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Quantum-correlation-enhanced weak-field detection in an optomechanical system
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A theoretical scheme is proposed to enhance the signal-to-noise ratio in ultrasensitive detection by quantum
correlation in a composite optomechanical system. Introducing an auxiliary oscillator and treating it as an added
probe for weak-field detection, the additional noise can be greatly suppressed, which may even break the standard
quantum limit. A magnetic field is employed as an example to exhibit the detection capability of the scheme.
The result shows that, compared with the traditional detection protocol, the scheme has a higher signal-to-noise
ratio and a better detection accuracy. Furthermore, the signal intensity detection curve shows a good linearity.
The results provide a promising platform for reducing the additional noise by utilizing quantum correlation in
ultrasensitive detection.
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I. INTRODUCTION

Quantum technology has a very important application
prospect in ultrasensitive detection, such as mass sensor [1],
force sensor [2], and quantum gyroscopes [3]. The appli-
cation of quantum correlation can provide substantial en-
hancements for detecting and imaging weak signals in the
presence of high levels of noise and loss [4–9]. For exam-
ple, improving the detection signal-to-noise ratio (SNR) in
quantum illumination via emitting correlation photons [4,5],
enhancing the quality of ghost imaging via optical parametric
amplification [6], and enhancing the precision of a position
measurement via intracavity squeezing [9]. These protocols
show the superiority of using quantum correlation in sensitive
detection.

As a natural bridge linking the photon field and the phonon
field, optomechanical systems can sense mechanical displace-
ments optically, which provide a platform for high-precision
measurements [10–13]. Optomechanical systems have been
widely used in weak-field sensing due to the direct relation-
ship of the mechanical displacement and the field intensity
[10]. More importantly, as a good probe, mechanical oscilla-
tors may couple with various kinds of field, such as electric
field [11], magnetic field [12], even gravitational waves [13].
Therefore, optomechanics can be used to detect these signals
as an important candidate for ultrasensitive detection. Such
systems demonstrate the huge susceptibility around the res-
onance frequency of oscillators, under the assistance of an
excellent mechanical quality factor Qm and high-sensitivity
interferometric measurements [14,15]. Due to the competitive
relation between photon shot noise and quantum back-action
noise, the detector based on a photomechanical system has
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a standard quantum limit (SQL), which limits the further
improvement of measurement accuracy. It has been shown
that optomechanical systems can be utilized as detectors that
have noise performance beyond the SQL by suppressing the
additional noise with the help of quantum coherence [16–19].
Such a noise suppression scheme is achieved by quan-
tum effects in optomechanical systems, including squeezing
[13,20,21], entanglement [4,22–24], and optical high-order
correlation [25].

Up to now, most of the measurement schemes are focusing
on breaking the SQL [26]. However, when using quantum
correlation of optical cavities to eliminate additional noises,
the amplification of the signals will usually be reduced [27].
To evaluate the performance of a quantum detector based
on an optomechanical system, not only the suppression of
its additional noise, but also the signal amplification and the
linearity of the detector response should be considered.

For the reasons given above, in this paper, an optome-
chanical dual-probe port scheme (OMDP) is proposed. Dif-
ferent from the common coherent quantum-noise cancellation
schemes, which eliminate the back-action noise in measure-
ment, we focus on breaking through the SQL by eliminating
the shot noise. By using the quantum correlation between
input ports, we can greatly reduce quantum noise and surpass
the SQL in the measurement. In addition, the scheme can
exhibit high SNR and the good ability to resist environment
temperature.

The paper is organized as follows. In Sec. II we first in-
troduce the model, then give the quantum Langevin equations
and calculate the spectrum of fluctuations of the output light.
After that, we give the analytic expression for the weak-field
sensitivity. In Sec. III we study the additional noise and SNR
in the weak-field detection. In Sec. IV we take the magnetic
field as an example to show the superior capability of our
scheme. In Sec. V we summarize our main conclusions.
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FIG. 1. The schematic diagram of a weak-field detection system.
The monochromatic cavity field is coupled with two movable mir-
rors, and two coupled movable mirrors are used as probes to detect
weak field with strength B. The laser is split into a signal beam and a
local oscillator (LO). The signal beam is used to drive the cavity. The
LO is phase modulated with an electro-optical modulator (EOM) and
used to perform homodyne detection with the output signal beam.

II. MODEL AND HAMILTONIAN

As shown in Fig. 1, the weak-field detector is composed of
a composite optomechanical system and a homodyne detec-
tion system. The Hamiltonian of the composite optomechani-
cal system can be described as

HS = ωca†a +V q1q2 +
∑
j=1,2

[
ωm j

2

(
p2

j + q2
j

) − g jq ja
†a

]
,

(1)

where a is the bosonic operators for the optical mode with fre-
quency ωc. p j and q j are the position and momentum operator
of the jth mechanical mode with frequency ωm j . The single-
photon coupling coefficient of the optomechanical interac-
tion is g j = (ωc/L)

√
h̄/(2mωm j ). The standard continuous-

wave driving can be described as Hd = ε[a exp(−iωdt ) +
a† exp(iωdt )], where ωd is the angular frequency of the
laser and ε is the cavity driving strength, given by ε ≡
2
√

Pκex/(h̄ωd ), with P being the input power of the laser and
κex being the input rate of the cavity. V is the strength of
two mechanical couplings and can be realized via a substrate-
mediated interaction in a high-stress silicon nitride mem-
brane [28]. The strength of the detection field is B, which
could be electric field, magnetic field [29], and gravitational
field [13] (we will give an example in Sec IV). Through
the design, we can make the mechanical oscillators produce

small displacement q j in the weak field. The corresponding
mechanical response coefficient of the oscillators in the weak
field is ξ j . Thus, the Hamiltonian of the mechanical oscillators
surrounded by the classical field can be written as Hb =
−∑

j=1,2 Bξ jq j .
Under strong driving conditions we can linearize the equa-

tions of motion around the steady state with a → 〈a〉 + δa,
p j → 〈p j〉 + δp j , q j → 〈q j〉 + δq j . In the rotating frame
with input laser frequency ωd , the quantum Langevin equa-
tions can be obtained,

δȧ = −
(

i�′ + κ

2

)
δa +

∑
j=1,2

iG jδq j + √
κexain + √

κ0 fin,

(2)

δq̈ j = −ω2
m jδq j + ωm j (Gjδa† + G∗

jδa)

−ωm jV δq3− j − ωm jγ jδp j + ωm jFin, j, (3)

where �′ = � − ∑
j=1,2 g j〈q j〉 denotes the driving modified

detuning of the cavity, and Gj = g j〈a〉 denotes the linearized
coupling. κ0 denotes the loss rate inside the cavity. The
total cavity loss rate can be written as κ = κex + κ0. Fin, j =√

γ jPth, j + ξ jB is the input term of the mechanical oscillator,
Pth, j is the noise operator. Introducing the Fourier transforma-
tion, the operator dynamic of the system in frequency domain
becomes

δa(ω) = χc[iG1δq1(ω) + iG2δq2(ω)

+√
κexain(ω) + √

κ0 fin(ω)], (4)

δq j (ω) = χm j[Gjδa†(−ω) + G∗
jδa(ω)

−V δq3− j (ω) + Fin, j (ω)], (5)

where χc = [i(�′ − ω) + κ/2]−1 and χm j = [ωm j −
ω2/ωm j − iγ jω/ωm j]−1 are susceptibilities of cavity and me-
chanical oscillators, respectively. For the slow varying field or
the steady field, the input term can be written as Fin, j (ω) =√

γ jPth, j (ω) + δ(ω)ξ jB. Using the standard input-output re-
lation Oout = √

κexO − Oin and considering the homodyne
measurement shown in Fig. 1, we have the output operator

Mout(ω) = i[a†
out(−ω)e−iθ − aout(ω)eiθ ]

= A(ω)ain(ω) + B(ω)a†
in(−ω)

+ A0(ω) fin(ω) + B0(ω) f †
in(−ω)

+C(ω)Fin,1(ω) + D(ω)Fin,2(ω), (6)

where θ is a controllable phase which can reduce the addi-
tional noise and has been studied in Ref. [30]. For simplicity,
we choose θ = 0 and Gj = G, the coefficients in Eq. (6) can
be written as

A(ω) = i(1 − κχc) + iκχc(|G|2χc + G∗2χ†
c )(2V χm1χm2 − χm1 − χm2)

De
,

B(ω) = −i(1 − κχ†
c ) + iκχ†

c (|G|2χ†
c + G∗2χc)(2V χm1χm2 − χm1 − χm2)

De
,

A0(ω) =
√

κexκ0χc

De
[(V 2χm1χm2 − 1) + 2i|G|2χ†

c (2V χm1χm2 − χm1 − χm2)],
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B0(ω) =
√

κexκ0χ
†
c

De
[(V 2χm1χm2 − 1) − 2i|G|2χc(2V χm1χm2 − χm1 − χm2)],

C(ω) = i
√

κ (Gχc + G∗χ†
c )(V χm1χm2 − χm1)

De
,

D(ω) = i
√

κ (Gχc + G∗χ†
c )(V χm1χm2 − χm2)

De
. (7)

The denominator De = i(V 2χm1χm2 − 1) + |G|2(χc − χ†
c )(2V χm1χm2 − χm1 − χm2), the cavity susceptibility satisfies the

relationship χ†
c = χ∗

c (−ω).

III. WEAK-FIELD DETECTION

Assuming that the two mechanical oscillators have the same response rate ξ1 = ξ2 = ξ , Eq. (6) can be rewritten as

Mout(ω) = A(ω)ain(ω) + B(ω)a†
in(−ω) + A0(ω) fin(ω) + B0(ω) f †

in(−ω) + C(ω)
√

γ1Pth,1(ω)

+ D(ω)
√

γ2Pth,2(ω) + [C(ω) + D(ω)]δ(ω)ξB. (8)

According to Eq. (8), the coefficient of the weak-field intensity (B) directly represents the amplification characteristic from the
detection signal to the output signal. Therefore, the amplification coefficient of the system can be defined as Ap = |C(ω) + D(ω)|.
Analogously, the other items without B in the output operator can be regarded as noise. To obtain the relationship between the
output signal and the noise, Eq. (8) can be rewritten as

Mout

C(ω) + D(ω)
= A(ω)

C(ω) + D(ω)
ain(ω) + B(ω)

C(ω) + D(ω)
a†

in(−ω) + A0(ω)

C(ω) + D(ω)
fin(ω)

+ B0(ω)

C(ω) + D(ω)
f †
in(−ω) + C(ω)

√
γ1Pth,1 + D(ω)

√
γ2Pth,2

C(ω) + D(ω)
+ δ(ω)ξB, (9)

thus the additional noise can be defined as

Fadd = A(ω)

C(ω) + D(ω)
ain(ω) + B(ω)

C(ω) + D(ω)
a†

in(ω) + A0(ω)

C(ω) + D(ω)
fin(ω) + B0(ω)

C(ω) + D(ω)
f †
in(−ω)

+ C(ω)
√

γ1Pth,1 + D(ω)
√

γ2Pth,2

C(ω) + D(ω)
. (10)

The first four terms describe the input noise from the cav-
ity, resulting in the SQL [31]. The last term describes the
thermal noise from the mechanical environment. According
to the expression in Eqs. (7), we can find that A(ω), B(ω),
A0(ω), B0(ω), C(ω), and D(ω) contain coherent terms caused
by coupling V , i.e., V χm1χm2. Thus, one may reduce Fadd

by appropriately modulating the coupling rate V . From the
general definition of the noise spectrum, we have

Sadd(ω) = 1
2 [SFF (ω) + SFF (−ω)], (11)

where SFF (ω) = ∫
dω′〈Fadd(ω)Fadd(ω′)〉. The vacuum radi-

ation input noise ain and internal noise operator fin satis-
fies a δ-correlation function. The operator Pth, j (ω) describes
the input thermal noise. Under Born-Markov approximation,
we have 〈P†

th, j (ω)Pth, j (ω′)〉 ≈ nth, jδ(ω − ω′), where nth, j =
[exp(h̄ωm, j/kBT ) − 1]−1 describes the equivalent thermal oc-
cupation. The additional noise spectrum density becomes

Sadd(ω) = 1

2

[∣∣∣∣ A(ω)

E (ω)

∣∣∣∣
2

+
∣∣∣∣ B(ω)

E (ω)

∣∣∣∣
2

+
∣∣∣∣A0(ω)

E (ω)

∣∣∣∣
2

+
∣∣∣∣B0(ω)

E (ω)

∣∣∣∣
2
]

+Sth(ω), (12)

where E (ω) = C(ω) + D(ω), Sth(ω) = γ1nth1|C(ω)/
E (ω)|2 + γ2nth2|D(ω)/E (ω)|2. In Eq. (12), the first four terms

describe the noise from the cavity. The internal loss of the
cavity usually leads to the effective loss of the information,
which is not advantageous for many experiments [26]. Fig-
ure 2 show how the internal loss acts on the additional noise
in detection. In Fig. 2(a), the input rate of the cavity (κex)
is fixed. The minimum value of additional noise in detection
will increase with the increase of the internal cavity loss rate.
Similar conclusions can also be obtained in Fig. 2(b). When
the total dissipation rate (κ) is fixed, the minimum value of
additional noise will also increase with the increase of the
proportion of internal loss. It means that both the absolute and

FIG. 2. The minimal additional noise as a function of κ0.
(a) κex/ωm = 0.2. (b) κ/ωm = 0.2. Other parameters are G/ωm =
0.03, γ1 = γ2 = 10−5ωm, V/ωm = 0.2, ωm = 5 × 106 Hz, and
nth = 10.
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relative value of internal loss rate have a negative effect on the
detection. Thus, internal loss needs to be reduced in detection.
In experiments, an “overcoupled” cavity [26,32] can usually
be used to build the optomechanics, the external loss of which
is the dominant cavity loss (κ ≈ κex 
 κ0).

In the following discussion, the impact of internal loss is
neglect. Under the condition �′ = ωm, j = ωm, κ0 = 0, and
Gj = G, we have

Sadd(ω) =
∣∣∣∣ 1 − V 2χm1χm2

2V χm1χm2 − χm1 − χm2

−i[ω2 + (κ/2 − iω)2]

2
√

κ (κ/2 − iω)G

+ 2(κ − iωm)√
κ (κ − 2iωm)

G

∣∣∣∣
2

+ Sth(ω). (13)

This should be compared to the result of the standard optome-
chanical scenario [26]

Sadd1(ω) =
∣∣∣∣−i[ω2 + (κ/2 − iω)2]

2χm1
√

κ (κ/2 − iω)G

+ 2(κ − iωm)G√
κ (κ − 2iωm)

∣∣∣∣
2

+ γ1nth1, (14)

with its familiar shot-noise term scaling as 1/G2 and the
back-action term scaling as G2. The SQL of the standard
optomechanical scheme (SSQL,1) and our scheme (SSQL,2) can
be obtained by minimizing Sadd1 and Sadd with respect to G at
T = 0. The minimal value of SSQL,1(ω) and SSQL,2(V = 0, ω)
can be obtained at ω = ωm. To investigate the noise limit of
our scheme, we define two SQL proportion factors,

R1(ω) = SSQL,2(ω)

SSQL,1(ω = ωm)
, (15)

R2(ω) = SSQL,2(ω)

SSQL,2(V = 0, ω = ωm)
, (16)

R1 is defined to compare the SQL of OMDP with the stan-
dard optomechanical scheme. R1 < 1 denotes our scheme
beyond the SQL of the standard optomechanical scheme.
R2 is defined to compare the SQL of OMDP with and
without mechanical interaction. R2 < 1 denotes our scheme
with mechanical interaction beyond the SQL of that without
mechanical interaction. The comparison of SQL with different
parameters are shown in Fig. 3. The white-dashed line denotes
Rj = 1. The additional noise exhibits a minimal value at
the specific frequency in the dark area. Under the condition
{Gj, γm, j} � ωm, this optimized frequency can be obtained
i.e., ωeff ≈ √

ωm(ωm + V ). This frequency can be obtained
by the diagonalization of the two oscillators [33]. The low
frequency part will be decoupled from the magnetic field
under the given parameters. It is shown that the SQL of our
scheme can go beyond the SQL of the standard optome-
chanical scheme and OMDP without mechanical interaction.
The corresponding optimized parameters area is between the
white-dashed lines in the figure. At the optimized frequency
ωeff, Rj are very small, where R1 is on the order of 10−7

and R2 is on the order 10−5. In Fig. 3(a), when mechanical
interaction V = 0, the SQL of OMDP is a little lower than
the standard optomechanical scheme in the frequency area
ω ∈ [0.9ωm, 1.1ωm]. A similar result of R2 can be found in

FIG. 3. Rj as a function of frequency ω and mechanical coupling
V (on a logarithmic scale). White-dashed line denotes Rj = 1. (a) and
(b) Density plots of R1 and R2, respectively. The parameters are
κ/ωm = 0.1, γ1 = γ2 = 10−5ωm, ωm = 5 × 106 Hz.

Fig. 3(b). The SQL of OMDP may reach a rather lower level
with the help of mechanical interaction.

The above calculation is discussed under the condition
T = 0. However, in realistic situations, the thermal noise
should be taken into account. Note that, in our system,
the addition of detection ports does not increase the
effective thermal noise. Instead, it reduced the thermal
noise slightly. According to the expression of Sth(ω) under
Eq. (12), the thermal noise is only half of the original one
[Sth(ω) = γ1nth1/2] when the parameters of the oscillators are
identical. That is because the quantum correlation of different
thermal oscillators can be ignored.

The additional noise spectrum and amplification spectrum
are shown in Fig. 4. There is a minimal value of additional
noise at the frequency ωeff. In addition, lower additional noise
requires a larger value of V . When V = 0, the minimal value
of additional noise is almost the same as the one under the
single detection port (marked as “single”). The same result
can be found in the amplification spectrum, however, the
amplification rate increases monotonically as the parameter
V increases.

FIG. 4. Additional noise and amplification coefficient as a
function of frequency ω. G/ωm = 0.03, κ/ωm = 0.1, nth = 10,
�ω/ωm = 0, γ1 = γ2 = 10−5ωm, ωm = 5 × 106 Hz.
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FIG. 5. (a) The diagram of “positive effect” and the correspond-
ing optimum amplification coefficient max[Ap(ω)] as a function
of V . (b) The diagram of “negative effect” and the corresponding
optimum elimination coefficient min[El (ω)] as a function of V . The
parameters are the same as that in Fig. 4.

Figure 5 explains the noise reduction and signal amplifica-
tion in our scheme. As shown in Fig. 5(a), the signal to detect
is transformed into the displacement of the mechanical modes
through the response of mechanical detection ports. Then
these displacements are transformed into the change of the
optical mode through the optomechanical coupling for further
detection. Since we have two input ports (two mechanical
oscillators), coherent amplification will occur in the first sig-
nal transition, i.e., region I in the figure. In the second signal
transition, coherent amplification will also occur due to the in-
teraction between two coupled mechanical oscillators and the
same cavity, i.e., region II in the figure. In these two cascade
coherences, the signal can be amplified greatly compared to
the original scheme. According to the definition of Ap(ω), we
can obtain Ap ∝ {|i(V 2χm1χm2 − 1) + (χc − χ†

c )[|G1|2χm1 +
|G2|2χm2 − 2V (G∗

1G2 + G1G∗
2 )χm1χm2]|}−1. The first term

denotes the coherent amplification of region I. The second
term denotes the coherent amplification of region II. Large Ap

can be obtained under an appropriate value of {V, G1, G2}.
We name the coherence process from mechanical oscilla-

tors to cavity as “positive effect,” which makes the optimal
amplification factor oscillate with the changing of V . It is
difficult to analytically show the oscillation relationship be-
tween max[Ap(ω)] and V , because coupling can lead to a shift
effect of effective frequency. Therefore, we show this positive
effect numerically in the figure. The amplitude of max[Ap(ω)]
increases along with the increasing of V . A good enhancement
can be realized under an appropriate value of V .

Traditionally, quantum noise cancellation schemes are
based on back-action noise reduction, while our scheme fo-
cuses on shot-noise reduction. According to Ref. [26], the
optical phase readout (δθ ∼ 1/

√
N) induces an imprecision in

the q measurement, where δqimp ∼ κδθ/G, which is defined
as shot noise.

As shown in Fig. 5(b), the imprecision in the displacement
readout of two coupled mechanical oscillators are subject
from the same cavity. Thus, shot noise in our system describes
the imprecise noise from the cavity to mechanical oscillators.
This process is an inverse process of positive effect (the
coherence process from mechanical oscillators to cavity),

FIG. 6. (a) The minimal additional noise as a function of V .
(b) The minimal additional noise as a function of �ω. (c) The
minimal additional noise as a function of G. (d) The minimal
additional noise as a function of κ . Other parameters are V/ωm = 0.2,
G/ωm = 0.03, κ/ωm = 0.1, �ω/ωm = 0, γ1 = γ2 = 10−5ωm, ωm =
5 × 106 Hz, and nth = 10.

which can be regarded as “negative effect.” The strength
of negative effect can be expressed by parameter El (ω) =
[1 − V 2χm1χm2]/[2V χm1χm2 − χm1 − χm2] in Eq. (13). Com-
paring with the amplification of positive effect Ap(ω) ∝
|(V 2χm1χm2 − 1)−1|, El (ω) will naturally lead to the reduction
of negative effect. As shown in Fig. 5(b), we plot min[El (ω)]
as a function of V . It can be clearly seen that min[El (ω)] and
max[Ap(ω)] show the opposite oscillation trend. This is why
we need to reduce shot noise rather than back-action noise in
our scheme.

To study the the relationship between additional noise and
adjustable parameters, we plot Fig. 6. As shown in Fig. 6(a),
the minimal additional noise Smin exhibits an oscillating de-
crease along with the increase of V . The oscillating amplitude
also gets larger in the meantime. This is consistent with the
analysis of Eq. (10) that the coupling between two oscillators
contribute to the interference cancellation of the additional
noise. However, a larger V does not guarantee a better result.
Negative effect of detection like destructive interference also
exist. For example, when V = 0.47ωm, the minimum noise
Smin = 0.015, which is larger than the case without mechani-
cal interaction. Thus, in order to suppress the additional noise,
we need to choose an appropriate coupling coefficient. As
shown in Fig. 6(b), we plot the minimal additional noise
with frequency difference �ω = ωm1 − ωm2. Similar to the
conclusion of Fig. 6(a), the additional noise shows a coherent
effect due to mechanical coupling. The frequency difference
�ω affects the value of χm2 and thus affects the coherence
term, i.e., V χm1χm2. Moreover, the amplitude of the curve
increases with the increasing of �ω. In experimental real-
ization, to obtain a larger mechanical coupling, we usually
need to set �ω ≈ 0 [28]. Figure 6(c) shows the effect of
linearized coupling strength on minimum additional noise.
The minimum additional noise Smin has a valley value along
with the increase of the linear coupling coefficient. When
G < 0.02ωm, Smin decreases with the increasing of G. When
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FIG. 7. (a) SR as a function of coupling V , where environment
temperature T = 1 mK. (b) SR as a function of environment temper-
ature T with different coupling. Other parameters are the same as
that in Fig. 4.

G > 0.02ωm, Smin increases with the increasing of G. This
phenomenon is due to the dependent relationship between
the back-action noise and the shot noise, which has been
studied recently [2]. As shown in Fig. 6(d), we plot Smin as
a function of κ . Similar to the conclusion of Fig. 6(c), due
to the competitive relationship between the back-action noise
and the shot noise, Smin has a minimum value.

A quantum detector based on an optomechanical system
should not be evaluated only by its additional noise suppres-
sion. Instead, signal-to-noise ratio (SNR) and the linearity of
the detector response should also be taken into account. Ac-
cording to the standard SNR definition and the expression of
Eq. (9), we have SNR(ω) = ξ 2B2/Sadd(ω), where ξ and B are
constant in our analysis. Thus, we can easily learn the charac-
teristics of SNR from the additional noise. To investigate the
enhancement of SNR in our scheme under finite temperature,
we define the proportion factor SR = SNR(ωeff )/SNR0, where
SNR0 is the maximum SNR of the standard optomechanical
scenario. SR > 1 indicates that in the presence of the cou-
pling, the SNR is better than the case without mechanical
interaction, and vice versa. As shown in Fig. 7(a), at low
temperature regime, our scheme exhibits a remarkable ad-
vantage by choosing an appropriate coupling rate, which is
consistent with the analysis in Fig. 6(a). This is because the
definition of additional noise is a relative noise [2,26], which
includes the proportion of signal amplification. As shown
in Fig. 7(b), with the increase of temperature, SR gradually
decreases to a constant 2. When the environment temperature
is high enough, the value of SR depends only on the thermal
noise of the mechanical oscillators. In the previous analysis
we know that our system can reduce the effective thermal
noise by half, that is why the final SR will approach constant
2. To fully take advantage of the mechanical correlation for
enhancing SNR and reducing additional noise, an appropriate
mechanical coupling rate is important. Although our scheme

has a great advantage in resisting noise, it is still necessary to
keep the detector in a low temperature environment.

In our scheme, the key to enhancing the detection effect is
the coherent interaction between two mechanical oscillators.
The larger the coupling strength, the more obvious the detec-
tion enhancement effect is. However, strong coupling between
mechanical oscillations are difficult to realize in the experi-
ment. Recently, various theoretical and experimental schemes
have been proposed to overcome this difficulty [34–42], which
provide the possibility of feasibility for our scheme. Strong
dynamic coupling between two mechanical resonators can
be physically realized by using a piezoelectric transducer
[37–39]. The mechanical coupling parameter is proportional
to gate voltage and can be tuned in micro- (nano-) oscillator
systems [38,39]. The mechanical oscillators can even achieve
super-strong coupling through the indirect effect of the light
field [41,42]. The coupling strength of silicon oscillators on
the thick device layer of a SOI wafer can reach the magnitude
of the oscillator’s intrinsic frequency through the indirect
interaction of the optical spring [42]. Thus, under the existing
experimental conditions, we can achieve the required cou-
pling strength by adding direct coupling devices (piezoelectric
transducer) or indirect coupling devices (optical spring). Note
that the indirect additional mechanical coupling system must
be in a dimension that does not change the Hamiltonian of our
model. (It can be in different optical polarization, frequency
or vector direction, etc.)

IV. APPLICATION EXAMPLE: WEAK MAGNETIC
FIELD DETECTION

In this section, taking magnetic field as an example, our
system can be regarded as a magnetometer. The magnetic field
is responsive to the mechanical oscillators with surface charge
[43]. As shown in Fig. 1, oscillators 1 and 2 are simultane-
ously used as probes for magnetic field. Different strengths
of the magnetic field will cause different displacements of
the oscillators. Assuming the magnetic field is homoge-
neous, the corresponding Hamiltonian can be written as Hb =
−∑

j=1,2 Bξ jq j , where B represents the intensity of the mag-
netic field, ξ j = IL denotes the constant related to the surface
charge characteristics, I denotes surface current of the me-
chanical oscillators, and L denotes the size of the oscillators.

In a macro-optomechanical system, mechanical frequency
ωm = 2π × 10.56 MHz, γm = 2π × 32 Hz, mechanical di-
ameter d = 15 μm [32]. The SNR and the precision of the
detection system has been shown in Fig. 8. Consistent with
the conclusion of the previous section, the optimal detection
frequency is ωeff. The SNR of the field detector can reach
the order 106 with B = 10−13 T. The corresponding output
photon number is n = 1.7 × 106. With the increase of field
strength, the SNR increases significantly. In Fig. 8(b) we
investigate the detection accuracy and response characteristics
of the detector. Here we define that the detection accuracy
is the intensity of magnetic field when SNR is equal to 1. It
can be found that, under the given parameters, the detection
accuracy can reach 8.4 × 10−20 T. This accuracy can be
further improved by increasing the response rate ξ j . Besides,
there is an obvious linearity relationship between SNR and
input field strength B. In our calculation, SNR is a linear
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FIG. 8. (a) SNR spectrum with different magnetic field inten-
sity. (b) SNR(ωeff ) as a function of magnetic field intensity. B =
10−13 T, I = 10 μA, V/ωm = 0.2, κ/ωm = 0.1, γ1 = γ2 = 2π ×
32 Hz, ωm = 2π × 10.56 MHz, T = 1 mK.

function of the output photon strength. Therefore, SNR can
be used directly to indicate the intensity of output signal. This
weak-field detection system satisfies all requirements we have
mentioned in Sec. I.

V. CONCLUSION

In conclusion, the weak-field dual-port detection protocol
can effectively suppress the additional noise and even break

through the standard quantum limit of standard optomechani-
cal protocols [26]. By using the quantum correlation between
mechanical oscillators and selecting the appropriate coupling
strength, we can greatly reduce the noise without weakening
the signal and achieve a high SNR. Under the existing ex-
perimental conditions, we take the weak magnetic field as an
example to evaluate the performance of our scheme. Under
the given parameters in Ref. [32], the simulated detection
accuracy can reach 8.4 × 10−20 T. The detector also has a
high SNR and a good linear response curve. Our scheme
provide a promising application of the optomechanical system
in quantum weak-field detection.
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