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Statistics of work done in a degenerate parametric amplification process
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We study statistics of work done by two classical electric-field pumps (two-photon and one-photon resonant
pumps) on a quantum optical oscillator. We compute the moment generating function for the energy change
of the oscillator, interpreted as work done by the classical drives on the quantum oscillator starting out in a
thermalized Boltzmann state. The moment generating function is inverted, analytically when only one of the
pumps is turned on and numerically when both the pumps are turned on, to get the probability function for the
work. The resulting probability function for the work done by the classical drive is shown to satisfy transient
detailed and integral work fluctuation theorems. Interestingly, we find that, in order for the work distribution
function to satisfy the fluctuation theorem in the presence of both the drivings, the relative phases of drivings
need to be shifted by π , which is related to the broken time-reversal symmetry of the Hamiltonian.
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I. INTRODUCTION

Work done by external forces on isolated mesoscopic
systems, unlike their macroscopic counterparts [1], is subject
to fluctuations [2–4] due to the smallness of the system size.
These fluctuations could be due to the uncertainty of the initial
state and due to the quantum nature of evolution and measure-
ment process. Despite the noisy nature of the work done by
the external force on the nanoscale system, these fluctuations
exhibit a symmetry property which links the frequency of a
certain amount of work done by the external force on the
system to the frequency of the same amount of work extracted
by the external drive. Further, these symmetry properties of
the probability function for work done by the external force
on the system, termed as work-fluctuation theorems, comprise
one of the first classes of fluctuation theorems discovered
for out-of-equilibrium systems [5,6]. This fluctuation relation
states that, for a driven system, the probability that an external
force extracts a certain amount of work from the system is
finite but exponentially suppressed compared to the proba-
bility that exactly the same amount of work is performed
on the system. In this sense fluctuation theorems promote
the inequality of the second law of thermodynamics (for the
dissipated work) to an equality [7]. These results are universal
in the sense that only ingredients that are sufficient to establish
these relationships are the equilibrium canonical nature of the
initial state and the microscopic reversibility of the underlying
dynamics, which are insensitive to the nature of microscopic
details of the system [2–4]. Nevertheless, the probability
function for work done by external force on the system is
not universal and depends on the microscopic details of the
system. The work distribution function has been computed for
a variety of situations for both classical [4,8] and quantum
systems [9–24]. Experimental measurement of work distri-
bution and subsequent demonstration of Jarzynski-Crooks
fluctuation theorems for classical systems are well established
[4,8,25–30]. Because for quantum systems there is no work

operator, it was initially confusing to define work in the quan-
tum case [3,31–33]. Subsequently, a two-point measurement
protocol was proposed [3,32–35] to define work in a single
realization. This was crucial for proving quantum versions of
fluctuation theorems [2,3,32,33]. It has been challenging to
implement two-point measurement protocol experimentally.
However, there have been some recent theoretical proposals
of experiments [36–40] and implementations [41–44] of work
measurements in quantum systems either directly through
two-point measurement protocol or indirectly.

In this paper we consider the two-point measurement pro-
tocol to study work statistics in generating displaced squeezed
thermal states of a quantum optical oscillator by driving the
optical oscillator starting in the Gibbs state by two classical
pumps resonant with two-photon and one-photon transition.
The scenario where only a two-photon resonant pump is on
corresponds to the standard degenerate parametric amplifi-
cation process. This paper is motivated by recent proposals
[45–54] of using squeezed thermal reservoirs in quantum
heat engines to surpass standard Carnot efficiency. Squeezed
thermal states of light [55–57] can be realized using the
well-established parametric amplification process [58–70].
We assume that the oscillator is isolated from the environment
during the driving process. We thus interpret the change in the
energy of the oscillator as work performed by the classical
drives. We compute the work distribution function for this
process. The work distribution function is shown to satisfy the
quantum version of the Jarzynski-Crooks fluctuation theorem
[5,32–35,71–73]. We note that work statistics has been stud-
ied in generating the squeezed thermal state of a harmonic
oscillator in Refs. [10,11], where classical driving is mod-
eled through temporal modulation of harmonic oscillator fre-
quency and analytic results for work statistics were obtained
approximately under limiting conditions. In Ref. [9], work
statistics has been studied in generating a displaced thermal
state of a harmonic oscillator. In this paper we consider a
general process where a quantum optical oscillator is driven
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by two classical pumps, one resonant with the two-photon
transition and the other resonant with the one-photon tran-
sition. We obtain an exact result for the moment generating
function for work and show that interference between the two
drivings affects the work statistics in a nontrivial way and
plays an important role in satisfying the fluctuation theorem.
In the limit when only one of the pumps is on, we analyti-
cally invert the moment generating functions to get the work
distribution function. Interestingly, when both the pumps are
on, the most probable work may shift to negative values with
time for small relative phase difference between the drives.
Further, the probability distributions of work for time-forward
and time-reversed processes are different. This is due to the
broken time-reversal symmetry of the Hamiltonian. We note
that time-reversal symmetry-breaking Hamiltonians do not
always guarantee that the probabilities of stochastic quantities
for time-forward and time-reversed processes are different.
For example, in model systems like two-terminal noninteract-
ing electronic Aharnov-Bohm ring junctions [74,75], although
the Hamiltonians break the time-reversal symmetry, the statis-
tics of charge and heat flux are the same for time-forward and
time-reversed processes. Moreover, results presented here can
be tested experimentally using classical optical simulation of
quantum dynamics as proposed in Ref. [40] and experimen-
tally implemented in Ref. [43].

In the next section, we describe the model system and
obtain the generating function for work done within the two-
point measurement scheme and verify fluctuation theorems
for work. The generating function is inverted to compute the
probability distribution function in Sec. III and cumulants of
work are analyzed. We conclude in Sec. IV.

II. GENERATING FUNCTION FOR THE WORK

We consider a quantum optical process of driving an
isolated optical oscillator by two classical pumps [76]. We
assume that one of the classical pumps has the same frequency
as that of the optical oscillator ( ε

h̄ ) and the second pump
has twice the frequency of the optical oscillator. We treat
the coupling between classical pumps and quantum optical
oscillator within the rotating wave approximation. We assume
that the initial state of the optical oscillator is the thermal
state (i.e., the oscillator is kept in contact with the thermal
reservoir till time zero). Note that the driving is nonadiabatic
with respect to the natural frequency of the oscillator. The
Hamiltonian describing the evolution of the quantum optical
oscillator driven by classical pumps (written in the interaction
picture) [76–78] is

Ĥ = ih̄[z1b† − z∗
1b] + ih̄

2
[z2b†b† − z∗

2bb], (1)

where z1 and z2 are the products of the coupling constant and
electric-field amplitude of the one-photon and two-photon
resonant classical pumps, respectively, and b and b† are the
annihilation and creation operators for the quantum optical
oscillator, respectively. A schematic of this model system is
given in Fig. 1.

We interpret the energy change of the quantum oscillator
as the work done by the classical pumps on it [32,33,79,80].

FIG. 1. Schematic of the model system. (Downward) upward
thick red and thin orange arrows indicate the two-photon and one-
photon (de-)excitation of a quantum optical oscillator by classical
drives with amplitudes z2 and z1, respectively.

With these assumptions, the work done by the classical drives
is proportional to the number of quanta (n ∈ Z) of energy ex-
changed with the quantum oscillator. The probability function
for number of quanta of work done by the classical drives on
the quantum optical oscillator in time t is obtained within the
two-point measurement protocol [2,3,34,35,73], consisting of
the following process.

(i) Initially, at time zero, after disconnecting the oscillator
from its thermal reservoir, a measurement of the number
of excitations in the oscillator is performed in the sense of
von Neumann’s strong projective measurement, obtaining the

result ni ∈ W with probability 〈ni|ρ (0)|ni〉; ρ (0) = e−βεb†b

Tr[e−βεb†b ]
is the initial density matrix of the optical oscillator, which is
assumed to be at the thermal state. The state of the system
right after measurement is described by the eigenket |ni〉
(here b†b|ni〉 = ni|ni〉).

(ii) Subsequently the oscillator is driven by the classical
drives for time t . The state of the oscillator at time t is given
(in the interaction picture) as e− i

h̄ Ĥ t |ni〉.
(iii) At time t , the external drives are turned off and a

second projective measurement of the number of excitations
in the oscillator is performed, obtaining the result n f ∈ W

with probability |〈n f |e− i
h̄ Ĥ t |ni〉|2 (here b†b|n f 〉 = n f |n f 〉).

(iv) This process is repeated ad infinitum and the proba-
bility of the number of quanta of work done by the classical
drives on the quantum optical oscillator during time t is
constructed using the following self-evident expression:

P[n; t] =
∞∑

ni,n f =0

δn,n f −ni

∣∣〈n f |e− i
h̄ Ĥ t |ni〉

∣∣2〈ni|ρ (0)|ni〉. (2)

Here δm,n is the Kronecker delta function. This probability
distribution function can be expressed in terms of the moment
generating function for the work done (Z[χ ; t]) as

P[n; t] =
∫ 2π

0

dχ

2π
Z[χ ; t]e−iχn, (3)

where Z[χ ; t] is given as [2,3]

Z[χ ; t] = Tr[Uχ (t, 0)ρ (0)U−χ (0, t )]. (4)
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Here, Uχ (t1, t2) = e− i
h̄ Ĥχ (t1−t2 ) is the twisted evolution operator in the interaction picture with the counting field dependent

Hamiltonian given as

Ĥχ = ih̄
[
z1ei χ

2 b† − z∗
1e−i χ

2 b
]+ ih̄

2
[z2eiχb†b† − z∗

2e−iχ bb]. (5)

In order to compute Z[χ ; t], it is convenient to work with the Weyl generating function, G[ζ , ζ ∗; t], defined (in the interaction
picture) as [76,81,82]

Gχ [ζ , ζ ∗; t] = Tr
[
ei[ζ ∗b+ζ b†]Uχ (t, 0)ρ (0)U−χ (0, t )

]
, (6)

and then Z[χ ; t] = Gχ [0, 0; t]. Using standard techniques from quantum optics literature [76,81,82], it can be shown that [using
Eqs. (4) and (5)] Gχ [ζ , ζ ∗; t] satisfies the following evolution equation:

∂

∂t
Gχ [ζ , ζ ∗; t] =

⎡
⎢⎢⎢⎢⎣

1

2

⎛
⎜⎜⎜⎝

ζ ∗

ζ
∂

∂ζ ∗

∂
∂ζ

⎞
⎟⎟⎟⎠

T

(A B
BT C

)⎛⎜⎜⎜⎝
ζ ∗

ζ
∂

∂ζ ∗

∂
∂ζ

⎞
⎟⎟⎟⎠+

(
d1

d2

)T

⎛
⎜⎜⎜⎝

ζ ∗

ζ
∂

∂ζ ∗

∂
∂ζ

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦Gχ [ζ , ζ ∗; t], (7)

where V T represents transpose of a vector V and

A =
(−i z2

2 sin(χ ) 0
0 −i z∗

2
2 sin(χ )

)
, B =

(
0 z2 cos(χ )

z∗
2 cos(χ ) 0

)
, C =

(−2iz∗
2 sin(χ ) 0
0 −2iz2 sin(χ )

)
, (8)

d1 = (iz1 cos
(

χ

2

)
iz∗

1 cos
(

χ

2

))T
, d2 = (2z∗

1 sin
(

χ

2

)
2z1 sin

(
χ

2

))T
. (9)

The above parabolic partial differential equation, Eq. (7), has to be solved along with the initial condition G[ζ , ζ ∗; t]|
t=0

=
Tr[ei[ζ ∗b+ζb†]ρ(0)] = e

− 1
2 (ζ

∗
ζ )

T
D(ζ

∗
ζ )

with 2×2 matrix D defined as Di j = (1 − δi j )
(

f + 1
2

)
, where f = (eβε − 1)−1. The solution

of Eq. (7) is obtained as (see the Appendix)

Gχ [ζ , ζ ∗; t] =
∫

ζ̄∈C
d2ζ̄Gχ [ζ , ζ ∗; t |ζ̄ , ζ̄ ∗; 0]G [ζ̄ , ζ̄ ∗; 0], (10)

with

Gχ [ζ , ζ ∗; t |ζ̄ , ζ̄ ∗; 0]

= e
∫ t

0 dt1[U21(t1 )T d1−U11(t1 )T d2]
T ∫ t

t1
dt2[U22(t2 )T d1−U12(t2 )T d2]

π
√− det[U21(t )]

e
− 1

2

(
ζ ∗
ζ

)T
U12(t )U22(t )−1

(
ζ ∗
ζ

)
e

(
ζ̄ ∗
ζ̄

)T ∫ t
0 dt1[U22(t1 )T d1−U12(t1 )T d2]

× e
− 1

2

{(
ζ ∗
ζ

)
−U22(t )

[(
ζ̄ ∗
ζ̄

)
+∫ t

0 dt1[U21(t1 )T d1−U11(t1 )T d2]
]}T

[U21(t )U22(t )T ]−1
{(

ζ ∗
ζ

)
−U22(t )

[(
ζ̄ ∗
ζ̄

)
+∫ t

0 dt1[U21(t1 )T d1−U11(t1 )T d2]
]}

, (11)

where
(U11(t ) U12(t )
U21(t ) U22(t )

) = e

(B −A
C −BT

)
t
. Using Eq. (10) along with Eq. (11) in Z[χ ; t] = Gχ [0, 0; t] and performing ζ̄ integrals, we get

Z[χ ; t] = 1√
det[U22(t ) + U21(t )D]

× e
∫ t

0 dt1
∫ t

t1
dt2[U21(t1 )T d1−U11(t1 )T d2]

T
D[U21(t )D+U22(t )]−1U21(t )[U22(t2 )T d1−U12(t2 )T d2]

× e
− ∫ t

0 dt1
∫ t1

0 dt2[U21(t1 )T d1−U11(t1 )T d2]
T
[
I2×2−D[U21(t )D+U22(t )]−1U21(t )

]
[U22(t2 )T d1−U12(t2 )T d2]

× e
1
2

∫ t
0 dt1

∫ t
0 dt2[U22(t1 )T d1−U12(t1 )T d2]

T [U21(t )D+U22(t )]−1U21(t )[U22(t2 )T d1−U12(t2 )T d2]

× e− 1
2

∫ t
0 dt1

∫ t
0 dt2[U21(t1 )T d1−U11(t1 )T d2]

T
D[U21(t )D+U22(t )]−1U22(t )[U21(t2 )T d1−U11(t2 )T d2] . (12)
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The final expression for the moment generating function for work can be obtained by using explicit expressions for Uxy(t ). This
gives

Z[χ , φ ; t] = e

|z1 |2
⎛
⎝ sinh(| z2

2 |t )

| z2
2 |

⎞
⎠2

[(1+ f )(eiχ −1)+ f (e−iχ −1)]{cosh(|z2 |t )+cos(φ )sinh(|z2 |t )[(1+ f )eiχ − f e−iχ]}
1−sinh2 (|z2 |t )[(1+ f )2(ei2χ −1)+ f 2(e−i2χ −1)]√

1 − sinh2(|z2|t )[(1 + f )2(ei2χ − 1) + f 2(e−i2χ − 1)]
, (13)

where φ = 2Arg(z1) − Arg(z2).
It is clear that

Z[χ , φ ; t] �= Z[−χ + iβε, φ ; t], (14)

which is related to the broken time-reversal symmetry of the Hamiltonian [2,3], i.e, Ĥ �= T ĤT −1 (T is the time-reversal oper-
ator). To recover the Jarzynski-Crooks-Bochkov-Kuzovlev fluctuation theorem [2,3,83,84], work distributions for time-forward
and time-backward trajectories need to be compared. The backward evolution is governed by T ĤT −1 = −ih̄[z∗

1b† − z1b] −
ih̄
2 [z∗

2b†b† − z2bb] �= Ĥ . In order to recover the time-reversal symmetry, we also need to change φ to π − φ. This leads to the
Gallavotti-Cohen symmetry for the work moment generating function:

Z[χ , φ ; t] = Z[−χ + iβε, π − φ ; t]. (15)

This, in turn, leads to the transient work fluctuation theorem:

P[n, φ; t]

P[−n, π − φ; t]
= eβεn ⇒ 〈e−βεn〉 = 1. (16)

However, for cases where only one of the pumps is present (i.e., z1 = 0 or z2 = 0), Z[χ , φ ; t] becomes independent of φ . This
is because, for the case when only one of the pumps is present, the phase of the electric field can be gauged out (for the initial
thermal state) and does not appear in the expression for Z[χ , φ ; t]. When both the pumps are present, the phases of both the
pumps cannot be gauged out. Hence work statistics is unaffected by the phase of the classical fields for the case z1 = 0 or z2 = 0,
which is similar to the result noted in Ref. [9] where the phase of the classical field is shown to have no influence on the work
statistics during the process of coherent displacement of a harmonic oscillator from a thermal state. For the cases when only
one of the pumps is present, the moment generating function and hence the probability distribution function for the work for
time-forward and time-backward processes are the same.

In the next section, we discuss the cases z1 = 0, z2 = 0, and z1 �= 0 �= z2 separately and present work fluctuations and work
distribution functions for each case. For the cases z1 = 0 and z2 = 0, we denote Z[χ , φ ; t] and P[n, φ; t] as Z[χ ; t] and P[n; t],
suppressing the φ dependence.

III. STATISTICS OF THE WORK DONE

It is convenient to represent P[n, φ; t], defined in Eqs. (3) and (13) as a contour integral around the unit circle in the complex
plane [85], as

P[n, φ; t] =
∮

|ξ |=1

dξ

2π iξ n+1

√√√√√
(

1 − 1
ξ+(0)2

)
(1 − ξ−(0)2)(

1 − ξ 2

ξ+(0)2

)(
1 − ξ−(0)2

ξ 2

) e

α(φ,t )(ξ −1)

(
1+ ξ− (φ)

ξ

)(
1+ ξ

ξ+ (φ)

)(
1+ ξ− (φ)ξ+ (φ)

ξ

)

(1+ξ− (φ) )
(

1+ 1
ξ+ (φ)

)
(1+ξ− (φ)ξ+ (φ) )

(
1− 1

ξ+ (0)2

)
(1−ξ− (0)2 )(

1− ξ2

ξ+ (0)2

)(
1− ξ− (0)2

ξ2

)
, (17)

where

α(φ, t ) = |z1|2
(

sinh
(∣∣ z2

2

∣∣t)∣∣ z2
2

∣∣
)2

[cosh(|z2|t ) + cos(φ)sinh(|z2|t )], (18)

and

ξ±(φ) =
1 ±
√

1 + 4 f (1 + f )cos2(φ)tanh2(|z2|t )

2(1 + f )cos(φ)tanh(|z2|t )
. (19)

063802-4



STATISTICS OF WORK DONE IN A DEGENERATE … PHYSICAL REVIEW A 99, 063802 (2019)

For the case z1 �= 0 �= z2, we were not able to invert the
moment generating function analytically to get the probability
function for work. Below we present analytical results for
z1 = 0 and z2 = 0 cases and then discuss numerical results
for the general case.

A. z2 = 0 case

Taking the z2 → 0 limit of Eq.(13), the moment generating
function of work is

Z[χ ; t] = e|z1|2t2[(1+ f )(eiχ −1)+ f (e−iχ −1)]. (20)

This moment generating function corresponds to a bi-
Poissonian stochastic process. The above expression for
Z[χ ; t] is a special case (resonant drive) of a more general
expression for the work generating function derived in Ref. [9]
for the general displacement drive. The cumulant generat-
ing function for work, lnZ[χ ; t], clearly scales quadrati-
cally with time (t ) and hence all cumulants, obtained using
(−i)n( d

dχ
)
n

lnZ[χ ; t]|χ=0, scale as t2. The first two cumulants

of work are 〈n〉 = |z1|2t2 and 〈(n − 〈n〉)2〉 = |z1|2t2(1 + 2 f ).
The probability function of work can be obtained analytically
by converting Fourier inversion to an integral over the unit
circle in the complex plane [Eq. (17)] as

P[n; t] =
∮

|ξ |=1

dξ

2π i

1

ξ n+1
e
|z1|2t2

[
(1+ f )(ξ −1)+ f

(
1
ξ
−1
)]

. (21)

Observing that the function e|z1|2t2[(1+ f )(ξ −1)+ f ( 1
ξ
−1)] is an an-

alytic function of complex variable ξ in the entire complex
plane except at ξ = 0,∞ where it has essential singularity
(hence it is analytic in the center punctured unit disk), the
above integral gives Laurent series (around ξ = 0) coeffi-

cients of e|z1|2t2[(1+ f )(ξ −1)+ f ( 1
ξ
−1)]. This gives

P[n; t] =
(

1 + f

f

) n
2 |z1|2|n|t2|n|[ f (1 + f )]|n|/2


[1 + |n|] e−|z1|2t2(1+2 f )

F0
1[1 + |n|; f (1 + f )|z1|4t4], (22)

where the generalized hypergeometric function of
variable x is defined as Fm

n [a1, . . . , am, b1, . . . , bn; x] =∑∞
k=0

(a1 )k ···(am )k

(b1 )k ···(bn )k

xk


[k+1] (here the Pocchammer symbol is

(c )r = 
[c+r]

[c] ) [85–87]. It is important to note that the

probability function for work takes the same form for both
the forward and backward processes. Using this explicit
expression for P[n; t], the detailed work fluctuation theorem
and hence the integral fluctuation theorem can be verified.

The probability that no work is performed on the system
(P[0; t]) is given as

P[0; t] = e−|z1|2t2(1+2 f )I0[2
√

f (1 + f )|z1|2t2] (23)

where I0[z] is the modified Bessel function of the first kind
of order zero of variable z. In the zero-temperature limit,
βε → ∞ ⇒ f → 0, P[0; t] = e−|z1|2t2

, which means, if the

oscillator’s initial state is the ground state, the number of mi-
croscopic realizations where no net work is performed by the
displacement or linear drive on the oscillator decays with time
as a Gaussian function. Further, in the zero-temperature limit

P[n; t] = |z1|2nt2n


[1 + n]
e−|z1|2t2

�[n], (24)

where �[n] = 1 iff n � 0 else �[n] = 0. This means, if the
oscillator’s initial state is the ground state, there are no micro-
scopic realizations where work is extracted by the classical
drive from the oscillator. Further, the term t2n competes with
the exponential decay (e−|z1|2t2

), shifting the value of most
probable work (n) to higher values for larger times.

B. z1 = 0 case

For the z1 = 0 case, the moment generating function for
work can be obtained by taking the z1 → 0 limit of Eq. (13).
This gives

Z[χ ; t]

= 1√
1− sinh2(|z2|t )[(1+ f )2(ei2χ −1) + f 2(e−i2χ −1)]

.

(25)

This leads to an average work given by 〈n〉 = (1 + 2 f )
sinh2(|z2|t ) � 0. Thus, on average, work is done on the
quantum oscillator and grows exponentially in time. This
is to be contrasted with the quadratic time dependence
for the z2 = 0 case discussed above. The second cumulant
of work distribution is 〈(n − 〈n〉)2〉 = [1 + (1 + 2 f )2cosh
(2|z2|t )]sinh2(|z2|t ) � 0. This indicates that the distribution
function becomes broader exponentially with time. Similar to
the previous section, the probability function for the work is
expressed as the complex contour integral [Eq. (17)] as

P[n; t] =
∮

|ξ |=1

dξ

2π i

1

ξ n+1

√√√√√
(

1 − 1
ξ+(0)2

)
(1 − ξ−(0)2)(

1 − ξ 2

ξ+(0)2

)(
1 − ξ−(0)2

ξ 2

) . (26)

Noticing |ξ−(0)|<1 < |ξ+(0)| (for 0 < |z2|t < ∞ and
0 < f < ∞), we observe that the function with square root
in the above integrand is a multivalued complex function
with four branch points at ±ξ−(0) and ±ξ+(0). A single
valued branch can be chosen for this function by defining
the branch cut as the union of two straight lines joining
−ξ−(0) with +ξ−(0) and −ξ+(0) with +ξ+(0) (through
∞). With this choice, we get a single valued function which
is analytic in the strip |ξ−(0)| < |ξ | < |ξ+(0)|. Hence, the
above complex integral just gives the Laurent expansion

coefficients of

√√√√
(

1− 1
ξ+ (0)2

)
(1−ξ−(0)2 )(

1− ξ2

ξ+ (0)2

)(
1− ξ− (0)2

ξ2

) expanded around ξ = 0.

The final expression for the distribution is obtained as

P[2n; t] =
(

1 + f

f

)n

√√√√(1 − 1
ξ+(0)2

)
(1 − ξ−(0)2)

π

(
−ξ−(0)

ξ+(0)

)|n| 

[

1
2 + |n|]


[1 + |n|] F
2
1

[
1

2
,

1

2
+ |n|, 1 + |n|;

(
ξ−(0)

ξ+(0)

)2
]
, (27)
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and
P[2n + 1; t] = 0. (28)

It is important to observe here that there are no microscopic
realizations where the classical drive does odd quanta of work
on the optical oscillator. Further, similar to the z2 = 0 case,
the probability function for work takes the same form for
both the forward and backward processes. The above explicit
expression for P[n; t] satisfies the detailed work fluctuation
theorem and hence the integral fluctuation theorem.

We find that the work distribution is always maximum at
n = 0. [10,13]. The probability that no work is performed on
the optical oscillator is given by

P[0; t] = 2

π

√√√√(1 − 1

ξ+(0)2

)
(1 − ξ−(0)2)K

[(
ξ−(0)

ξ+(0)

)2
]
,

(29)

where K[x] is the complete elliptic integral of the first kind
[85,86]. For the zero-temperature case (βε → ∞ ⇒ f → 0),
ξ−(0) = 0 and ξ+(0) = coth(|z2|t ), which makes, P[0; t] =
sech(|z2|t ), indicating that, for long time, the number of
microscopic realizations where no work is done on the os-
cillator is exponentially suppressed. Further, in the limit of

zero temperature,

P[2n; t] = 1√
π



[

1
2 + n

]

[1 + n]

sech(|z2|t )tanh2n(|z2|t )�[n],

(30)

indicating that there are no microscopic realizations where
work is extracted from the system; this is intuitive, since
for the zero-temperature case oscillators initial state is the
ground state and so it is not possible to extract any work
from it. For large time |z2|t → ∞, P[2n � 0; t] decays as
an exponential in time. This behavior is different from the
z2 = 0 case discussed previously, where P[n � 0; t] decays as
a Gaussian with time.

For large fluctuations (large n) probability can be approxi-
mated by

P̄[2n; t] ≈ 1√
π

√√√√√
(

1 − 1
ξ+(0)2

)
(1 − ξ−(0)2)(

1 − ξ−(0)2

ξ+(0)2

)

× e−2n[�[n]ln(|ξ+(0)|)+�[−n]ln(|ξ−(0)|)]
√|n| . (31)

Thus, the distribution function falls off exponentially in tails
with different rates determined by |ξ+(0)| and |ξ−(0)|. This
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FIG. 2. Probability distribution function (P[n, φ; t]) of work done by both classical drives on the quantum optical oscillator for different
measurement times t = 1.0 (red), t = 2.0 (dashed blue), and t = 3.0 (dotted brown) with initial (thermal) average photon number f = 1.0.
The strength of the classical drives |z1| and |z2| and phase difference between them (φ ) are indicated in the plots. For z1 = 0.0 and z2 = 1.0
cases, only P[n; t] for even n is shown as P[n; t] = 0 for odd n.
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FIG. 3. Probability distribution function of work done (P[n, φ; t]) for different measurement times t = 1.0 (left), t = 2.0 (center), and
t = 3.0 (right) as a function of phase difference between the drives (φ ) with |z1| = |z2| = 1.0 and f = 1.0.

shows that the large fluctuations in n (or work) are suppressed
exponentially.

The probability weight for smaller values of n falls quickly
as time (|z2|t) increases; however, since ξ+(0) approaches to
unity, the weight for larger values of n increases. Further, for
large times (|z2|t → ∞), ξ+(0) → 1 [ξ−(0)2ξ+(0)2 = ( f

1+ f

)2
for any time], making the distribution function flatter for
positive n with time, but for negative n tails decay with finite
rate even for long time.

C. z1 �= 0 �= z2 case

For the general case, the moment generating function of
work is given in Eq. (13); the first two cumulants of work are
given as

〈n〉 = (1 + 2 f )sinh2(|z2|t ) + α(φ, t ) (32)

and

〈(n − 〈n〉)2〉 = [1 + (1 + 2 f )2cosh(2|z2|t )]sinh2(|z2|t )

+(1 + 2 f )α(φ, t )
cosh(3|z2|t ) + cos(φ )sinh(3|z2|t )

cosh(|z2|t ) + cos(φ)sinh(|z2|t )
.

(33)

It is interesting to note that the φ independent terms of both
the cumulants are the same as that of the z1 = 0 case. This
is because the cumulant generating function is the sum of the
cumulant generating functions for the z1 = 0 case and another
φ dependent term. Note that the two contributions to both
the cumulants are positive, but for large times |z2|t → ∞ the
second φ dependent terms grow exponentially (the first term
always grows exponentially) with time except for the case
φ = π where they saturate to a finite value or decay to zero,
respectively.

We numerically invert the generating function for the gen-
eral case to obtain the probability distribution. The probability
distribution function for work done P[n, φ ; t] obtained ana-
lytically for cases z1 = 0 and z2 = 0 and numerically for the
general case for different values of φ at different times for
fixed values of |z1|, |z2|, and f is shown in Fig. 2.

For z2 = 0 (case A), the distribution is more or less sym-
metric and the average work roughly corresponds to the peak

position which increases quadratically with time. However
the distribution function behaves very differently for z1 = 0
(case B), where the peak of the distribution is always fixed at
zero work (n = 0) while the average work increases exponen-
tially with time, leading to the asymmetric distribution. For
the general case (case C), the two drives compete and we find
that work distribution becomes more noisy as the value of φ

is increased from zero to π . Further, for certain values of φ

around zero, the maximum of the distribution function shifts
to a negative value of n with time as can be seen from Fig. 3.
This is clearly an interference effect between the two drives,
for such a behavior is not possible when only one drive is
present, as is clear from the analytical results obtained above.

IV. CONCLUSION

We have computed the statistics of work done by two
classical drives, one-photon and two-photon resonant pumps,
on the quantum optical oscillator (a variant of the degenerate
parametric amplification process). This simple model allows
us to obtain an exact analytic expression for the moment
generating function for work. When only one of the drives
is present, the probability function for work is analytically
obtained. Our results show very different behavior of the
work distribution when only individual drivings are present.
We found that for the case when only one of the pumps
is present work statistics is not influenced by the phase
of the drive. When both drives are present, the relative
phase between the drives influences the work statistics.
For recovering the Jarzynski-Crooks fluctuation theorem,
the phase has to be reflected around π (i.e., φ → π − φ),
which is related to the broken time-reversal symmetry of
the Hamiltonian. Furthermore, work distribution functions
exhibit an interesting behavior, where for small values of the
relative phase difference between the drives the most probable
work shifts to negative values with time.
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APPENDIX: SOLUTION OF EQ. (7)

Here we present a sketch of the method used for solving the parabolic partial differential equation [Eq. (7)] [88] with the initial
condition Gχ [ζ , ζ ∗; t]|t=0 = G [ζ , ζ ∗; 0]. If A = 0, the above equation is equivalent to the standard Ornstein-Uhlenbeck equation,
the solution of which can be obtained by the method of characteristics [85]. For general A, the transformation Gχ [ζ , ζ ∗; t] =
e
− 1

2 (ζ
∗

ζ )
T
U12(t )U22(t )−1(ζ

∗
ζ )G̃χ [ζ , ζ ∗; t] can be used to eliminate the quadratic term. Here Uxy(t ) are square blocks of the following

2×2 partitioned square matrix: (
U11(t ) U12(t )

U21(t ) U22(t )

)
= e

(B −A
C −BT

)
t
. (A1)

With this, G̃χ [ζ , ζ ∗; t] satisfies the following partial differential equation:

∂

∂t
G̃χ [ζ , ζ ∗; t]

=

⎡
⎢⎢⎢⎢⎣

1

2

⎛
⎜⎜⎜⎝

ζ ∗

ζ
∂

∂ζ ∗

∂
∂ζ

⎞
⎟⎟⎟⎠

T(
0 [B − U12(t )U22(t )−1C]

[B − U12(t )U22(t )−1C]T C

)⎛⎜⎜⎜⎝
ζ ∗

ζ
∂

∂ζ ∗

∂
∂ζ

⎞
⎟⎟⎟⎠+

(
d1 − U12(t )U22(t )−1d2

d2

)T

⎛
⎜⎜⎜⎝

ζ ∗

ζ
∂

∂ζ ∗

∂
∂ζ

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦G̃χ [ζ , ζ ∗; t].

(A2)

This partial differential equation can be solved by the method of characteristics to get G̃χ [ζ , ζ ∗; t]. Using this, Gχ [ζ , ζ ∗; t] is
given as

Gχ [ζ , ζ ∗; t] =
∫

ζ̄∈C
d2ζ̄Gχ [ζ , ζ ∗; t |ζ̄ , ζ̄ ∗; 0]G [ζ̄ , ζ̄ ∗; 0], (A3)

with Gχ [ζ , ζ ∗; t |ζ̄ , ζ̄ ∗; 0] given in Eq. (11).
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