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We present simple yet extremely accurate coupled-wave models describing the formation of bound states in the
continuum (BICs) in one-dimensional periodic guided-mode resonant gratings consisting of a slab waveguide
layer with a binary grating attached to one or both of its interfaces. Using these models, we obtain simple
closed-form expressions predicting the locations of the BICs and quasi-BICs in the ω-kx parameter space. We
study two mechanisms of the BIC formation: coupling between two counterpropagating guided modes and
coupling between a guided mode and a Fabry-Pérot mode. The BIC conditions corresponding to the considered
mechanisms are formulated in terms of the scattering coefficients of the binary grating. The predictions of the
presented models are in excellent agreement with the results of full-wave simulations obtained using the Fourier
modal method.
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I. INTRODUCTION

In recent years, the investigation of bound states in the
continuum (BICs) has attracted a great deal of attention.
Bound states in the continuum were for the first time the-
oretically predicted by von Neumann and Wigner for an
electronic system with an artificially tailored potential [1]. In
the past decade, BICs were discovered and studied in various
photonic structures [2]. In contrast to the conventional bound
states, BICs are the eigenmodes that, although supported by
a structure with open scattering channels, remain perfectly
confined, i.e., have an infinite lifetime and an infinite quality
factor. There are different mechanisms preventing the leakage
of the mode energy to the open channels, including symmetry
mismatch [2] and destructive interference of resonances [3].

Photonic BICs were studied in various periodic structures
(diffraction gratings, photonic crystal slabs, and infinite ar-
rays of dielectric rods or spheres) [4–19], in defects and
interfaces of photonic crystals [20–22], in arrays of optical
waveguides [23–25], and in photonic rib waveguides [26,27],
among others [2]. Recently, the topological nature of BICs
was unveiled [16–18,28], which in particular explained their
robustness and led to the discovery of the so-called strong
resonances [17–19,28] occurring when two BICs coalesce.
The phenomenon of a BIC not only is of great theoretical
interest, but has a wide range of practical applications, since
a small perturbation in the parameters of the structure or of
the incident radiation leads to the collapse of a BIC to a Fano
resonance with an extremely high quality factor. The design
of high-Q resonators is important, in particular, for the devel-
opment of lasers [29–31], sensors [32,33], and filters [34].

Periodic optical structures such as diffraction gratings or
photonic crystal slabs (PCSs) constitute one of the basic
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building blocks of photonics. For these structures, advanced
theoretical models and efficient numerical methods giving
deep insight into their optical properties have been developed.
The interest in diffraction gratings and PCSs is due to the
fact that they exhibit a wide range of optical phenomena.
In particular, most of the known resonant effects arising in
optics and photonics can be investigated by studying diffrac-
tion gratings. It is thus not a surprise that, starting from the
pioneering paper [4], the vast majority of the published papers
studying photonic BICs focuses on gratings and other periodic
structures [4–19]. In Ref. [4], BICs arising due to Fabry-Pérot
interference between a pair of resonant gratings were studied
theoretically and numerically. Extensive numerical [5–8] and
experimental [9] investigations of BICs in structures with
one-dimensional (1D) periodicity were carried out. In partic-
ular, field enhancement effects near BICs were discussed in
Ref. [8]. In Ref. [10], an experimental study of a PCS with 2D
periodicity was presented. A recent work [11] demonstrated
the existence of quasi-BICs resulting from the coupling of
waveguide and plasmonic modes in a metallic grating located
on a slab waveguide. Simple approximate models for the
BICs based on power series expansion were proposed in
Refs. [12–14]. In particular, in Refs. [12,13], the case of
symmetry-protected BICs in a PCS with 1D periodicity was
considered. In a recent paper, BICs in low-contrast PCSs were
theoretically described using Fourier series expansion of the
dielectric permittivity [15].

In this paper we investigate BICs and quasi-BICs sup-
ported by binary gratings located on the surface of a slab
waveguide [Figs. 1(a) and 1(b)]. We will refer to these
structures as guided-mode resonant gratings (GMRGs). The
eigenmodes of the GMRGs considered in the present work
arise due to interference of plane waves inside the waveg-
uide layer. This allows us to formulate simple coupled-wave
models describing the optical properties of the GMRGs. The
developed models do not utilize series expansion techniques,
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FIG. 1. Guided-mode resonant gratings consisting of a slab
waveguide layer with a binary grating attached to (a) one or (b) both
of its interfaces. (c) Light lines of ±1st and 0th diffraction orders in
the substrate and superstrate (blue solid lines) and in the waveguide
layer (red dashed lines).

which makes them extremely accurate. Using these models,
we derive simple closed-form expressions predicting the loca-
tions of the BICs in the ω-kx parameter space. We investigate
two different mechanisms of BIC formation: coupling of
two counterpropagating waveguide modes and coupling of a
waveguide mode with a Fabry-Pérot mode.

The paper is organized in five sections. Following the
Introduction, Sec. II describes the geometry of the considered
structure and revisits some basic aspects of the grating theory.
In Sec. III we study BICs and quasi-BICs arising due to
coupling of two counterpropagating waveguide modes, which
happen near the center of the first Brillouin zone. In Sec. IV
we study BICs caused by coupling of a waveguide mode with
a Fabry-Pérot mode. Section V summarizes the paper and
offers an outlook for future work.

II. THE GMRG GEOMETRY

Let us start with the guided-mode resonant grating shown
in Fig. 1(a). The considered GMRG consists of a binary
grating with period d placed on top of a slab waveguide
with thickness h and refractive index n. The refractive indices
of the superstrate and substrate materials are assumed to be
unity. The binary grating is assumed to be nonresonant, i.e.,
all the resonances (and the eigenmodes) of the GMRG arise
due to multiple reflections of waves inside the waveguide
(WG) layer. The eigenmodes can be excited by an incident
plane wave, which is defined by the angular frequency ω and
the in-plane wave-vector component kx = k0 sin θ , where θ is
the angle of incidence and k0 = ω/c is the free-space wave

number. Let us note that in the present work we consider only
the case of planar diffraction (ky = 0).

We will assume that the grating is subwavelength, i.e.,
that only the 0th diffraction orders exist in the substrate and
superstrate regions. However, inside the WG layer, which has
a higher refractive index compared to the substrate (super-
strate), several diffraction orders may propagate. For the mth
diffraction order inside the WG layer, the x component of the
wave vector reads

kx,m = kx + 2π

d
m. (1)

The z component of the wave vector has the value

kz,m =
√

k2
0n2 − k2

x,m, (2)

which is real for the propagating diffraction orders and imag-
inary for the evanescent ones.

Figure 1(c) shows the light lines (light cones) of the 0th
and ±1st diffraction orders in the substrate (superstrate) and
in the WG layer. In the shaded regions marked A and B1,2,
the substrate and superstrate support only the 0th diffraction
order, whereas in the WG layer, also the ±1st diffraction
orders propagate. In region A, both −1st and +1st orders
exist in the waveguide layer, while in regions B1,2 only one
of these diffraction orders is present. Regions A and B1,2

are the regions where GMRGs exhibit pronounced resonant
properties, which allows one to use GMRGs as optical filters
known as guided-mode resonant filters.

In Sec. III we consider BICs and quasi-BICs supported by
the GMRG operating in region A. In Sec. IV we will focus on
regions B1,2.

III. BOUND STATES IN THE CONTINUUM AND
QUASI-BICS EMERGING FROM COUPLING

OF TWO WAVEGUIDE MODES

A. Coupled-wave model

In this section we present a coupled-wave model of the
GMRG operating in region A [see Fig. 1(c)]. This model
allows us to obtain simple expressions for the transmission
and reflection spectra of the GMRG. As we show below,
analysis of these expressions enables predicting the positions
of the BICs and quasi-BICs in the ω-kx plane.

To formulate the coupled-wave model, we consider only
the propagating diffraction orders (plane waves) in the super-
strate, substrate, and WG layer of the GMRG. In doing so, we
assume that the WG layer is thick enough so that the near-field
interactions between its interfaces caused by the evanescent
diffraction orders can be neglected. The considered propagat-
ing plane waves are shown with arrows in Fig. 2. The field
in the superstrate comprises two plane waves: the incident
wave I and the reflected wave R. The field in the WG layer is
represented by four plane waves: the ±1st diffraction orders
(U1 and V1) and the same plane waves after total internal
reflection from the lower interface of the WG layer (U2 and
V2). The two V waves constitute the rightward-propagating
mode of the waveguide. Similarly, the two U waves form the
waveguide mode propagating to the left. We assume that the
0th transmitted diffraction order of the grating goes through
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FIG. 2. Propagating plane waves considered in the coupled-wave
model.

the lower interface of the WG layer without reflection (Fig. 2),
which gives the transmitted wave T . We will discuss the
consequences of this assumption later in Sec. III C.

The letters in Fig. 2 denote the complex amplitudes of
the considered plane waves. The amplitudes of the incident,
reflected, and transmitted plane waves (I , R, and T ) are
defined at the upper interface of the grating. The amplitudes of
the upward-propagating waves inside the waveguide (U2 and
V2) are defined at the lower interface of the WG layer, whereas
the amplitudes of the downward-propagating plane waves (U1

and V1) are defined at its upper interface.
The amplitudes of the U waves at the upper and lower

interfaces differ by the term eiφ , where the phase is given by
φ = hkz,−1. According to Eq. (2), this phase has the form

φ = h

√
k2

0n2 −
(

kx − 2π

d

)2

. (3)

Similarly, the complex amplitudes of the V waves change by
eiψ after propagating between the upper and lower interfaces
of the waveguide layer. The phase ψ is given by

ψ = h

√
k2

0n2 −
(

kx + 2π

d

)2

. (4)

The plane waves shown in Fig. 2 are coupled by the diffrac-
tion grating, which can be described by a 4 × 4 scattering
matrix S,⎡

⎢⎣
R
T
U1

V1

⎤
⎥⎦ =

⎡
⎢⎣

r t dru drv

t r̃ dtu dtv

dru dtu ru c
drv dtv c rv

⎤
⎥⎦

︸ ︷︷ ︸
S

⎡
⎢⎣

I
0

U2eiφ

V2eiψ

⎤
⎥⎦, (5)

where the zero on the right-hand side means that there is
no wave incident from the substrate. The elements of the
scattering matrix are the coupling coefficients having the
following notation. The letters d , r, and t denote diffraction,
reflection, and transmission, respectively. The subscripts in
these coefficients denote the scattering channels being cou-
pled. Finally, the coefficient c describes coupling between the
U and V waves.

Note that the scattering matrix in Eq. (5) is symmetric
due to reciprocity [35]; therefore, it contains only ten unique
elements. Let us further note that for a lossless structure,
the scattering matrix is unitary [35]. Therefore, the defined
coefficients are not arbitrary but are subject to the energy
conservation law.

As it is shown in Fig. 2, we assumed that the wave T goes
through the lower interface of the waveguide layer without
reflection. However, the waves U1 and V1 undergo total inter-
nal reflection at this interface. By denoting the corresponding
reflection coefficients by r′

u and r′
v , we obtain

U2 = r′
uU1eiφ,

V2 = r′
vV1eiψ. (6)

Let us consider the diffraction of a unity-amplitude inci-
dent wave (I = 1). In this case, by solving Eqs. (5) and (6)
for T , we obtain the following analytical expression for the
transmission coefficient of the GMRG:

T = t + drvdtv (e−2iφ/r′
u − ru) + drudtu(e−2iψ/r′

v − rv ) + c(drvdtu + drudtv )

(e−2iφ/r′
u − ru)(e−2iψ/r′

v − rv ) − c2
. (7)

A similar expression can be obtained for the reflection co-
efficient (complex amplitude of the 0th reflected diffraction
order), having the same denominator as in Eq. (7). This
denominator describes the eigenmodes of the structure [36].
Although it is not the case considered in the present work, let
us note that when the coupling coefficient c vanishes, the de-
nominator turns into the product of two terms corresponding
to the uncoupled leftward- and rightward-propagating leaky
waveguide modes.

B. Bound states in the continuum

In this section, using the approximate Eq. (7), we study
the BICs supported by GMRGs operating in region A [see

Fig. 1(c)]. However, before discussing the BICs, let us first
recall some necessary facts from the theory of resonances.

Usually, resonances in the reflection and transmission
spectra are described by a complex frequency ωp of the
corresponding eigenmode of the structure [36]. The complex
eigenfrequency can be found as a complex pole of the trans-
mission or reflection coefficients, i.e., by solving the equation
T (ωp) = ∞ or R(ωp) = ∞ [36]. The real part of ωp gives the
mode excitation frequency. The imaginary part determines the
linewidth of the resonance, whereas its inverse, referred to as
the lifetime of the resonance, describes the decay rate of the
mode.

Bound states in the continuum are the modes with an
infinite lifetime and hence with a real frequency. Therefore,
the denominator in Eq. (7) must vanish at a real frequency of
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the BIC. This seemingly contradicts the energy conservation
law: The transmission coefficient (7) would diverge once the
denominator vanishes. This contradiction is easily resolved if
the BIC conditions result in the vanishing of the numerator as
well [14]. In this regard, we will use the following approach
to find the BICs: First, we simultaneously equate to zero the
numerator and the denominator of the fraction in Eq. (7); then,
we check whether the denominator and numerator vanish at a
real frequency and a real wave number kx.

Let us equate the numerator and the denominator in Eq. (7)
to zero. By solving the resulting system with respect to the
exponents eiφ and eiψ , we obtain

eiφ = ± 1√
r′

u(ru − cdru/drv )
,

eiψ = ± 1√
r′
v (rv − cdrv/dru)

,

(8)

where the plus and minus signs can be chosen independently
for eiφ and eiψ .

If Eqs. (8) describe a BIC, i.e., a real-frequency mode, the
phases φ and ψ should also be real [see Eqs. (3) and (4)].
Therefore, the left- and hence the right-hand sides of Eqs. (8)
should lie on the unit circle in the complex plane. Let us show
that this is true in the case of normal incidence of light (at
θ = 0).

In the case of normal incidence, the scattering problem is
symmetric; hence some of the coupling coefficients coincide,
namely, dru = drv , dtu = dtv , ru = rv , and r′

u = r′
v . In addition,

the phases φ and ψ are equal. In this case, Eqs. (8) take the
following form:

eiφ = eiψ = ± 1√
r′

u(ru − c)
. (9)

Let us prove that the fraction on the right-hand side of
Eq. (9) lies on the unit circle. The term r′

u is the total-internal-
reflection coefficient; hence |r′

u| = 1. The second term ru − c
has unit modulus as well, since it is the eigenvalue of the
unitary matrix S written for the case of normal incidence.
Thus, the exponents eiφ and eiψ in Eq. (9) lie on the unit
circle and consequently φ and ψ , defined by Eqs. (3) and (4),
are real. Therefore, we can obtain closed-form expressions for
φ and ψ by taking the argument of the complex numbers in
Eq. (9),

φ = ψ = πm − 1
2 arg{r′

u(ru − c)}, (10)

where m is an integer. According to Eq. (3), the phase φ

is a positive number. Therefore, assuming that the arg value
lies within the interval [0, 2π ), we restrict m to be a positive
integer.

Having derived the expressions for φ and ψ , we can obtain
the values of ω and kx from Eqs. (3) and (4):

kx = d

8πh2
(φ2 − ψ2),

ω = c

n

√
k2

x + φ2 + ψ2

2h2
+ 4π2

d2
. (11)

In the case of normal incidence, φ = ψ , kx = 0, and the
frequency of the BIC is simply

ω = c

n

√
φ2

h2
+ 4π2

d2
. (12)

C. Discussion of the model

In Sec. III A we made an important assumption when
formulating the coupled-wave model: We neglected the re-
flection of the 0th diffraction order at the lower interface of
the WG layer. This makes the obtained Eq. (7) describing the
transmission coefficient inaccurate. Surprisingly, the model
describing the BICs presented in Sec. III B turns out to be
exact. Indeed, since the BICs are nonleaky modes, they have
zero-amplitude transmitted field in the 0th diffraction order
of the GMRG. Therefore, the amplitude of the 0th diffraction
order, which is incident at the lower interface of the waveguide
(from inside the WG layer), is zero and hence no reflection of
the 0th diffraction order occurs at the WG lower interface.
This makes Eqs. (10) and (12) accurate when calculating the
BICs.

In the preceding section we obtained the BIC condition in
the case of normal incidence of light on a structure having
a vertical symmetry plane. Therefore, Eq. (10) describes the
well-known case of symmetry-protected BICs [2,13]. In the
case of oblique incidence, however, the right-hand sides of
Eqs. (8) no longer lie on the unit circle. As a consequence,
the BIC condition is violated in the case of oblique incidence
and instead of infinite-Q BICs we obtain high-Q resonances:
quasi-BICs. As we demonstrate in the next section, the (ω, kx )
positions of these quasi-BICs can still be calculated using
Eqs. (11) with the phases φ and ψ obtained by taking the
argument of Eqs. (8).

Let us note that in order to calculate the BIC positions
using Eq. (11) or (12), one needs to find the phases φ

and ψ , which are defined by Eq. (8) or (9). These phases
depend on the elements dru,rv , ru,v , and c of the scattering
matrix S as well as on the total-internal-reflection coefficients
r′

u,v . These seven coupling coefficients are the parameters
of the proposed coupled-wave model. If we are working
in a narrow ω-kx range, the coupling coefficients can be
assumed to be constants, which can be estimated by fitting
the model spectrum [Eq. (7)] to the numerically calculated
transmission spectrum. If the ω-kx dependence of these co-
efficients cannot be neglected (as in the example considered
below), Eqs. (8) and (11) and Eqs. (9) and (12) become
nonlinear equations with respect to ω and kx. Fortunately,
these equations can be easily solved using the simple iteration
method. We start with some arbitrary values of ω and kx, e.g.,
kx = 0 and some ω lying in the frequency range of interest.
Then we compute the elements of the scattering matrix S
by solving the diffraction problem for the grating lying on
the substrate having the refractive index equal to that of
the WG layer. Then we calculate the phases φ and ψ and
refine the values of ω and kx using Eqs. (11) or Eq. (12).
Then we start the next iteration with calculating S and so
forth. This iterative process shows good convergence and is
stopped when the BIC position changes less than the required
tolerance.
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FIG. 3. (a) Rigorously calculated transmission spectrum of the considered GMRG and (b) two magnified fragments demonstrating the
formation of a BIC (top panel) and of a quasi-BIC (bottom panel). (c) Quality factors of the modes corresponding to the magnified fragments.

D. Numerical simulations

To confirm the validity of the derived model, we per-
formed full-wave numerical simulations using the Fourier
modal method (FMM), which is also known as rigorous
coupled-wave analysis [37,38]. The FMM is an established
numerical technique for solving Maxwell’s equations and is
widely used for modeling the diffraction of light by multilayer
periodic optical structures. Within this method, the solution
of the diffraction problem is reduced to solving an eigenvalue
problem in each layer of the structure, followed by solving a
system of linear equations describing the boundary conditions
at the layer interfaces [37].

Figure 3(a) shows the calculated ω-kx transmission spec-
trum of the GMRG with the following parameters: refractive
index n = 1.41, grating period d = 1000 nm, grating height
hgr = 200 nm, grating fill factor 50%, and WG layer thick-
ness h = 2000 nm. No optimization was performed regarding
these parameters. The presented spectrum is calculated in
region A as it is shown in the inset of Fig. 3(a).

Figure 3(b) shows two magnified fragments of the spec-
trum. The top panel shows the BIC region: The resonant
line narrows to zero exactly at kx = θ = 0. The bottom panel
corresponds to the case of oblique incidence: A quasi-BIC is
expected according to the model.

In order to distinguish BICs from quasi-BICs, we nu-
merically investigated the quality factor of the resonances
Q = Re ωp/(−2 Im ωp) by calculating the complex pole of the
scattering matrix of the GMRG obtained using the FMM [36].
Figure 3(c) shows the quality factor calculated along the
dispersion curves of the resonances shown in Fig. 3(b). It is
evident from Fig. 3(c) that in the case of normal incidence,
a BIC is present, whereas in the oblique incidence case, the
quality factor of the resonance is finite, which is the evidence
of a quasi-BIC.

To verify the presented coupled-wave model, we calculated
the predicted positions of the BICs and quasi-BICs. The BIC
positions were calculated using Eqs. (10) and (12), whereas
the quasi-BIC positions were calculated using Eqs. (8)
and (11). The predicted positions of the BICs and quasi-
BICs are shown with black circles in Figs. 3(a) and 3(b).
For illustrative purposes, we show only the positions of the
BICs and quasi-BICs having non-negative wave numbers

kx. Excellent agreement between the predicted (quasi-)BIC
positions and the corresponding features in the rigorously
calculated spectrum confirms the accuracy of the developed
coupled-wave model.

IV. BOUND STATES IN THE CONTINUUM EMERGING
FROM COUPLING OF A WAVEGUIDE MODE WITH A

FABRY-PÉROT MODE

In the preceding section we considered the coupling
of two counterpropagating waveguide modes excited by
±1st diffraction orders, neglecting the reflection of the 0th
diffracted order at the lower interface of the WG layer.
However, multiple reflections of the 0th order may by them-
selves result in a resonance, namely, the Fabry-Pérot reso-
nance. In this section we address the question whether the
coupling of this Fabry-Pérot mode with a waveguide mode
can result in a BIC. We will carry out our analysis for
region B2 [see Fig. 1(c)] (a similar analysis can be per-
formed for region B1). In region B2, the waveguide layer
supports only two propagating diffraction orders, the 0th and
the −1st, whereas the +1st diffraction order is evanescent
in the WG layer. Similarly to the preceding section, only
the 0th diffraction orders propagate in the substrate and
superstrate.

The grating of Fig. 1(a) does not support BICs in regions
B1,2 because the Fabry-Pérot mode leaks out to the substrate
via the 0th diffraction order, as we discussed in Sec. III C.
In order to obtain BICs, we have to change the scattering
behavior of the 0th diffraction order at the lower interface
of the structure. We do this by adding the second diffraction
grating (having the same geometry) at the lower interface of
the waveguide as shown in Fig. 1(b). An alternative approach,
not considered in this paper, is to increase the refractive index
of the superstrate so that the 0th diffraction channel in the
substrate closes before the one in the superstrate does.

A. Coupled-wave model

Let us formulate the coupled-wave model for the structure
of Fig. 1(b) by adopting the formalism proposed in Sec. III A.
To do this, we define the amplitudes of the plane waves as
shown in Fig. 4. Each arrow in Fig. 4 denotes a plane wave.
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FIG. 4. Propagating plane waves considered in the coupled-wave
model of a GMRG with a horizontal symmetry plane.

As before, the letters denote the complex amplitudes of the
plane waves. The amplitudes of the incident and reflected
plane waves (I and R) are defined at the upper interface of
the structure, whereas the amplitude of the transmitted wave
T is defined at the lower interface. Inside the waveguide, the
amplitudes of the upward-propagating plane waves (U2 and
F2) are defined at the lower interface of the WG layer, while
the amplitudes of the downward-propagating plane waves (U1

and F1) are defined at the upper interface. The F waves form
the Fabry-Pérot resonance inside the WG layer.

The amplitudes of the U waves at the upper and lower
interfaces differ by eiφ , where the phase φ is defined by
Eq. (3). Similarly, the complex amplitudes of the F waves
change by eiξ when propagating between the upper and lower

interfaces of the WG layer. The phase ξ equals hkz,0 and,
according to Eq. (2), reads

ξ = h
√

k2
0n2 − k2

x . (13)

In the structure of Fig. 4, the plane waves are coupled by
both the upper and lower gratings. The upper grating can be
described by a unitary 3 × 3 scattering matrix S:⎡

⎣ R
F1

U1

⎤
⎦ =

⎡
⎣ r t dru

t r̃ dtu

dru dtu ru

⎤
⎦

︸ ︷︷ ︸
S

⎡
⎣ I

F2eiξ

U2eiφ

⎤
⎦. (14)

Here the coefficients have the same meaning as in Eq. (5).
Due to the existence of a horizontal symmetry plane, the

coupling of plane waves by the lower diffraction grating is
described by the very same 3 × 3 scattering matrix S of
Eq. (14): ⎡

⎣ T
F2

U2

⎤
⎦ = S

⎡
⎣ 0

F1eiξ

U1eiφ

⎤
⎦. (15)

Here zero means that there is no wave incident from the
substrate region.

Equations (14) and (15) constitute the coupled-wave model
of the considered structure. This model takes into account the
coupling between the waveguide mode and the Fabry-Pérot
mode, i.e., between the 0th and −1st diffraction orders, which
is described by the coefficient dtu. By solving the obtained
coupled-wave equations with respect to T at I = 1, we arrive
at the following formula for the transmission coefficient of the
GMRG:

T = e−iφ−iξ
(
d2

rue−iξ + t2e−iφ
) − (drur̃ − dtut )2e−iφ − (drudtu − rut )2e−iξ[

(e−iξ − r̃)(e−iφ − ru) − d2
tu

][
(e−iξ + r̃)(e−iφ + ru) − d2

tu

] . (16)

A similar expression can be obtained for the reflection co-
efficient R. Let us note that no assumptions (aside from
the neglected near-field effects) were made when deriving
Eq. (16) (cf. Sec. III A). It is also worth mentioning that the
denominator in Eq. (16) is the product of two terms corre-
sponding to the z-symmetric and z-antisymmetric modes of
the structure. Note that if the coupling coefficient dtu vanishes,
each of these terms itself becomes a product of two terms
corresponding to the uncoupled leaky waveguide mode and
Fabry-Pérot mode.

B. Bound states in the continuum

Despite the complicated form of Eq. (16), an analysis
similar to the one presented in Sec. III B can be carried out.
First, we equate to zero both the numerator and denominator
of the fraction in Eq. (16). Then we solve the obtained system
of two equations for eiφ and eiξ , which gives us two solutions.
The first solution has the form

eiφ = ± t

dtudru − rut
, eiξ = ± dru

dtut − r̃dru
. (17)

The second solution is

eiφ = ± 1√
ru(ru − d2

tu/r̃)
, eiξ = ∓ 1√

r̃(r̃ − d2
tu/ru)

. (18)

One can show that once the matrix S is unitary, the fractions
on the right-hand sides of Eqs. (17) lie on the unit circle [27].
To prove this, one should note that the inverse of the unitary
matrix S calculated in terms of the adjugate matrix is equal
to the conjugate transpose of the matrix S. Therefore, both φ

and ξ in Eqs. (17) are real, which gives us a BIC. Let us note
that the second solution, which is given by Eqs. (18), does not,
as a rule, describe a BIC, since the moduli of the right-hand
sides of Eqs. (18) are not equal to one for an arbitrary unitary
scattering matrix S. However, the BICs could accidentally
result from Eqs. (18) when tuning the geometrical parameters
of the grating.

Let us focus on the BICs described by Eqs. (17). By
applying the very same reasoning as in Sec. III B, we obtain
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FIG. 5. (a) Rigorously calculated transmission spectrum of the considered GMRG possessing horizontal symmetry. (b) Model spectrum
calculated using Eq. (16). (c)–(e) Quality factors of the modes corresponding to the fragments bounded by black rectangles. The red dashed
line in (e) shows the quality factor of the modes of the GMRG having a small absorption.

the expressions for the phases

φ = πm + arg
t

dtudru − rut
,

ξ = π l + arg
dru

dtut − r̃dru
,

(19)

where m and l are non-negative integers having the same
parity [27].

Then we solve Eqs. (3) and (13) to obtain the wave
numbers and frequencies providing the BICs in the considered
structure:

kx = π

d
+ d

4πh2
(φ2 − ξ 2), ω = c

n

√
k2

x + ξ 2

h2
. (20)

These equations describe BICs in region B1. Similar equations
can be obtained for region B2.

C. Numerical simulations and discussion

Figure 5(a) shows the ω-kx transmission spectrum of a
GMRG with a horizontal symmetry plane. The spectrum was
calculated using the FMM. The parameters of the binary grat-
ings and WG layer are the same as in Sec. III D. The spectrum
contains four pronounced resonant curves, each one having
a BIC. Figure 5(b) shows the model spectrum calculated
using Eq. (16). The model spectrum agrees perfectly with the
rigorously calculated one, which confirms the accuracy of the
coupled-wave model of Sec. IV A.

Figures 5(c)–5(e) show the quality factor of the modes. The
ranges of the Q-factor plots coincide with the black rectangles
in Fig. 5(a). The divergence of the Q factor in these plots
confirms that the considered structure supports BICs.

In order to verify the BIC model presented in Sec. IV B,
we calculated the BIC positions using Eqs. (19) and (20).
The predicted (ω, kx ) points are marked in Fig. 5(a) with

black crosses. The predicted BIC positions are in excellent
agreement with the results of the rigorous simulations.

It is interesting to discuss how a small absorption in the
material of the GMRG affects the BICs. Once we add a
small imaginary part (k = 10−5) to the refractive index of the
structure, all the BICs collapse to high-Q Fano resonances
(quasi-BICs). We demonstrate this by calculating the quality
factor of the (quasi-)BIC-3, which is shown in Fig. 5(e) with a
red dashed line. This plot demonstrates a high but finite value
of the quality factor Q. Concerning the presented coupled-
wave model, in the absorbing structure, the magnitudes of
the exponents in Eqs. (17) are no longer unity. However,
Eqs. (19) and (20) can still be used to estimate the quasi-BIC
positions. For the considered example, these positions are
visually indistinguishable from the BIC positions marked by
the black crosses in Fig. 5(a) corresponding to the lossless
structure.

Let us note that the models presented in the current and in
the previous sections are quite similar. Indeed, we use either
Eq. (9) or Eqs. (17) to describe the BIC positions. To prove
the BIC existence, we show that the right-hand sides of these
equations have unit magnitude by using the consequences of
the unitarity of the scattering matrix S. At the same time,
the BIC formation mechanisms for the two considered cases
are quite different. Indeed, in the case of region A, the BICs
(and quasi-BICs) emerge at the avoided crossings of the dis-
persion curves (see Fig. 3). This anticrossing indicates strong
coupling between the waveguide modes having comparable Q
factors. However, in region B considered in this section, the
Fabry-Pérot modes have significantly lower quality factors.
Consequently, the coupling between a waveguide mode and
a Fabry-Pérot mode is weaker in this case, and no avoided
crossings are present in Fig. 5. Nevertheless, both the model
and the simulation results demonstrate that even this weak
coupling provides the formation of the BICs.
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V. CONCLUSION

In this paper we investigated bound states in the continuum
supported by lossless guided-mode resonant gratings compris-
ing a slab waveguide and a binary grating attached to one
or both of its interfaces. Two mechanisms behind the BIC
formation were studied: the coupling of two counterpropa-
gating waveguide modes and the coupling of a waveguide
mode with a Fabry-Pérot mode. In both cases, the BICs (or
quasi-BICs) arise due to multiwave interference of light inside
the slab. We formulated accurate coupled-wave models, which
rigorously prove the BIC existence and predict their locations
in the ω-kx plane. The BIC existence proof exploits the energy
conservation law, resulting in the unitarity of the scattering
matrix of the binary grating. The rigorous simulation results
confirm the high accuracy of the presented models.

The formulated models suggest that the existence of the
BICs is closely connected with the symmetry properties of the
gratings and hence with the form of their scattering matrices.
In our opinion, models similar to the ones presented here can
be developed for GMRGs possessing different symmetries.
For example, the model of Sec. IV can be applied with
minimal modifications when the lower grating is laterally
shifted with respect to the upper one, thus breaking the
horizontal symmetry. In this case, the corresponding elements
of the scattering matrices S in Eqs. (14) and (15) will acquire
different phases, with the difference depending on the lateral
shift introduced between the gratings.

Finally, let us outline a few other directions for the further
research. We believe that similar models can be formulated
for different parameter spaces: Instead of the (ω, kx ) pair,
one can consider (θ, h) or even (ky, h), with the latter corre-
sponding to the case of purely conical diffraction (nonzero ky

at kx = 0).
We also believe that the main results of Sec. IV can

be used to describe BICs in high-contrast gratings (HCGs).
These structures were shown to support high-Q resonances
in the so-called two-mode regime, when the field inside
the grating can be approximately represented as a super-
position of two pairs of waves, which are the modes of
a 1D photonic crystal [39,40]. Similarly to the mechanism
described in the present work, these two modes are cou-
pled at the upper and lower interfaces of the HCG. There-
fore, we expect that Eqs. (14)–(19) can be used to de-
scribe BICs in HCGs. In this case, an analog of Eq. (20)
will be based on the dispersion relation of a 1D photonic
crystal.
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