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Stable knotted structure in spin-1 Bose-Einstein condensates with spin-orbit coupling
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The recent experimental creation of knotted solitons in spin-1 Bose-Einstein condensates opens an interesting
avenue for exploring the stability and dynamics of knot solitons. Knotted and helical vortices can be accommo-
dated in spin-orbit-coupled antiferromagnetic spin-1 Bose-Einstein condensates. We demonstrate the stability
of these topological structures via numerical simulations of the corresponding Gross-Pitaevskii equation. By
changing the strength of the spin-orbit coupling, we find that the ground state undergoes a change from a knotted
spin texture to a helical spin texture. Our results reveal that these types of topological object are experimentally
realizable in spin-1 Bose-Einstein condensates.
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I. INTRODUCTION

Knotted and helical structures are intriguing topics in a va-
riety of fields ranging from biophysics [1] and supramolecular
chemistry [2,3] to many subfields in physics [4,5]. Recently,
knots have been created experimentally in water [6], optical
beams [7], and spinor Bose-Einstein condensates (BECs) [8],
inspiring interest in the study of the stability and dynamics of
knots.

Knots are topological solitons that are classified by the
third homotopy group π3(S2) � Z [9–11], which establishes a
mapping from a real space [three-dimensional (3D) sphere S3]
to a vector field S2 and is classified by the Hopf charge Q. Un-
like other topological excitations such as vortices, monopoles,
and skyrmions which are classified by the winding numbers,
knots can be interpreted as the linking number of preimages.
The loops corresponding to the preimages cannot be unlinked
by continuous deformations [12–14].

In the context of spin-1 BECs, the order parameter
(OP) manifold of the polar phase is M = S2 × U (1)/Z2

[9,10,15,16]. Here U (1) is the manifold of the superfluid
phase φ and S2 is a two-dimensional sphere. The homotopy
groups yield πn(M ) ∼= Z (n = 1, 2, 3). Previous experiments
have created and observed two-dimensional skyrmions [17],
an isolated monopole [18], and quantum knots in an anti-
ferromagnetic spin-1 Bose-Einstein condensate using an ex-
ternal magnetic field [8]. There is a good correspondence
between the experiment and the numerical simulation which
theoretically describes the low-temperature dynamics of the
condensate using the Gross-Pitaevskii equation with a time-
dependent magnetic field.

The fact that skyrmions or knots can be created does not
imply that they are energetically stable. It has been shown
that the skyrmion and knot excitations are energetically un-
stable and will decay through expanding or shrinking in the
antiferromagnetic spin-1 BEC [19]. Therefore, it is natural
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to ask whether some additional stabilizing mechanisms can
be adopted in searching for stable knots in spinor BECs.
In the past few years, spin-orbit coupling (SOC) effects in
two-component Bose-Einstein condensates have attracted a
great deal of attention [20] due to the interplay between
SOC and the unique properties of ultracold atoms. The recent
experimental realization of SOC in the spin-1 BEC [21] opens
an interesting avenue for exploring new quantum states and
novel quantum phenomena in large-spin systems. Theoretical
works have shown that the 2D skyrmions [22] can be natu-
rally generated and stabilized by incorporating SOC into the
spin-1 BEC. It is natural to ask if knots or other novel 3D
spin textures are energetically stable in the spin-orbit-coupled
antiferromagnetic spin-1 BECs.

In this paper we investigate the knotted and helical spin
texture in the antiferromagnetic spin-1 Bose-Einstein conden-
sates with SOC. By changing the strength of SOC, we demon-
strate that they can be naturally generated from a vortex-free
Gaussian wave packet. We display the phase diagram and
the stable spin textures by numerically solving the coupled
Gross-Pitaevskii equation. We try to use the concept of helical
modulation to understand physically the emerged 3D struc-
tures. However, it is not exactly consistent with the numerical
calculation because of the OP of the polar phase. It is also
different from the two-component Bose-Einstein condensates
with SOC, where the 3D skyrmion is perfectly explained by
the helical modulation theory.

The paper is organized as follows. In Sec. II we present
the mean-field theory of spin-1 BECs with SOC and the
topological considerations of the knot in spin-1 BECs. In
Sec. III we present numerical results of the BECs and describe
the knot structure in comparison to the ideal knot in terms of
particle density distributions and spin textures. A summary is
given in Sec. IV.

II. THEORY

A. Hamiltonian

We consider a SOC F = 1 condensate system confined
in a harmonic trap. The mean-field order parameter of the
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condensates can be described by a wave function ψ (r) =√
n(r)ξ (r), where n(r) is the local density and ξ (r) =

(ξ+1(r), ξ0(r), ξ−1(r))T is a normalized spinor [15,16]. The
model Hamiltonian is given by H = H0 + Hint, with

H0 =
∫

dr �†

[
(k2 + 2κk · A)

2m
+ V

]
� (1)

and

Hint =
∫

dr
[

c0

2
n2 + c2

2
|F|2

]
, (2)

where we employ the harmonic optical potential V =
m[ω2

ρ (x2 + y2) + ω2
z z2]/2 and the non-Abelian gauge field

A. In addition, F = ∑1
m,n=−1 ψ∗

m(r)f̂mnψn(r) is the spin-
polarization vector and the operators f̂ are the spin-1 matri-
ces. The interaction term Hint contains the spin-independent
density-density interaction and the |F|-dependent interaction.
The interaction strengths are given by the s-wave scatter-
ing length aF in the spin-F channels of colliding spin-1
atoms as c0 = (g0 + 2g2)/3 and c2 = (g2 − g0)/3, with gF =
4π h̄2aF /M. The system is ferromagnetic when the spin-spin
interaction c2 < 0 and polar when c2 > 0.

B. Topological aspects

One can construct the general spinor wave function of the
polar phase by applying a spin rotation and global condensate
phase to the representative spinor ζ = (0, 1, 0)T [9,23]. The
general spinor in the polar phase is

ξp = Û (τ, α, β )

⎛
⎝0

1
0

⎞
⎠ =

⎛
⎜⎜⎝

e−iα sin β
(−1+cos τ ) cos β−i sin τ )√

2

cos2 τ
2 + cos(2β ) sin2 τ

2

−eiα sin β
(−1+cos τ ) cos β+i sin τ )√

2

⎞
⎟⎟⎠

= 1√
2

⎛
⎝−dx + idy√

2dz

dx + idy

⎞
⎠, (3)

where the matrix Û (τ, α, β ) = e−iτn·f and n =
(cos α sin β, sin α sin β, cos β ). In the last identity the
real-valued unit vector d is referred to as the nematic
vector. An ideal knot with linking number 1 is given by
mapping n as S3 → S2. The radial profile function τ (r) meets
the boundary conditions τ (0) = 2π and τ (∞) = 0 [10].

The nontrivial third homotopy group allows for the exis-
tence of knot which is characterized by the Hopf charge Q
defined by [9]

QH = 1

4π2

∫
d3r εi jkFi jAk, (4)

where Fi j = ∂iA j − ∂ jAi = d · (∂id × ∂ jd) is the strength of
the gauge field and Ak defines a connection in the order
parameter space. For the knot, a point of d corresponds to
a closed curve in real space. A topological polar knot has
linked preimages for every orientation of the nematic vector.
The Hopf charge can be interpreted as the linking number of
preimages, which provides an intuitive description [8].

III. NUMERICAL RESULTS

We first briefly review the 3D topological structures in
two-component BECs with SOC [24,25]. A 3D skyrmion and
3D dimeron can be stabilized by incorporating the SOC into
two-component BECs. The stability of the 3D skyrmion or
3D dimeron is physically understandable with the concept of
helical modulation of the order parameter [24,26]. Under the
simultaneous rotation of spin and real spaces SO(3)R+S in
two-component BECs, the candidate state obtained theoreti-
cally by the helical spin modulation is verified to be the true
ground state via numerical simulations. We try to apply this
theory to a spin-1 BEC with the OP under the influence of
a non-Abelian gauge field. The favorable OP can be written
with the rotation matrix V̂ = exp (−iϕn · f ) acting on the rep-
resentative spinor, where f = ( fx, fy, fz ) is the vector of the
spin-1 matrices. The transformation rotates the spin around
n by an angle ϕ and the rotation axis n corresponds to the
modulation vector h in the non-Abelian case [26]. The helical
modulation of the OP for spin-1 BECs with SOC has been
successfully applied to 2D skyrmion structures [22].

The problem on the 3D structure remains nontrivial be-
cause of the complexity of the order parameters in spin-1
BECs. In the following, we numerically minimize the full 3D
Gross-Pitaevskii energy functional by using the imaginary-
time-evolution scheme [27,28] with a spatial grid of 151 ×
151 × 151. For numerical calculations, we take c0 = 119
and c2 = 3.7, which correspond to the parameters of 23Na
and A = κ⊥(fxx̂ + fyŷ) + κzfzẑ. This is the 3D analog of
the Rashba-type SOC as is known in the condensed matter
context.

A. Knotted spin texture

If the Hamiltonian H has SO(3)R+S symmetry in the polar
phase as two-component BECs, an ideal knot will be created
according to our theoretical analysis of the helical modulation
for spin-1 BECs with SOC. In this case, The OP is written
with the rotation matrix V̂ = exp (−iϕn · f ). An appropriate
ϕ ∼ k · r to fulfill the OP manifold according to the wave
function (3) will obtain an ideal knot texture.

However, the fact is that the helical modulation of the
polar OP is not degenerate along all three directions [24]. An
ideal knot cannot be created as in two-component BECs with
SOC indicated by our numerical results. It is interesting to
study what the 3D structure is in spin-1 BECs with SOC. As
the theory of helical modulation works on the 2D skyrmion
structures in spin-1 BECs with SOC [22], we focus on the
broken structure in the z direction. We compare our numerical
results with the ideal knot in the polar BEC. Here we take
τ (r) = 2π [1 − tanh(r/ξknot)], with ξknot a characteristic size
of the ideal knot.

Figure 1 shows the density profiles of ψ±1 and ψ0 in the x-y
plane. For the ideal knot, ψ±1 shows a double-ring pattern in
the cross-sectional plane at z = 0, which fills the toroidal vol-
ume between the ψ0 component. The ψ0 component, which
corresponds to dz in Eq. (3), occupies the central region and
the boundary, as well as the core around the central axis of
the condensate. For the simulated results with SOC strength
κ = 2.3, the density profiles of our numerical results coincide
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FIG. 1. Ideal and simulated density profiles of the spinor compo-
nents in the x-y plane: density distributions of an ideal knot of (a) ψ±1

and (b) ψ0 and density distributions of simulated results of (c) and (e)
ψ±1 and (d) and (f) ψ0 for SOC strength (c) and (d) κ = 2.3 and (e)
and (f) κ = 2.9. All quantities in this figure and the following figures
are dimensionless.

with the ideal knot. The region is a ring of depleted density
of ψ0 and enhanced density of the ψ±1 components. We have
also checked that the phase distribution is the same between
the theory and the simulation. With the continuous increase
of the spin-orbit coupling strength κ , more density rings are
generated as shown in Figs. 1(e) and 1(f).

Figure 2 shows the density profiles of ψ±1 and ψ0 in
the x-z plane. We note that the numerical results and the
ideal knot are not exactly the same in the z direction, due
to the fact that the polar OP is not degenerate along the
entire 3D direction. The simulation results presented in Fig. 2
demonstrate that knotlike structure can be created with the
appropriate parameter κ = 2.3, which looks like the ideal
knot. From a topological point of view, the distribution of
ψ±1 is the same in Figs. 2(a) and 2(c). There are differences
for ψ0 in Figs. 2(b) and 2(d), where surrounding the soliton
core is the toroidal tube with a blemish of the loop boundary
condition. This leads to an imperfect knotted structure at the
boundary, which is caused by the breakage in the z direction. It
does not happen in the two-component BECs with SOC. With
the increase of SOC strength, the structure deviates away from
the ideal knot. In Fig. 2(f) the two bilateral symmetry rings
evolve into concentric rings, which means immediately that a
spherical tube instead of a toroidal tube surrounds the soliton
core. The interlinked structure is then corrupted because of
changes in the internal core structure, which can be seen from
the spin texture.

FIG. 2. Same as in Fig. 1 in the x-z plane.

In order to get a better view of our numerical results, we
illustrate the preimages of the spin texture. Figure 3(a) shows
the ideal knot in which the preimages of d = (±0.98, 0, 0)
and d = (0, 0,−0.98) are interlinked tubes. Here the tube
describes a small isosurface around one point d. Figure 3(b)
is our simulated spin texture of the spin-1 condensates for
κ = 2.3. It indeed reveals a structure similar to the ideal knot.
We call it a knotlike structure, which preserves its knotted
character. From Fig. 3(b) we see that the tubes are slightly
broken, caused by the OP of the polar phase, but they do
link with each other once. We also check other different
points or areas on S2. The closer the points or areas are to
d = (0, 0, 1), the more the tubes are broken. We can explain
this by comparing Fig. 2(b) with Fig. 2(d). As ψ0 corresponds
to dz in Eq. (3), dz = 1 and the adjacent areas are ill-defined
at the border. This only causes some tubes to be partially
damaged and does not change the linking characteristics. If we
repair the broken part, it will become the ideal knot. We have
also calculated the Hopf charge defined by Eq. (4), which is
approximately equal to 1 in the case of κ = 2.3. This indicates

FIG. 3. Ideal and simulated preimages of the spin texture.
(a) Preimage of dx = 0.98 [yellow (light gray) tube], dx = −0.98
[purple (dark gray) tube], and dz = −0.98 [green (gray) tube] of an
ideal knot. (b) Preimage of the simulated results for SOC strength
κ = 2.3. (c) Same as in (b) but for κ = 2.9.
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FIG. 4. Simulated images of the spinor components in the x-z plane for (a) ψ±1 and (b) ψ0. (c) Phase profile of the ψ1 component. The
density profiles in the x-y plane are for (d) ψ±1 and (e) ψ0. (f) Helical spin texture corresponding to dx = 0.98 [yellow (light gray) tube] and
dx = −0.98 [purple (dark gray) tube] with κ⊥ = 2.39 and κz = 2.69.

that the broken area is not very large compared to the whole
physical space and it is very similar to the ideal knot.

Based on our numerical results and analysis, we find that
an ideal topological knot cannot be created or stabilized by
incorporating SOC in the spin-1 BEC. However, we can get
a stable knotlike structure which retains the linking character.
The term knotlike means the absence of some boundary con-
dition; thus, the Hopf number for the texture is not an integer
and reflects the similarity with an ideal knot, while the linking
character is preserved. The interlinking configuration decays
as the strength of SOC increases further. In the meantime, new
linking tubes are formed on the outside as in Fig. 3(c). This
is 3D spin texture with linked and unlinked tubes in spinor
BECs, which is different from two-component BECs with an
increase of SOC. Although the theory of helical modulation
is not completely applicable to the 3D structure in spin-1
BECs with SOC, it provides an intuitive picture. The emerged
spin texture can be physically understandable with the helical
modulation along the 3D radial direction, which is slightly
broken in the z direction.

B. Helical spin texture

We now study the situation of κ⊥ 	= κz. We still obtain the
knotted structures as κ⊥ slightly larger or smaller than κz. As
κ⊥ is sufficiently larger than κz, it reduces to a 2D skyrmion.
For κ⊥ < κz, a helical structure is generated [29,30]. The
helical structures are analytically evaluated and shown in
Fig. 4. Two semicircular areas are separated for ψ±1 in the
x-z plane.

The density distributions are different from Fig. 1 in the x-y
plane. Figure 4 shows that |ψ±1|2 vanishes in the center and at
infinity and the density is concentrated in a toroidal region. On
the other hand, |ψ0|2 vanishes on a ring. It corresponds to a 2D
skyrmion with unit topological charge, which is different from
the knot in the x-y plane. The structure has helical preimages
of dx and dy.

IV. SUMMARY

We have shown that SOC leads to the emergence of sta-
ble knotted and helical structures in antiferromagnetic spin-
1 BECs. The influences of the strength and anisotropy of
the SOC on the properties of the structures have also been
investigated, which are different from two-component Bose-
Einstein condensates with SOC. We find the knotted spin
texture induced by the SOC is a knotlike texture, which is
different from the ideal knot in spin-1 BECs. The emerged
structures are physically understandable with the concept of
the helical modulation and partially broken in the z direction.
Our work provides an alternative way of creating knotlike
structures and enriches the field of 3D spin-orbit coupling
research in spinor BECs.
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