp,

p ∈ R, h̄ ≡ 1. (4)
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These canonical-variable distributions (3) and (4) are obtained
from the Wigner function [6–9]

W (q, p) = 1

2π

∫
R

dx eipxψ∗
(

q + x

2

)
ψ

(
q − x

2

)
(5)

as marginal distributions [9]

pr(q) =
∫
R

d pW (q, p), p̃r(p) =
∫
R

dq W (q, p), (6)

with these properties (6) being strong motivation for repre-
senting states by Wigner functions. Wigner functions have
been used to study superpositions of Gaussian states [10,11].

The study by Milburn [4], its elaboration and extension
by Milburn and Holmes [12], and its study in the context of
quantum-optical cat states by Yurke and Stoler [5] all focused
on superpositions of Gaussian states

ϑ (q; μ, σ ) = eiq
√

2 Im(α)
√

G(q; μ, σ ) (7)

and

G(q; μ, σ ) := 1√
2πσ

exp

{
−1

2

(
q − μ

σ

)2
}

, (8)

with position distribution

|ϑ (q; μ, σ )|2 = G(q; μ, σ ). (9)

In the special case of coherent states [13],{
|α〉 ; α ∈ C, α(q) = ϑ

(
q;

√
2Re(α),

1√
2

)}
. (10)
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In the Fock-state basis {|n〉 ; n ∈ N}, the coherent state is

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉 , (11)

leading to the Poisson-number distribution

℘cs(n; α) := e−|α|2 |α|2n

n!
(12)

with mean

〈n〉 = |α|2 (13)

and variance

〈(n − 〈n〉)2〉 = |α|2 (14)

equal to each other both.
In quantum optics, the Schrödinger cat state typically refers

to the (unnormalized) superposition of coherent states

|α〉 + eiϕ |−α〉 . (15)

The cases of ϕ = 0 and ϕ = π are known as the even and odd
coherent states, respectively [14], and ϕ = π/2 corresponds
to the case that the cat state has a Poissonian photon-number
distribution [5]. Variants have been studied such as superpo-
sitions of squeezed states [15], which are essentially the full
gamut of Gaussian states (7), phase states [16], significantly
overlapping coherent states (hence only partially distinguish-
able and known as kitten states) [17,18], multimode coherent
states also known as entangled coherent states [19–22], and
superpositions generalizing coherent states from rank-1 SU(2)
and SU(1,1) symmetries [23] to higher-rank groups such as
SU(3) [24].

Almost all studies of coherent-state superpositions stay
true to the essence of Schrödinger’s life-death dichotomy, but
a few studies ventured into quantum multichotomous states.
Superpositions of coherent states on the circle [25–27], with
applications such as showing the limit yields a coherent-state
representation of the Fock number state on the circle [28],
form one branch of studies of superpositions of multiple
coherent states.

Another investigative branch of superpositions of multiple
coherent states corresponds to the superposition of Gaussian
states, e.g., superpositions of coherent states and superpo-
sitions of squeezed states, on the real line in phase space
[29]. Such states can be studied as an unnormalizable su-
perposition of an infinite number of equally spaced coherent
states represented in phase space, which we refer to as a
comb state [29] (and here we refer to comb states with a
finite number of peaks, or teeth, also as comb states with the
context making clear whether an infinite or a finite number
of teeth is implied), also studied under realistic limitations
[30] and experimentally realized with a single trapped-ion
mechanical oscillator [31]. A particular case of superpositions
of coherent states on the line in phase space, which we call a
quantum tetrachotomous state (QTS), as well as superposi-
tions of a continuum of coherent states (10), was studied for
the squeezing properties [25,32,33]. Zurek [34] showed that
a superposition of equispaced coherent states on the circle,
called a compass state, exhibits sub-Planck structure in phase
space with intriguing ramifications for decoherence. Zurek’s
result differs from ours in being a superposition of coherent
states that are not on a line in phase space but does reinforce

our message that a superposition of coherent states can yield
rich phenomena.

Here we study QTSs as special cases of quantum multi-
chotomous states yet capturing the rich phenomena present
in such states but being sufficiently simple to capture the
richness of such states. Henceforth, we write the QTS as the
state |ϒ〉 and its position representation as

ϒ(q) = 〈q|ϒ〉. (16)

As we expect that the QTS features will be sensitive to
separation of coherent-state amplitudes in phase space, we
focus on three exemplary cases of the QTSs.

These three cases are symmetric about x = 0, i.e.,

ϒ(q) = ϒ(−q). (17)

This symmetry simplifies the expressions and readily displays
the intriguing features. Furthermore, we restrict the QTS to a
superposition of coherent states (10) as this simplification is
common, but not universal, for quantum-optical cat states.

We treat three cases of the QTSs as a superposition of
two doublets, where we use the term doublet to refer to a
superposition of a pair of coherent states.

Case ϒ1. The first QTS case is a superposition of two
doublets, i.e., two coherent states whose amplitudes are close
together in phase space (kitten state [17,18]) whereas each of
the two (kitten) doublets is macroscopically distinguishable
from the other (kitten) doublet.

Case ϒ2. In the second case, each of the two doublets
is macroscopically distinguishable, but the two doublets are
close in phase space, i.e., only microscopically distinguish-
able.

Case ϒ3. The third case corresponds to equal separation
between coherent states on the line, which looks like a four-
tooth comb state in the phase-space representation.

Our approach to characterizing QTSs employs Wigner
functions [10], canonical position measurements [35], and
photon-number distributions [8], given by

℘QTS(n; α, β ) = |〈n|ϒ〉|2 (18)

for a QTS with |n〉 the Fock state with n photons. We employ
the Wigner function to analyze QTSs because the Wigner
function gives meaning to talking about states as being in
phase space, i.e., the phase-space representation. Essentially,
the QTS |ϒ〉 should appear, in the Wigner-function represen-
tation, as a sum of displaced Gaussian distributions plus addi-
tional features that reveal quantum effects such as interference
due to coherence between Gaussian states.

Notably, negativity of the Wigner function signifies quan-
tum effects [36], and marginal distributions of the Wigner
function directly yield a canonical position distribution arising
as asymptotic limits of homodyne detection for strong local-
oscillator fields [37–39]. The photon-number distribution is
interesting as phase-space interference can lead to oscillations
in the photon-number distribution [40], which has been stud-
ied for general quantum-optical cat states [25,41,42] including
for entangled coherent states [43,44].

Various concepts for realizing quantum-optical cat states
can be extended to QTSs. Caldeira and Leggett studied tun-
neling in a dissipative system with superconductors as the
medium [45], and a catlike state can be achieved at half the

063813-2



QUANTUM TETRACHOTOMOUS STATES: SUPERPOSITION … PHYSICAL REVIEW A 99, 063813 (2019)

tunneling time between the two wells. Essentially, a catlike
state is approximated by the ground state (GS) of a double-
well potential. A QTS could arise as the GS of a multiple-
coupled-well potential, as we show in this work. One way
to realize the GS of a multiple-coupled-well potential can be
considered as the GS of coupled Bose-Einstein condensates
as a generalization of Bose-Einstein condensates in a double-
well potential [46–48]. Recent advances to these concepts
include generating cat states in Bose-Einstein condensates
[49] and tunneling in a dissipative system realized in a su-
perconducting medium [50].

Our paper is organized as follows. In Sec. II we present
background for quantum-optical cat states including charac-
terization using Wigner functions, canonical marginal distri-
butions, and photon-number distributions. Our background
section also includes the realization of quantum-optical cat
states as an approximate GS of a double-well potential plus
experimental generation of quantum-optical cat states. In
Sec. III we describe our approach to analyzing the QTS.
Analysis and results appear in Sec. IV, Sec. V contains a
discussion, and Sec. VI summarizes.

II. BACKGROUND

In this section we discuss the theory of quantum-optical
cat states, characterizations of such states, and their experi-
mental creation. Furthermore, we present the analogy between
quantum-optical cat states with the GS of a double-well
potential.

A. Theory

In this section we present the theory for characterization
of quantum-optical cat states involving the Wigner function.
Additionally, we discuss the marginal distribution and the
inverse radon transform in this context.

The quantum-optical cat state has been characterized us-
ing various quasiprobability distributions [3,13,51,52] that
are advantageous because they can be compared to classical
systems represented in phase space. The Wigner function is
now a typical tool for studying quantum-optical cat states
and their interference pattern [11,25]. Cat states are typically
characterized by performing rotated position quadrature mea-
surements [35] or, in quantum-optics language, homodyne
measurements from which the Wigner function can be con-
structed via, e.g., the inverse radon transform [9].

Depending on the separation between coherent states |±α〉,
which is given by the distance 2|α| in phase space, their
superpositions are referred as a quantum-optical cat state or as
a kitten state for large or small interstate separation compared
to the width of the coherent state. The Wigner function for this
superposition is

Wcs(q, p; α) = 1

2π

∫
R

dx eipx
〈
q − x

2

∣∣∣α〉〈
α

∣∣∣q + x

2

〉
= 1√

2π
e−p2/2−2(q+α)2

= 1√
2

G(p; 0, 1)G

(
q; −α,

1

2

)
(19)

(a) (b)

FIG. 1. Wigner function for |α〉 + |−α〉 with (a) α = 2 (cat state)
and (b) α = 0.5 (kitten state). The quantities are in arbitrary units.

with Gaussian distribution G [Eq. (8)]. Contours of the Wigner
functions for even and odd quantum-optical cat states are
shown in Fig. 1. Yurke and Stoler [5] used the marginal dis-
tributions as canonical phase-space-rotated position and mo-
mentum distributions when they first explained the quantum-
optical cat states. The Wigner function for a quantum-optical
cat state is

Wcat(q, p; α)

= 1

2πNα

∫
R

dx eipx
[〈

q − x

2

∣∣∣α〉
+

〈
q − x

2

∣∣∣ − α
〉]

×
[〈

α

∣∣∣q + x

2

〉
+

〈
−α

∣∣∣q + x

2

〉]
, (20)

which is simplified to

Wcat(q, p; α) = e−p2/2

√
2πNα

[
e−2(q+α)2 + e−2(q−α)2

+ e−2q2−2ipα + e−2q2+2ipα︸ ︷︷ ︸
2e−2q2 cos 2pα

]
(21)

for normalization

Nα = 2(1 + e−2α2
) (22)

for real-valued even coherent state |α〉 + |−α〉. Using the
Gaussian-distribution notation (8) and introducing

G+(x; γ , σ ) := G(x; γ , σ ) + G(x; −γ , σ ), (23)

the Wigner function for the quantum-optical cat state is

Wcat(q, p; α) = 1√
2Nα

[
G(p; 0, 1)G+

(
q; α,

1

2

)
+ e−2α2

G

(
q; α,

1

2

)
G+(p; 2iα, 1)

]
. (24)

The first two terms in Eq. (24) are the Gaussian distributions
corresponding to the coherent states and the last two terms are
responsible for the interference pattern between these two co-
herent states in the phase space. The interference pattern can
be explained by the periodic oscillatory functions appearing
as coefficients to the Gaussians.

B. Quantum-state tomography and marginal distributions

For quantum-state tomography, marginal distributions for
the Wigner function can be used to estimate the Wigner
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FIG. 2. (a) Photon-number distribution (α = 2) for even coher-
ent state |α〉 + |−α〉 (solid line) and odd coherent state |α〉 − |−α〉
(dashed line). (b) Potential energy as a function of position x with
local minima ±xmin and local maximum xmax. The quantities are in
arbitrary units.

function via the inverse radon transformation [9]. Opera-
tionally, a series of homodyne measurements, obtained for
many choices of local-oscillator phase, yields data that are
then inserted into an algorithm that calculates an approxima-
tion to the state’s Wigner function.

The position and momentum marginal distributions for the
quantum-optical cat state are

prcat(q) = 1

Nα

G2
+

(
q; α,

1√
2

)
(25)

and

p̃rcat(p) = 2
√

2

Nα

G(p; 0, 1) cos2 pα, (26)

which are a mixture of two Gaussians and a sinusoidally
modulated Gaussian, respectively.

C. Interference in phase space

The photon-number distribution for a general superposition
of coherent states reveals interference in phase space [25,41].
This interference effect arises from the term that is sensitive
to the relative phase difference between superposed coherent
states. The photon-number distribution for an even (+) and an
odd (−) cat state (15) is

℘cat(n; α) ∝ [1 ± (−1)n]℘cs(n; α), (27)

with ℘ the Poisson distribution (12). This Poisson distribution
is shown in Fig. 2. Due to interference, even coherent states
exhibit only an even number of photons. For the odd coherent
states, we observe only odd numbers of photons [40,44].
The photon-number distribution is modulated by interference
between the two coherent states in the superposition.

Oscillations in the photon-number distribution are due to
interference in phase space [8,40], and this kind of oscillation
(27) has been studied for superpositions of coherent states on
a line and superposition of coherent states on a circle in phase
space [27]. The closer the coherent states are to each other, the
less distinguishable the peaks are from the interference fringes
as shown in Fig. 1(b). As the separation between the Gaussian
peaks on the phase-space position line decreases to the point
that the interferences fringes and peaks lose distinguishability,
momentum squeezing becomes evident.

D. Generating quantum-optical cat states

The original proposals for generating optical cat states
(15) were achieved via nonlinear interactions [53–56] sub-
sequently followed by proposals for manipulating photons in
a cavity by dispersive atom-field coupling [57]. Generating
quantum-optical cat states by photon subtraction is an appeal-
ing approach [58,59]. An approximation to quantum-optical
Schrödinger kitten states can be prepared with a squeezed-
light resource [17], and a squeezed Schrödinger cat state has
been approximately created using homodyne detection and
photon-number states as resources [18].

Cat states could be created by two interacting Bose conden-
sates [47]. Alternatively, cat states could be realized with two
trapped, coupled Bose-Einstein condensates with a Josephson
coupling [46]. One enticing method to create a quantum-
optical cat state, i.e., a quantum dichotomous state (QDS), is
via constructing a GS of a coherently coupled Bose-Einstein
condensate in a double-well potential by means of scattering
light and quantum measurement [48]. We discuss the double-
well potential next.

E. Double-well potential

In this section we discuss the coherent state as the GS of
a quadratic potential and its extension to a QDS as the GS
of a double-well potential. Quantum tunneling is valuable for
many applications, with one foundational example being the
case studied by Caldeira and Leggett to ascertain how long
range quantum coherence can be [45,60].

A superposition of coherent states (15) can be created for
large amplitudes |α| 
 1 using the motional state of a trapped
ion in an approximate harmonic-oscillator potential using
ultrafast laser pulses and coupling a qubit with a harmonic
oscillator [61–65]; some of these methods can be extended to
multicomponent superpositions of coherent states such as the
QTS [62,64]. This superposition of coherent states can also be
constructed as the GS of a coherently coupled Bose-Einstein
condensate in a double-well potential [46,47] or the evolution
of a Bose-Einstein condensate in a double-well potential in a
two-mode approximation [48]. In the latter case, macroscopic
quantum coherence of Bose-Einstein condensates leads to
coherent quantum tunneling of atoms between the two modes
representing two Bose-Einstein condensates, thereby creating
a QDS.

Other experimental proposals include conditional gen-
eration of QDSs [66–72] with applicability to quantum-
information processing [73–75]. Creation of QDSs, with the
crucial macroscopic separation required to observe the quan-
tum effects, is thus based on some degree of approximation
such as the method proposed by Caldeira and Leggett [45].

Schrödinger showed that coherent states follow the motion
of a classical particle in a quadratic potential [1,76] and
the GS is a coherent state with zero mean amplitude. For a
double-well system, coupling two nearly harmonic oscillators
together via a finite barrier, which is approximated by an
inverted harmonic oscillator in the vicinity of the unstable
maximum potential between the two wells, the localized GS
in each well can be approximated by a coherent state (10),
with mean amplitude corresponding to the displacement of the
well from the origin of phase space. The harmonic-oscillator
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assumptions for the minima and maximum (inverted harmonic
potential in that case) are quite good for analytic potentials
due to convergence of the Taylor series around minima and
maxima. The minima are stable points with zero-motion
solutions classically and the maximum is a turning point
classically. In the rest of the paper we refer to stable and
unstable points in phase space and their respective localized
states in those regions.

Nandi [77] has proposed a way of creating a double-well
potential by multiplying the Gaussian (8) by a factor of x2.
This potential function, which is essentially a second-order
Hermite-Gaussian function with a pure Gaussian subtracted,
is symmetric about x = 0. In this way, the Hamiltonian can
be brought into a symmetric tridiagonal form. This system
has been numerically solved to study the energy levels. The
tunneling rate of the particle in such a potential well depends
on the energy difference between the ground and the first
excited state. The higher or wider the barrier the smaller this
energy difference and this difference will become larger as the
energy of the incident particle increases.

Equipped with this background and the limitations to con-
struct and characterize a Schrödinger cat state (QDS), we now
develop our concept of the QTS. The QTS as we define in the
next section is in some sense a superposition of two QDSs.
In the next section we also discuss the tools and methods to
analyze QTSs and study their appearance and behavior in the
phase space.

III. APPROACH

In this section we describe our approach to analyzing
QTSs. Our approach involves characterization by the Wigner
function, the marginal distribution, and the approximate re-
alization of the QTSs via a multiple-coupled-well system,
i.e., quadrupole-Gaussian-well potential. We also study the
photon-number distribution of the QTS and observe the os-
cillatory behavior due to the four-level interference patterns
between the coherent states.

A. Defining the tetrachotomous cat

In this section we define the QTS along similar lines to
idea of the QDS. We also discuss how the QTS can be in
three different configurations depending on the superposition
between the coherent states forming QDSs and the overlap
between two such QDSs. This section also includes the sym-
metry transformations of the constituent coherent states and
how they change the QTS. We define the QTS by extending
the concept of QDSs by splitting its two states into two
distinguishable states each. The QTS can be thought of as
the superposition of two coherent states separated macroscop-
ically, each consisting of two coherent states with opposite
phases and distinguishable. The even QTS is

|ϒ〉 ∝ |α〉 + |−α〉 + |β〉 + |−β〉 (28)

and the odd QTS is

|ϒ〉odd ∝ |α〉 − |−α〉 − |β〉 − |−β〉 , (29)

FIG. 3. Illustrative phase-space picture of the linear QTSs (28)
and (29) for (a) case 1, (b) case 2, and (c) case 3.

up to a normalization factor. We study only even QTSs (28) as
the symmetry

α ↔ β, α ↔ −α, β ↔ −β, α ↔ −β, α ↔ β

(30)

keeps the state the same, making analysis straightforward,
and we do not lose generality in how to study QTSs. We
consider three different types of QTS (28) enumerated as
cases ϒ1–ϒ3 in Sec. I. For case ϒ1, we have a superposition
of two macroscopically separated kitten doublets [Fig. 3(a)].
The second case ϒ2 is a superposition of two macroscop-
ically distinguishable doublets but with the two doublets
somewhat overlapping [Fig. 3(b)]. The third case ϒ3 is four
equally spaced coherent states on the real line in phase space
[Fig. 3(c)].

B. Wigner function and marginal distributions

In this section we describe the Wigner function and
marginal distributions for studying the phase-space properties
of the QTSs. In terms of Gaussian functions (8), the QTS (28)
Wigner function WQTS(q, p) satisfies

WQTS(q, p; α, β )

= 1√
2Nα,β

{
G(p; 0, 1)

[
G+

(
q; α,

1

2

)
+ G+

(
q; β,

1

2

)]
+ G

(
q; 0,

1

2

)
[e−2α2

G+(p; 2iα, 1)+e−2β2
G+(p; 2iβ, 1)]

+ e−(α−β )2

[
G+

(
q;

α + β

2
,

1

2

)
G+(p; i(α − β ), 1)

]
+ e−(α+β )2

[
G+

(
q;

α − β

2
,

1

2

)
G+(p; i(α + β ), 1)

]}
(31)
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for normalization

Nα,β = 2(1 + e−2α2
) + 2(1 + e−2β2

) + 4(e−(α−β )2/2

+ e−(α+β )2/2). (32)

This compact notation G and G± in Eq. (31) greatly simplifies
the Wigner-function expression and makes interpretation of
complicated plots relatively easy. Now we explain the terms
in this complicated expression.

The first term in Eq. (31) represents the four Gaussians
located at ±α and ±β on the phase-space position axis,
corresponding to four coherent states. The second term in (31)
represents the interference terms between the doublets at |±α〉
and |±β〉. The third term in (31) corresponds to interference
between the pair |α〉 and |β〉 and the pair |−α〉 and |−β〉. The
last term (31) shows interference between the pair |α〉 and
|−β〉 and the pair |−α〉 and |β〉.

Expression (31) readily shows that the interference be-
tween each pair of real-amplitude coherent states |±α〉
and |±β〉, which is symmetric about zero on the phase-
space position axis, is located at the center of the position
axis. However, interference between the pairs {|α〉 , |β〉} and
{|−α〉 , |−β〉} is centered at ±α+β

2 and similarly the inter-
ference between {|α〉 , |−β〉} and {|−α〉 , |β〉} is centered at
±α−β

2 , respectively. Functions of the type G(p; iα, σ ) are
Gaussian-modulated sinusoidal oscillations along the momen-
tum coordinate of phase space and represent interference
between the coherent states in the QTS. The QTS marginal
distributions obtained from the Wigner function following
Eq. (6) are

prQTS(q) = 1

Nα,β

[
G+

(
q; α,

1√
2

)
+ G+

(
q; β,

1√
2

)]2

(33)

for position and

p̃rQTS(p) = 2
√

2

Nα,β

[G(p; 0, 1)(cos pα + cos pβ )2] (34)

for momentum. Equations (33) and (34) can be compared
to Eqs. (25) and (26) for the QDS; evidently, the marginal
distribution for the QTS along the position axis has four
Gaussian peaks whereas the QDS has two Gaussian peaks and
the marginal distribution along the momentum axis for QTS
has an interference pattern as a Gaussian modulated by

(cos pα + cos pβ )2, (35)

which looks like a Cartesian lattice of mountains over R2 with
coordinates α and β. For the QDS marginal distribution, the
appearance of the function (35) as a beat between two tones
explains observed interference.

C. Photon-number distribution

The photon-number distribution for the QTS is applied
for the three cases ϒ1–ϒ3 explained in Sec. III A. As an
extension of QDSs, photon-number distributions for QTSs
are Poissonian distributions corresponding to two QDSs, each
of them with an oscillatory nature. Peaks of the oscillation
in photon-number distributions are centered at even photon

numbers for even QTSs and at odd photon numbers for odd
QTSs as evident in

℘±
QTS(n; α, β ) = [1 ± (−1)n]℘̃QTS(n; α, β ) (36)

for

℘̃QTS(n; α, β ) := 4

Nα,β

[℘̃cs(n; α, β )

+ e−(α+β )2/2+α2β2
℘cs(n; αβ )] (37)

and

℘̃cs(n; α, β ) := ℘cs(n; α) +℘cs(n; β )

2
, (38)

with ℘cs(n; α) defined in Eq. (12). As we consider only the
case of an even QTS, here we only deal with℘+

QTS and hence-
forth drop the superscript +. To analyze inter-Poissonian
interference we use the expression

℘IP
QTS(n; α, β ) = 4

Nα,β

[1 ± (−1)n]e−(α+β )2/2+α2β2
℘cs(n; αβ ),

(39)

with the superscript + suppressed and the superscript IP
referring to inter-Poissonian.

The first two terms in (36) indicate that the two Poissonian
curves for each QDS consists of two coherent states with
the same amplitude but opposite phases, e.g., |±α〉 and |±β〉
are peaked at |α|2 and |β|2, respectively. The third term on
the right-hand side of Eq. (36) represents a small interference
pattern between these two Poissonian distributions.

The inter-Poissonian interference term leading is intriguing
and needs to be established as interference between distinct
Poissonian sectors or not. To understand the inter-Poissonian
interference term, we analyze the photon-number distribu-
tion involving only the inter-Poissonian interference term in
Eq. (36). To elucidate the interference effect, we take the
derivative of the envelope photon-number distribution with
respect to photon number n by treating n as a continuous
quantity, hence using the relation n! = �(n + 1).

The photon-number distribution (36) has an envelope func-
tion (37), which is the sum of Poissonian distributions (38)
plus the second term on the right-hand side of Eq. (37)
corresponding to inter-Poissonian interference. Now we take
the derivatives of the envelope function including inter-
Poissonian interference (37) and excluding inter-Poissonian
interference (38). The derivative of the envelope function
reveals the envelope function’s extrema as zeros, which makes
it easy to identify the extrema and especially whether the
extrema change due to inter-Poissonian interference.

We take derivatives of this envelope function (37), which
includes the inter-Poissonian interference

℘̃′
QTS(n; α, β ) = N−1

α,β

�(n + 1)
{2e−(α2+β2 )(αneβ2/2 + βneα2/2)

× [2(αneβ2/2 ln α + βneα2/2 ln β )

− (αneβ2/2 + βneα2/2) (0)(n + 1)]}, (40)
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and the sum (38), which does not include the inter-Poissonian
interference

℘̃′
cs(n; α, β ) = N−1

α,β

�(n + 1)
{e−(α2+β2 )

× [4(α2neβ2
ln α + β2neα2

ln β )

− (α2neβ2 + β2neα2
) (0)(n + 1)]}. (41)

The prime signifies differentiation with respect to n and

 (0)(n) := d

dn
ln[�(n)] (42)

is the digamma function.

D. Multiple-well approximation

The idea of approximately realizing a QDS as a double-
well GS is discussed in Sec. II E. Similarly, we propose a QTS
implementation based on realizing the GS of a quadrupole-
Gaussian-well potential under reasonable approximations.

We study a quadruple-Gaussian-potential-well structure

V (x) = Vg(x − α) + Vg(x + α) + Vg(x − β )

+ Vg(x + β ) − Vg(0), (43)

where

Vg(x) = −V0exp

(
−γ x2

2σ 2

)
(44)

is a single-well Gaussian potential centered at x = 0. The
GS of the single-particle Hamiltonian with potential (43)
serves as an approximation to the QTS. Our multiple-well
potential (43) differs from Nandi’s approach to creating a
double-Gaussian-well potential [77], as discussed in Sec. II E,
as Nandi effectively uses a Hermite-Gaussian potential well
whereas we employ a sum of Gaussian wells with varied
spacing to treat each QTS case described in Sec. III A. For
numerical simulation, our Gaussian potential wells are ap-
proximated by piecewise-continuous functions.

Our method involves transforming a Schrödinger equation
into a matrix equation from a differential equation by using the
three-point finite-difference method. The matrix eigenvalue
problem is solved numerically by using the inverse iteration
method to obtain the Wigner function of a ground-state vector.

We compute the overlap between the ideal QTS and the
corresponding GS, namely,

〈GS|ϒ〉 =
∫
R

dq〈q|GS〉∗〈q|ϒ〉 (45)

for |GS〉 the GS of the Gaussian quadruple well and |ϒ〉
the corresponding QTS with parameters chosen to deliver the
closest match. To solve Eq. (45) numerically, we calculate
both the QTS and the GS in the position representation but
over discrete position bins. These bins extend over the full
range of interest for the QTS and have sufficient resolution
that the fine features are part of the overlap calculation. For
this discrete position-bin representation of the QTS and GS
vectors, the integral in Eq. (45) becomes a sum over all bins,
namely, the dot product of the two complex state vectors,
which, for our QTS and GS, are actually simply real valued.

(a)

(b) (c)

FIG. 4. (a) Wigner function, (b) position marginal distribution,
and (c) momentum marginal distribution for QTS case ϒ1 for α = 4
and β = 7. The quantities are in arbitrary units.

IV. ANALYSIS AND RESULTS

In this section we refer to the pairs of two coherent states
|α〉 , |β〉 and |−α〉 , |−β〉 as doublets and analyze three dif-
ferent cases of the QTS (28) based on the distinguishability
between the doublet states and the states of doublets according
to the three specific QTS cases: ϒ1 with α = 4 and β = 7
(two doublets), ϒ2 with α = 1 and β = 6 (doublet between
two singlets), and ϒ3 with α = 2 and β = 6 (comb state). The
first case describes the configuration in which doublets are
separated by a macroscopic distance, but the coherent states
forming the doublets are close. The second case describes the
configuration in which two doublets are close together, but
the coherent states forming the doublets are macroscopically
separated. The third case is a depiction of the QTS where
all the coherent states are equally spaced with macroscopic
distinguishability. We apply our four tools comprising the
Wigner function, marginal distributions, photon-number dis-
tribution, and finally the multiple-well approximation using
the Wigner function.

A. Case ϒ1: Two doublets

In this section we analyze the two-doublet QTS (ϒ1).
Specifically, we analyze the results for the Wigner function,
the marginal distributions, the photon-number distribution,
and the four-well ground-state approximation.

1. Wigner function for ϒ1

We present the Wigner function for the ϒ1 QTS in
Fig. 4(a). In this figure we observe four Gaussian peaks in
contrast to the pair of Gaussian peaks for the QDS (25) shown
in Fig. 1. Whereas the QDS has a sinusoidal oscillation (26)
shown in Fig. 1, the QTS has an oscillatory beat in momentum
(34) shown in Fig. 4(a). For this QTS arrangement, as we
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can infer from the preceding section and Eq. (31), the four
flattened Gaussians located at ±4 and at ±7 correspond to the
coherent state |α〉 for α ∈ {±4,±7}.

The interference patterns seen between the doublets are
coming from the states |4〉 , |7〉 and |−7〉 , |−4〉 centered in
the middle of each pair, i.e., 5.5 and −5.5, respectively. The
interference at the origin is caused by |±4〉 and |±7〉, on its
right due to the pair |−4〉 and |7〉, and on its left due to the
pair |4〉 and |−7〉 centered at 1.5 and −1.5, respectively, on
the position axis. The two interference patterns centered at 1.5
and −1.5 are not as distinguishable as for QDSs.

2. Marginal distributions for ϒ1

The QTS marginal distributions for ϒ1 are shown in
Figs. 4(b) and 4(c) for position and momentum variables and
are obtained by integrating the Wigner function over the con-
jugate degree of freedom. In Fig. 4(b) we see four Gaussian
peaks and no interference for the marginal distribution along
the position axis. However, the marginal distribution along
the momentum axis in Fig. 4(c) shows an interference pattern
with a Gaussian modulated by the square of the sum of two
sinusoidal functions, i.e., (cos 4p + cos 7p)2.

3. Photon-number distribution for ϒ1

For the same example of ϒ1, we plot photon-number
distribution℘QTS(n; α, β ) [Eq. (36)] in Fig. 5(a), which shows
two modulated Poissonian distributions corresponding to the
two QDSs |±4〉 and |±7〉 with peaks located at 16 = (±4)2

and 49 = (±7)2 corresponding to the amplitude peaks of the
QTS. The zoomed-in view of the interference effect between
these two Poissonian distributions (39) is evident in Fig. 5(b).
Figure 5(c) shows the derivative of the envelope photon-
number distribution without the inter-Poissonian interference
term given in Eq. (41). From Fig. 5(c) it is clear that the
interference is too small to affect the infimum of the envelope
curve in (37).

4. Quadruple-Gaussian-well GS for ϒ1

We calculate the Wigner function for the approximated
GS of the quadruple-Gaussian-well potential in this config-
uration shown in Fig. 6(a). The Wigner function for this
GS is plotted in Fig. 6(b), and the pattern of the Wigner
function closely matches the analytic Wigner function for
this QTS configuration in Fig. 6(a). We use Eq. (45) to
calculate the overlap between the GS and the QTS, which in
this case is 0.9041. The close match holds in the sense that
the Gaussian peaks and interference effects are at the same
places in both plots for the p = 0 axis. Furthermore, the in-
terference effects proceed ad infinitum. Minor differences be-
tween the plots are expected because the Gaussian wells only
approximate parabolic potentials, which would be needed
to see very close approximations to coherent states in the
superposition.

B. Case ϒ2: Doublet between two singlets

In this section we analyze the doublet-between-two-
singlets QTS (ϒ2). Specifically, we analyze the results for

(a)

(b)

(c)

FIG. 5. For case ϒ1, plots of (a)℘QTS(n; α, β ), (b)℘IP
QTS(n; α, β ),

and (c) ℘̃′
cs(n; α, β ) for α = 4 and β = 7. The quantities are in

arbitrary units.

the Wigner function, the marginal distributions, the photon-
number distribution, and the four-well ground-state approxi-
mation.

1. Wigner function for ϒ2

We present the Wigner function for the ϒ2 QTS in
Fig. 7(a). The locations of the Gaussians corresponding to
states |±1〉 and |±6〉 on the position axis are ±1 and ±6.
The interference pattern at the origin is due to the coherent
states |±1〉 and |±6〉, but the states |±1〉 are too close to form
a QDS and the Gaussians corresponding to these states run
into each other as in Fig. 1(b). This proximity between states
represented in phase space causes the Gaussian peaks at ±1
not showing explicitly and leading to the interference pattern
between |−6〉 , |1〉 centered at −2.5 overlap with |−6〉 , |−1〉
at −3.5 and |6〉 , |−1〉 at 2.5 overlap with |6〉 , |1〉 at 3.5.
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FIG. 6. For case ϒ1, (a) quadrupole-Gaussian-well potential ap-
proximated as a piecewise continuous function and (b) ground-state
Wigner function for the potential V (x) for α = 4 and β = 7. The
quantities are in arbitrary units.

These overlaps cause the interference patterns to spread along
the q axis.

−5.0 0.0 5.0

−5.0

0.0

5.0

−0.4

−0.2

0

0.2

0.4

0.6

0.8

FIG. 7. (a) Wigner function, (b) position marginal distribution,
and (c) momentum marginal distribution for QTS case ϒ2 for α = 1
and β = 6. The quantities are in arbitrary units.

(a)

(b)

(c)

FIG. 8. For case ϒ2, plots of (a)℘QTS(n; α, β ), (b)℘IP
QTS(n; α, β ),

and (c) ℘̃′
cs(n; α, β ) for α = 1 and β = 6. The quantities are in

arbitrary units.

2. Marginal distributions for ϒ2

The QTS marginal distributions for configuration ϒ2 are
shown in Figs. 7(b) and 7(c). We see the Gaussian peaks at
±1 and ±6 along the position axis and an interference Gaus-
sian modulated by (cos p + cos 6p)2 along the momentum
quadrature.

3. Photon-number distribution for ϒ2

Figure 8(a) shows the photon-number distribution for this
arrangement of the QTS ϒ2. The two Poissonians are peaked
at 1 and 36 for the QDS |±1〉 and QDS |±6〉, respectively. As
the separation between the QDS formed by |±1〉 is small, the
Poissonian curve peaked at 1 is narrow. Figure 8(b) shows the
interference effect as in Eq. (39) plotted against n. It shows
that the interference arising between the two QDSs |±1〉 and
|±6〉 is the smallest among all the cases probably because
the pair |±1〉 does not have enough separation between them.
As expected, Fig. 8(c) shows that the small inter-Poissonian
interference does not change the photon-number distribution
significantly at the envelope level.
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FIG. 9. For case ϒ2, (a) quadrupole-Gaussian-well potential ap-
proximated as a piecewise continuous function and (b) ground-state
Wigner function for the potential V (x) for α = 1 and β = 6. The
quantities are in arbitrary units.

4. Quadruple-Gaussian-well ground state for ϒ2

The four-well Gaussian potential for this case is depicted
in Fig. 9(a). The Wigner function calculated for the approxi-
mated GS of this potential is shown in Fig. 9(b). The locations
of Gaussian peaks and the centers of the interference patterns
between each pair of coherent states agree with Eq. (31) and
are plotted in Fig. 7(a). The numerical overlap between the
GS and the QTS using Eq. (45) in this case is 0.8780.

C. Case ϒ3: Comb state

In this section we analyze the comb-state QTS (ϒ3).
Specifically, we analyze the results for the Wigner function,
the marginal distributions, the photon-number distribution,
and the four-well ground-state approximation.

1. Wigner function for ϒ3

The third case as shown in Fig. 3(c) corresponds to a
cat having two states, each split into doublets with the same
overlap as the two doublets (ϒ3). The Wigner function for
this case is depicted in Fig. 10(a) and it shows only one
pair of Gaussians corresponding to |±6〉 centered at ±6 on
the position axis. Whenever 3α = β, which is the case here,
interference coincides with Gaussians peaks, resulting in a
spreading of the interference pattern along the q axis.

2. Marginal distributions for ϒ3

The QTS marginal distributions for configuration ϒ2 are
shown in Figs. 10(b) and 10(c). We see the Gaussian peaks at

−5.0 0.0 5.0

−5.0

0.0

5.0

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(a)

(b) (c)

FIG. 10. (a) Wigner function, (b) position marginal distribution,
and (c) momentum marginal distribution for QTS case ϒ3 for α = 2
and β = 6. The quantities are in arbitrary units.

±2 and ±6 along the position axis and an interference Gaus-
sian modulated by (cos 2p + cos 6p)2 along the momentum
quadrature.

3. Photon-number distribution for ϒ3

The photon-number distribution in this QTS arrangement
for configuration ϒ2 appears in Fig. 11(a). Poisson distri-
butions are clearly well separated with their highest peaks
located at 4 and 36 in phase space because the QDSs |±2〉
and |±6〉 are well separated. A closer view of inter-Poissonian
interference (39) is depicted in Fig. 11(b). Compared to pre-
vious cases, interference in this case is more pronounced than
for the QTS configuration for ϒ2 but less than for ϒ1. The
derivative of the envelope curve without the inter-Poissonian
interference term (41) in Fig. 11(c) shows that the interfer-
ence between the Poissonian distributions does not affect the
maxima and minima of the photon-number distribution.

4. Quadruple-Gaussian-well ground state for ϒ3

The Wigner function calculated for the approximate
ground state of the quadruple-Gaussian-well potential ar-
rangement shown in Fig. 12(a) is depicted in Fig. 12(b). The
Wigner-function interference patterns for this approximated
GS coincide with the Wigner function that has been analyti-
cally constructed for this QTS in Fig. 10(a). The overlap using
Eq. (45) in this case is 0.9313, which confirms the pattern
match.

V. DISCUSSION

In this section we interpret and summarize the results
for each of the three cases discussed for the four tools
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FIG. 11. For case ϒ3, plots of (a) ℘QTS(n; α, β ),
(b) ℘IP

QTS(n; α, β ), and (c) ℘̃′
cs(n; α, β ) for α = 2 and β = 6.

The quantities are in arbitrary units.

comprising the Wigner function, the marginal distributions,
and the photon-number distribution. One intuitive result is
that the Wigner function for each QTS is understood, due to
linearity, as a superposition of the

(4
2

) = 6 QDS phenomena.
This insight helps to show clearly what the otherwise com-

plicated Wigner-function patterns are showing. Interference in
the Wigner function is quite evident if the QDSs are greatly
separated between coherent-state components (the cat-state
case) and exhibit interference poorly for small separation
between coherent states (the kitten-state case). If interference
coincides with a Gaussian peak, the Gaussian peak is thus
diminished. This coincidence of peak and trough is important
for comb states, which are equally spaced so most Gaussians
peaks are colocated with strong interference troughs. Thus,

FIG. 12. For case ϒ3, (a) quadrupole-Gaussian-well potential
approximated as a piecewise continuous function and (b) ground-
state Wigner function for the potential V (x) for α = 2 and β = 6
(ϒ3). The quantities are in arbitrary units.

the comb state displays almost vanishing Gaussians (the two
in the middle of the QTS).

We remark that our comb state differs from the experimen-
tal trapped-ion grid state [31], with the grid state having an
unequally weighted superposition of coherent states whereas
the comb state has equal weighting. The grid state displays a
Wigner-function pattern with diminished interference patterns
between some pairs of coherent states probably due to this un-
equal weighting and probably also due to extreme sensitivity
of the interference pattern on the periodicity of coherent-state
amplitudes in phase space.

For marginal distributions, the Gaussian peaks are well
separated and interference along the p axis is clear. For the
kitten state, Gaussian peaks run together. The p distributions
also show fading interference as the distance between coher-
ent states decreases.

The photon-number distribution for the QTS is an oscilla-
tory function that is modulated by two Poissonian peaks. This
modulation is primarily a QDS effect explained by interfer-
ence in phase space, but the oscillation between peaks is a
QTS effect. The minima and maxima of the photon-number
distribution envelope do not shift, as evidenced by the expres-
sion for the derivative of the photon-number distribution.

We have discussed a physical implementation of each QTS
by obtaining the GS of a quadruple-Gaussian-well potential.
Our numerical analysis shows excellent agreement between
the QTS and the GS with respect to where the Gaussian peaks
and interference effects appear in phase space and how they
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look. Some differences arise due to the Gaussian well not
corresponding perfectly to parabolic wells.

VI. CONCLUSION

To conclude, the QTS was introduced to extend the idea
of so-called Schrödinger cat states by effectively splitting
each of the two coherent states in the superposition into two,
thereby obtaining the QTS as a superposition of four coherent
states. We have calculated and plotted the Wigner functions,
marginal distributions, and photon-number distributions and
explained the salient features, which appear complicated but
can be understood in terms of linear superpositions and beat
patterns.

Different cases were presented corresponding to a
macroscopically separated superposition of Schrödinger kit-
ten states, a microscopically separated superposition of
Schrödinger cat states, and a four-tooth version of the quan-
tum comb state (in the infinite limit) [29]. The features have

been explained, and the comb-state analysis could be espe-
cially useful as these features are meaningful in experimental
efforts towards quantum information processing in a harmonic
oscillator. We have shown promising directions for realization
of a QTS in superconducting circuits and Bose-Einstein con-
densates.

Another important aspect of our work is the connection
between the QTS and the quadruple-well potential. We solve
for Gaussian wells, but of course other wells are possible.
Multiple potential wells provide a promising avenue for guid-
ing laboratory realizations of the QTS.
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