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Supersolid phases of Rydberg-excited bosons on a triangular lattice
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Recent experiments with ultracold Rydberg-excited atoms have shown that long-range interactions can give
rise to spatially ordered structures. Observation of crystalline phases in a system with Rydberg atoms loaded into
an optical lattice seems also within reach. Here we investigate a bosonic model on a triangular lattice suitable for
description of such experiments. Numerical simulations based on bosonic dynamical mean-field theory reveal a
rich phase diagram with different supersolid phases. Comparison with the results obtained for a square lattice
geometry shows qualitatively similar results in a wide range of parameters; however, on a triangular lattice we do
not observe the checkerboard supersolid. Moreover, unlike on a square lattice, we did not find a phase transition
from uniform superfluid to supersolid induced by increase of the hopping amplitude on a triangular lattice. Based
on our results, we propose an intuitive interpretation of the nature of different supersolid phases. We also propose
parameters for the experimental realization.
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I. INTRODUCTION

A supersolid is a phase with simultaneously broken U(1)
and translational symmetry of the system. Since the first time
it was theoretically discussed [1–4] it has proven difficult to
realize in experiment. Supersolids emerging due to long-range
interaction between bosonic particles have been experimen-
tally realized with ultracold bosons in optical cavities [5–8].
Other paths to obtain supersolids are intensively studied. A
promising experimental approach involves dipolar quantum
gases trapped in a harmonic potential or loaded into an optical
lattice [9,10]. In the former case, phases with transient su-
persolid properties have been recently observed [11,12]. The
advantage of the approach involving optical lattices is that the
resulting system is highly tunable and accurately described
by the extended [13,14] version of the Bose-Hubbard model
[15,16].

One of the first studies of the extended Bose-Hubbard
model in the context of supersolids involved hard-core bosons
on a triangular, frustrated lattice with nearest-neighbor inter-
actions [17–20]. In these numerical quantum Monte Carlo
(QMC) studies several different phases were observed, in-
cluding a superfluid, an insulating density-wave, and two
supersolid phases. Interestingly, the frustration of the lattice
was found to be essential for the formation of the supersolid
and for preventing phase separation, which is observed on the
square lattice [13].

To obtain a supersolid phase on a square lattice with a
hard-core constraint one needs long-range interaction [21,22].
Studies within mean-field [14,23] and QMC [24] have shown
that supersolid phases exist in square and cubic lattice models
with dipolar interactions between atoms. Long-range interac-
tion also leads to other interesting phenomena, such as the
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appearance of multiple insulating density-wave phases with
commensurate filling in the limit of small hopping amplitude
[24–26]. The resulting phase diagram has features similar to
the devil’s staircase in the Ising model [27–29].

Experimentally, long-range interactions of the van der
Waals type can be realized, e.g., by exciting atoms to high
principal quantum number Rydberg states [30,31]. The ad-
vantage of this approach is that one can tune the strength of
the long-range interaction through an appropriate choice of
the Rydberg state. Rydberg atoms also have applications in
other fields such as quantum information [32], understand-
ing quantum critical behavior [33], and molecule [34,35]
and superatom [36,37] formation, among many others [38].
Moreover, loading of Rydberg atoms into an optical lattice
and the observation of emerging ordered structures have been
achieved experimentally [39–43], although so far only in the
frozen limit of a deep lattice potential. In contrast, theoretical
studies of the corresponding models have been performed
both in the frozen limit and for itinerant atoms. Main results
include the study of self-organization of Rydberg excitations
in a lattice [29,44,45], phase diagrams and effects of finite
hopping amplitude [28,46–48], spectral properties of different
phases [49], and effects of dissipation [50–52]. However,
these studies focused on the square lattice geometry without
considering effects of frustration.

In this work we study a theoretical model appropriate
for describing equilibrium phases of atoms coupled to their
internal highly excited Rydberg states and loaded into optical
lattices. We extend our previous study of a square lattice sys-
tem [47] by obtaining results for a triangular lattice, frustrated
with respect to formation of a checkerboard (super-)solid. We
investigate the effect of lattice geometry on the phase diagram.
We also study in more detail the properties of the observed
supersolid phases, finding that they can be divided into two
types.
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By assuming thermal equilibrium in our study we neglect
many dissipative processes that make experimental realization
of supersolids challenging. Nevertheless, better understanding
of equilibrium properties of the system might help in over-
coming such difficulties. On top of that, following a sug-
gestion from [49] and findings of equilibrium study one can
determine parameters suitable for minimizing the destructive
effect of avalanche dephasing.

This paper is organized as follows. In Sec. II we introduce
the model and briefly discuss our variant of the real-space
bosonic dynamical mean-field theory (B-DMFT) method used
in the simulations. In Sec. III we present and discuss the
results. Section III A is aimed at understanding the effects
of the lattice geometry by studying the phase diagrams and
properties of observed phases. In Sec. III B we compare the
results of B-DMFT and static mean-field theory to estimate
the relevance of local quantum fluctuations. In Sec. III C
we propose an experimental scheme for minimizing the de-
structive influence of dissipation induced by coupling to the
environment. In Sec. IV our findings are summarized.

II. SYSTEM AND METHOD

A. Model

We choose a model suitable to describe experiments with
bosonic alkali atoms, e.g., 87Rb, loaded into a triangular
optical lattice [53] and coupled (by an additional laser field) to
a Rydberg state with high principal quantum number [39,41].
For each lattice site i we introduce bosonic annihilation oper-
ators âi of an atom in its ground state and b̂i of an atom in its
highly excited Rydberg state. The corresponding Hamiltonian
reads [46,47]

Ĥ = Ĥkin + ĤvdW +
∑

i

(Ĥloc,i + ĤR,i ). (1)

The summation runs over the N lattice sites of the system.
In the end we take the thermodynamic limit of N → ∞,
assuming the system to be composed of periodically recurring
unit cells of finite size Nuc.

Ĥkin represents the kinetic energy of atoms tunneling be-
tween neighboring lattice sites

Ĥkin = −J
∑
〈i, j〉

(â†
i â j + ηb̂†

i b̂ j ). (2)

Here J is the hopping amplitude, and η represents the ratio
between the hopping amplitude of excited-state atoms to that
of ground-state atoms. 〈i, j〉 indicates summation over nearest
neighbors i and j. It is useful to introduce the connectivity z of
the lattice, which is the number of nearest neighbors for any
site. For the triangular lattice z = 6.

ĤvdW represents the van der Waals interaction between two
excited-state atoms and is given by

ĤvdW = VvdW

2

∑
i �= j

n̂e,in̂e, j

|i − j|6 , (3)

where |i − j| is the Euclidean distance between lattice sites i
and j divided by lattice spacing a, n̂e,i = b̂†

i b̂i is the number
operator at site i for the excited bosons, and VvdW is the van der

Waals interaction strength, which is given by VvdW = C6/a6,
with C6 being van der Waals coefficient [31].

Ĥloc,i is a local part of the Hamiltonian (for site i) de-
scribing the chemical potential and the onsite interaction. It is
given by

Ĥloc,i = U

2
(â†

i â†
i âi âi + 2λâ†

i b̂†
i b̂i âi + λ̃b̂†

i b̂†
i b̂i b̂i )

−μ(n̂g,i + n̂e,i ), (4)

with n̂g,i = â†
i âi . The parameters U , λU , and λ̃U describe

the local interaction strength between two ground-state atoms,
ground-state atom and excited-state atom, and two excited-
state atoms, respectively. μ is the chemical potential of an ex-
ternal thermal reservoir, since we work in the grand-canonical
ensemble.

The last term in the Hamiltonian, the Rabi term ĤR,i,
describes coupling between ground- and excited-state atoms,
induced by the driving with an additional laser field. Within
the rotating wave approximation (RWA), this contribution to
the Hamiltonian is given by

ĤR,i = �

2
(b̂†

i âi + â†
i b̂i ) − �n̂e,i. (5)

Here � is the Rabi frequency, and � the detuning of laser fre-
quency from that of the atomic transition which we consider.

In the following we set h̄ = kB = 1 and use the Rabi
frequency � as the unit of energy, unless stated otherwise.
We assume the system is in thermal equilibrium at zero
temperature.

In our model we set λ, λ̃ � 1, leading to a hard-core
constraint for excited-state atoms [47]. Rydberg atoms are
susceptible to formation of molecules [54] which are not
trapped by the lattice potential and therefore lead to a high
two-body loss rate. This in turn leads to a hard-core constraint
due to the quantum Zeno effect [55–57].

We also set the value of η = 0, which translates to im-
mobile Rydberg atoms. The effect of nonvanishing η was
considered in [47], and only small changes in the values of
observables were observed. This is not surprising, as the ex-
cited atoms interact strongly via the van der Waals interaction,
which leads either to a very small fraction of excited atoms or
to crystalline order where kinetic processes are suppressed.

B. Method

We perform calculations with two methods: (i) a
Gutzwiller (static) mean-field approximation, described in
detail in [16,52], and (ii) the bosonic dynamical mean-field
theory (B-DMFT) [58]. Both methods are based on self-
consistency and on mapping of the lattice problem onto a
set of local impurity problems. In order to be able to do the
latter, we treat the nonlocal interaction term within the Hartree
approximation [59],

ĤvdW = VvdW

2

∑
i �= j

n̂e,in̂e, j

|i − j|6

≈ VvdW

∑
i �= j

(
n̂e,i − 〈n̂e,i〉

2

) 〈n̂e, j〉
|i − j|6 . (6)

063625-2



SUPERSOLID PHASES OF RYDBERG-EXCITED BOSONS … PHYSICAL REVIEW A 99, 063625 (2019)

Moreover, both methods are implemented within a real-space
approach, which allows us to study arbitrary periodically
recurring ordered structures.

Below we will outline the main steps of the B-DMFT
approach, referring the reader to [47] for a more detailed dis-
cussion. The Gutzwiller mean-field technique may be viewed
as a limiting case of B-DMFT and, therefore, it follows similar
steps.

1. Frozen limit

To efficiently perform the B-DMFT calculations, we first
need to predict what kind of self-organized structures may
emerge in the system due to the long-range interaction. We
therefore first perform calculations for the frozen gas with
J = 0. In this limit at unit filling one can map the problem
onto an effective spin model [36,41], which, however, is still
not trivial to solve on an infinite two-dimensional triangular
lattice. We therefore perform another simplification, assuming
a negative value of the chemical potential μ < 0, which in the
frozen limit leads to a dilute crystal.

Owing to the negative chemical potential and zero tempera-
ture, the bosons can reside in the lattice only when their energy
is sufficiently lowered by the Rabi term ĤR. When this is the
case, the ground state of the system will be a spatially periodic
structure with optimal balance between the distribution of
bosons in the system and the strength of interaction between
them. One can efficiently find Landau free energies of many
metastable, spatially periodic states. Each such state is char-
acterized by two spanning vectors v1 and v2, see Fig. 1(a).
The bosons in the lattice reside only on the sites related by
translations defined be these two vectors, forming a sublattice
of the underlying triangular lattice. At each occupied lattice
site there is exactly one boson 〈n̂g + n̂e〉 = 1 in a superpo-
sition of a ground and excited state. Comparing the Landau
free energies of these metastable ordered states, one can deter-
mine the ground state of the system. Structures associated in
the frozen limit with a ground state for a certain value of the
detuning are considered in the B-DMFT calculation later on.

We note that in the frozen limit a simple expression was
found for the critical value of the detuning at which the
system undergoes a phase transition to vacuum [47]. This
expression can be easily extended beyond the frozen limit, as
the transition between the vacuum and a very dilute gas, in
which van der Waals–type interactions are negligible, can be
treated as a single-particle problem (see also Appendix A).
One finds a critical value of the hopping amplitude as a
function of the chemical potential, detuning, Rabi frequency,
and connectivity:

zJc = �2 + �2 − (2μ + �)2

4(μ + �)
. (7)

We emphasize that the frozen-limit approach taken here
is used primarily to predict most relevant structures for the
further B-DMFT and static mean-field calculations. While in
the frozen limit we do neglect certain orderings reported for
lattice gas models that could not be described with just two
Bravais vectors [29,60], we still can recover some of them
within B-DMFT (up to certain wavelengths of the structure),
because there each site of the unit cell is treated independently.

FIG. 1. (a) In the frozen limit occupied sites are related to each
other by a translation by linear combinations of v1 and v2. (b) In
the frozen limit changing the detuning results in a series of phase
transitions between different insulating ordered structures character-
ized by the number of sites per unit cell Nuc. Parameters are set to
VvdW = 100, U = 0.1, μ = −0.25, and J = 0.

We are not able to describe incommensurate or disordered,
e.g., glassy, phases.

2. B-DMFT

The results of the frozen limit allow us to select the relevant
ordered structures and thus to reduce the number of B-DMFT
calculations by selecting only those pairs of spanning vectors
(v1, v2) which correspond to some ground state of the system
in the frozen limit. Each pair (v1, v2) defines a unit cell with
Nuc sites that recurs periodically in the system. Within this unit
cell a separate quantum impurity problem corresponds to each
site. These impurity problems might have different parameters
and solutions, resulting in different values of local observ-
ables, such as the condensate order parameter for ground-
φi,g = 〈âi〉 and excited-state φi,e = 〈b̂i〉 bosons, expectation
value of the occupation of ground- 〈n̂g,i〉 and excited-state
〈n̂e,i〉 bosons, connected local Green functions, self-energies,
etc. As for the impurity solver within the B-DMFT calcula-
tions, we apply the exact diagonalization method [47,61,62].

Within B-DMFT one needs to define a set of self-
consistency equations [58,63]. The first one is given by the
local Dyson equation, relating the local interacting connected
Green function G, local Weiss field G, and the self-energy �.
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It reads

G−1
i (iωn) = G−1

i (iωn) + �i(iωn). (8)

Note that each object here is a 4 × 4 matrix, since there are
two components due to the Nambu notation for bosonic Green
functions [58] and two components due to two types of bosons
(ground and excited state) in the lattice.

The second self-consistency equation involves the conden-
sate order parameter and reads

�i = [
g0

i (0) − Gi(0)
]
�i +

∑
j:〈i, j〉

J� j, (9)

where g0
i is the Green function of the noninteracting lattice

site i decoupled from the rest of the lattice, �i is the vector
determining the condensate mean field to which the impurity
i is coupled, and � j is the vector determining the order pa-
rameter at site j (which is calculated in the impurity problem).
The summation runs over all j which are nearest neighbors of
site i.

In standard B-DMFT, the last self-consistency equation
would be given by the lattice Dyson equation [58]. Here,
however, due to the complexity of the problem and the large
spatial structures considered, we used a simpler one. In our
approximate approach we determine the Weiss field accord-
ing to

Gi(iωn) = g0
i (iωn) −

∑
j:〈i, j〉

J2G j (iωn). (10)

Such a self-consistency equation would become exact in the
limit of the infinite connectivity Bethe tree [58]. In a finite
spatial dimension it amounts to neglecting: (i) the effect which
removing a site from the lattice has on the lattice Green
functions, and (ii) correlations between different neighbors of
the impurity. A similar (though not identical) self-consistency
equation has been successfully used for lattices in finite
dimensions in the context of real-time dynamics [64]. In
Appendix B we elaborate on the effect of this approximation.

Having obtained the self-consistent solution, one can use
the local quantities calculated in the impurity problems to
determine values of nonlocal quantities. Most importantly,
one can calculate the Landau free energy [47]. Note that we
have included the chemical potential into the Hamiltonian (1)
and are working at zero temperature; therefore the Landau free
energy per lattice site is given by f = 〈Ĥ〉/N .

3. Obtaining the phase diagram

In order to obtain the phase diagram of the system with
respect to the hopping amplitude J and detuning � we pro-
ceed according to the following steps. First we set the val-
ues of the parameters that remain constant throughout the
calculations, including VvdW , U , μ, and �. Next, within the
range of variability of � we perform frozen-limit calculations
(J = 0) and thus obtain a set of unit cells that correspond to
the ground state of the system for certain �, i.e., unit cells
listed in Table I. Once this has been done, one can proceed
to the actual B-DMFT calculations. To cover the entire phase
diagram, we perform a sweep over different values of J and
�. Below we describe the steps taken for each pair of values
(J,�).

TABLE I. Spanning vectors v1 and v2 and number of sites in the
unit cell Nuc of the structures considered in the B-DMFT calculations
(except for the first one with Nuc = 3, which was not considered
explicitly but rather implicitly as a special case of the one with Nuc =
9). v1 and v2 are given in the basis of primitive vectors of a triangular
lattice e1 and e2, e.g., (3, −1)e = 3e1 − e2. The primitive vectors in
Euclidean space in units of the lattice spacing a are e1 = (1, 0) and
e2 = ( 1

2 ,
√

3
2 ).

v1 (2,−1)e (2, 0)e (3,−1)e (3, −1)e

v2 (1, 1)e (0, 2)e (0, 2)e (1, 2)e

Nuc 3 4 6 7

v1 (3, 0)e (4, −2)e (4,−1)e (4, 0)e

v2 (0, 3)e (2, 2)e (1, 3)e (0, 4)e

Nuc 9 12 13 16

For a given pair (J,�) we perform a separate B-DMFT
calculation for each of the unit cells listed in Table I. These
are initialized in such a way as to break the translational
symmetry according to the shape of the unit cell. The U(1)
symmetry is also randomly broken to allow for supersolid and
superfluid solutions. Next, each self-consistency calculation
is performed independently converging onto some metastable
state with a finite or vanishing condensate order parameter
〈âi〉. On top of that, for a given unit cell each converged
solution can have: (i) the same spatial structure as the one
with which it was initialized, with slightly different values of
the local observables, (ii) different, but still nontrivial spatial
structure, and (iii) vanishing spatial ordering resulting in a
homogeneous phase. From each B-DMFT calculation we also
obtain the Landau free energy of a given metastable solution.
We identify the solution with the lowest value of the Landau
free energy as the ground state for given J and �.

III. RESULTS

In this section we present the results of our calculations. In
Sec. III A we set the system parameters to be comparable to
those used in [47], where the same model on a square lattice
has been studied with B-DMFT. This allows us to investigate
how the triangular lattice geometry affects the behavior of the
system. We also study the nature of different phases observed.
In Sec. III B we compare the static mean-field and the B-
DMFT results to estimate the significance of local quantum
fluctuations. These two sections are aimed at giving a better
understanding of phases emerging due to the competition of
long-range interaction and kinetic processes on a triangular
lattice. In Sec. III C we study a system with experimentally
more feasible parameters. We investigate the possibility of
observing supersolid phases in a triangular optical lattice with
Rydberg atoms. To minimize dissipative effects, we follow the
idea suggested in [49] of using an inhomogeneous profile of
the Rabi laser.

A. Phase diagram

We choose the following parameters of our system: VvdW =
100 �, U = 0.1 �, and μ = −0.25 �. As discussed earlier,
we also set λ = λ̃ = 106 � 1 and η = 0. These parameters
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FIG. 2. Phase diagram of the system described by the Hamil-
tonian (1) obtained from B-DMFT calculations. Parameters of the
system are the same as in Fig. 1, except for the variable hopping
amplitude J . Phases shown in Fig. 3 are labeled SSn and DWn, where
the lower index n = Nuc represents the number of sites in a unit
cell, cf. Table I. Gray shading represents an area where B-DMFT
calculations did not converge. The red line separates phases breaking
the U(1) symmetry from those where it is preserved. For � < −0.75
we use formula (7), as it accurately matches the B-DMFT data.

are the same as in [47], allowing for comparison of square
and triangular lattices. Values of the hopping amplitude and
the detuning are varied.

We first investigate the frozen-limit case J = 0. In Fig. 1(b)
we show how the size of the unit cell of the ground state, given
by its number of lattice sites Nuc, depends on the detuning.
Below a critical value of �c = −0.75 the system is empty.
As we increase � above �c we observe a series of phase
transitions between insulating ordered (density-wave) phases,
resembling the devil’s staircase observed in the Ising model
[27–29]. Each has a different translational symmetry and size
of the unit cell. For values of � close to �c the unit cell is
large, resulting in a very dilute system. As the value of the
detuning is increased, the density of bosons also increases.
These results are qualitatively similar to the ones obtained
for a square lattice [47]. The trend line close to �c follows
Nuc ∼ (� − �c)−

1
3 . The exponent is determined by the spatial

dimensionality of the system divided by the exponent in the
interaction potential, cf. Appendix A.

Next we proceed to the discussion of the finite hopping J >

0 case within the B-DMFT calculations. Out of a large set of
unit cells considered in the frozen limit we have selected only
the few smallest, relevant for the vicinity of � = 0, due to
the computational complexity of B-DMFT calculations. They
are listed in Table I. According to the frozen-limit results,
the structures that were left out become relevant only in the
narrow region of detuning, −0.75 < � < −0.7. For other
values of � the structures from Table I should be sufficient.

The phase diagram obtained within B-DMFT is shown in
Fig. 2, while the density-wave patterns observed in different
phases are shown in Fig. 3. The phases labeled as DW7, DW′

7,
DW9 and DW12 are insulating while SS3, SS4, SS7, SS′

7, SS9,
SS12 are supersolid. A lower index indicates the number of
sites in the unit cell Nuc of the structure, cf. Table I. In the limit
of small hopping amplitude J = 0.001 we recover the results
of the frozen limit, as expected. The observed structures DW7

and DW9 (and DW12, not shown in Fig. 3) follow the trend
presented in Fig. 1. Only the sites of a sublattice defined by
vectors v1 and v2 are occupied. On each of its sites there is a
single boson, which is in a superposition between the ground
and excited state. The remaining sites of the lattice are nearly
empty.

Next we consider the effect of increasing hopping ampli-
tude. For � < �c = −0.75, increasing J leads to a phase
transition from the vacuum to a homogeneous superfluid
phase. The phase boundary obtained with B-DMFT agrees
well with the expression (7). We note that below �c, unlike for
the square lattice geometry, where a checkerboard supersolid
was found [47], the triangular system does not exhibit any
supersolid phase. For � > −0.6 small values of the hopping
amplitude have only a minor influence on the insulating
phases, resulting in small shifts of the phase boundaries with
increasing J . Further increase of J eventually leads to a
spontaneous breaking of the U (1) symmetry in the system and
a transition into one of many supersolid phases.

We observe that at higher values of � the supersolid phases
immediately above their insulating counterparts have similar
order, cf. Fig. 3, DW7 − SS7 and DW9 − SS9. In these phases,
namely, SS7 and SS9, a significant (when compared to ground-
state population) number of excited-state bosons is present.
We observe that both the local ground-state condensate order
parameter 〈âi〉 as well as local fluctuations of the occupa-
tion δn2

i = 〈(n̂g,i + n̂e,i )2〉 − 〈n̂g,i + n̂e,i〉2 (see Appendix B)
are much smaller on the sites with excited-state bosons than
on the surrounding sites with small excited-state occupation
[65]. We interpret this phase as a supersolid which consists
of (i) frozen bosons being in a superposition of ground and
excited states (with significant fraction of both) residing in the
periodic sublattice of the original lattice, and (ii) delocalized
condensed bosons, predominantly of the ground-state nature,
flowing without friction in the remaining lattice sites. This in-
terpretation is also consistent with the shape of the supersolid–
density-wave phase boundary for larger detunings. For a
given ordered structure the delocalized bosons can slightly
reduce their energy by a small admixture of the excited state,
thus increasing the supersolid regime in the phase diagram.
This energy reduction is however diminished with increasing
fraction of excited-state bosons in the “frozen” sites due to
strong nonlocal interaction forces. Hence with increasing �

the phase boundary is shifted to higher values of J as the
fraction of excited bosons on the “frozen” sites increases.

The supersolid phase SS12 appears to be of the same
nature as SS7 and SS9 but with a different spatial structure.
The DW12 phase (not depicted in Fig. 3), a U(1) symmetric
counterpart of the SS12 phase, appears for small J around � ≈
−0.5, cf. Fig. 2. However, SS12 and its insulating counterpart
are not immediately connected in the phase diagram due to the
emergence of other phases discussed further in the text.
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FIG. 3. Structures of selected phases observed in Fig. 2 at (a) � = 2.45, J = 0.001; (b) � = 0, J = 0.001; (c) � = 2.45, J = 0.053;
(d) � = 1, J = 0.05; (e) � = 1, J = 0.06; (f) � = 0, J = 0.045; (g) � = 0, J = 0.04; and (h) � = 0, J = 0.038. Color represents the
fraction of ground- (filled circles) and excited-state (empty circles) bosons per lattice site. Each graph represents sites within a quadrupled unit
cell of an initial guess. Each site in a unit cell defines a different impurity problem in the B-DMFT procedure. The depicted patterns recur
periodically in the lattice. The fractions of excited- (ground-) state bosons have been rescaled in certain cases for better visibility.

Starting from the SS9 or SS12 phases and decreasing the
detuning � or increasing the hopping amplitude J , we observe
further phase transitions, cf. Fig. 2. Qualitatively different
supersolids emerge, labeled as SS3 and SS4. These are charac-
terized by the following features. The fraction of the excited-
state bosons is significantly (by approximately an order of
magnitude) lower than in SS7, SS9, or SS12. The wavelength
of the density-wave pattern is significantly smaller, with
smaller distances between sites with nonvanishing fraction of
excited-state bosons. On these sites we have also observed
an increase in condensate fraction and local fluctuations of
the occupation, cf. Appendix B. Finally, we observe a larger
density of atoms in the remaining, intermediate sites and
more uniform distribution of the condensate order parameter.
This behavior with decreasing values of � is opposite of
what one would expect if here one tried to apply intuition
gained from the frozen limit. Because of these differences,
we conclude that this must be a qualitatively different type of
supersolid where we can no longer apply the interpretation of
“frozen” sublattice sites occupied by the excited-state bosons
coexisting with condensed ground-state bosons in between.
These phases bear some resemblance to bubble supersolids
[66–69] in that the condensation originates from the sites with
nonvanishing excited-state fraction, in contrast to the SS7,
SS9, and SS12 phases. We also suspect that the supersolids
observed in SS3 and SS4 could be connected with the concept
of defectons [2,67], which is a condensation of defects (holes)
in the ordered structure that are tunneling between different
sites. This interpretation seems to be consistent with the
observed features of the phases: (i) larger local fluctuations
on the sublattice could be related to the presence and conden-
sation of defectons, (ii) a smaller wavelength of the observed
pattern supports tunneling of defectons in opposition to the
larger wavelength patterns, which are more favorable for the

condensation of the ground-state bosons on the intermediate
sites (between the site of the sublattice). However, these ar-
guments alone are not sufficient to confirm this interpretation
unambiguously.

It is worth mentioning that there is a relation between the
SS9 and SS3 phases, as well as between SS12 and SS4 phases.
In both cases the symmetry of the former phase can be viewed
as a reduced version of the symmetry of the latter phase with
Nuc reduced by a factor of 3, cf. Fig. 3. However, the SS12 and
SS4 phases, between which we observed a first-order phase
transition, separate the SS9 and SS3 phases from each other.

Regarding the two types of supersolids described above,
we note that similar observations were made in [48]. There,
also, two types were found, with one consisting of a supersolid
of bare (ground-state) species and a crystalline phase of
dressed (coupled to excited-state) species. However, due to
a different model, the second type of supersolid in [48] is not
of the same nature as observed here—one does not observe
a significant reduction of the wavelength of the periodic
structure but rather an increase.

We also observe a phase at intermediate values of the
hopping amplitude J ≈ 0.038 and in the vicinity of detuning
� = 0 which is depicted in Fig. 3 and labeled SS′

7. It has
similar properties to the SS3 and SS4 phases, which have a
smaller wavelength than the phases at larger detuning, e.g.,
SS9, and for which condensation originates from the sites
with nonvanishing excited-state fraction, cf. Appendix B. The
distinguishing features of SS′

7 are that the fraction of excited-
state bosons is significantly higher than in SS3 or SS4, and that
we also observed an insulating counterpart of the SS′

7 phase,
namely, the DW′

7 phase. Both do not occur in the mean-field
calculations, as discussed in the next section.

We note that the results presented here are qualitatively
similar to those presented in [47] for a square lattice. A
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FIG. 4. Phase diagram obtained within the Gutzwiller (static)
mean-field approach. The parameters are the same as in Fig. 2.

significant difference is visible here only near the boundary
between superfluid and supersolid phases. On a square lattice
this boundary separates the superfluid from a checkerboard
supersolid, which extends to values of detuning below �c,
where one can induce a phase transition from superfluid to
supersolid by increasing (rather than decreasing) the hopping
amplitude. On a triangular lattice the checkerboard supersolid
cannot exist due to frustration, and no supersolid phase exists
below �c. Apart from this the two phase diagrams are similar.
We attribute this to the fact that the spacing (wavelength) in
the majority of structures observed here is larger than the
lattice spacing. In this case the difference in geometry of the
two lattices has a weaker impact. For these longer-wavelength
structures it is actually the square lattice that becomes more
frustrated with respect to the favored (due to van der Waals
interaction) Wigner crystal formation [29] than the triangular
lattice.

B. Comparison with the static mean field

In Fig. 4 we present the results of calculations performed
within the static Gutzwiller mean-field approximation [16,52].
Upon comparison with the B-DMFT, we notice that both
methods give similar results. The main features of the phase
diagrams agree well. Below we focus on the most relevant
differences.

As the static mean-field approach favors ordered phases,
we expect a phase transition between insulating and superfluid
(supersolid) phases to appear at lower values of the hopping
amplitude. Indeed, comparing Fig. 2 with Fig. 4 we observe
that the boundary of the insulating phases is shifted down-
wards. This effect is almost negligible for larger absolute
values of the detuning and becomes relevant only in the region
|�| � 0.75. This is also a region where an increasing number
of phases compete in the system. It seems that only in this

region will local quantum fluctuations significantly affect the
system’s behavior.

Another discrepancy arises from the oversimplification of
the insulating phases within the static mean-field approach.
The boundaries between different phases with U(1) symmetry
do not depend on the hopping amplitude, and their positions
are uniquely defined by the detuning. In contrast, B-DMFT
calculations show that finite hopping can induce a phase
transition between two density-wave phases.

The above two observations are directly related to the most
significant difference that we observed. Namely, in the static
mean field neither the supersolid SS′

7 nor the density-wave
DW′

7 phase was observed, which should be present according
to B-DMFT, cf. Fig. 2. This occurs in the region where we
observed the largest discrepancies between the two meth-
ods in the values of the condensate order parameter and in
properties of the insulating density-wave phase. We conclude
that as the detuning � approaches critical value �c = −0.75
at intermediate values of the hopping amplitude, effects of
local quantum fluctuations become significant (this is further
backed up by comparing different self-consistency conditions,
Appendix B). At this point we emphasize for clarity that
nonlocal fluctuations are treated in both methods on the same
level (Hartree mean field). Therefore, we cannot make definite
statements about their significance.

The last discrepancy between the results of B-DMFT and
static mean field can be observed in the extent of the SS4

and SS12 phases. In static mean field it is slightly smaller
than in B-DMFT due to larger extent of the SS9 phase.
Nevertheless, the remaining features of the phase diagram are
qualitatively accurately captured by the static mean field. As
this method is significantly less demanding computationally,
it is the best that we can do at this stage to get some insight
into the critical region of � ≈ �c, where it is difficult to
obtain converged B-DMFT results. We study this region of
the phase diagram in Fig. 5. As we approach �c from
above, we encounter a series of phase transitions forming
a devil’s staircase (note the logarithmic scale), both of the
insulating density-wave phases at small hopping amplitude,
as well as of the supersolid phases for larger hopping. When
investigating the devil’s staircase in the supersolids we notice
that increasing the hopping amplitude seems to favor longer-
wavelength structures, shifting the devil’s staircase pattern to
higher detunings. This is similar to what we observed for
� � 1, cf. Fig. 4. However, this trend seems to be reversed
at the intermediate detuning of � � −0.68, which coincides
with the onset of the SS3 phase (short wavelength) for larger
hopping amplitudes. We suspect that this might be a feature
emerging due to the competition between the two general
types of supersolid discussed in Sec. III A and could lead
to a multicritical point around � ≈ −0.68 and J ≈ 0.022.
However, investigating this region within a more accurate B-
DMFT method requires improvements of our implementation
of the method and goes beyond the scope of this work.

C. Finite-size system with inhomogeneous Rabi frequency

In Sec. III A we have established a relation between the
behavior of long-range interacting bosons on the triangular
and square lattices. In order to make this comparison, we
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FIG. 5. Phase diagram obtained within the Gutzwiller (static)
mean-field approach in the critical region. The parameters are the
same as in Fig. 2. Gray shading represents the range of parameters
beyond the limit of accuracy of the method due to the maximal size
of the considered crystalline structure.

have chosen the same parameters as used in [47]. However,
these values of the parameters are not optimally suited for
experimental realization of the model (1) with Rydberg atoms
loaded into an optical lattice. Relatively large values of the
hopping amplitude J and small values of the van der Waals
interaction VvdW with respect to the Rabi frequency would
require using a Rydberg-excited state with low principal
quantum number n ∼ 16. These states have a short lifetime
due to spontaneous emission and dephasing processes induced
by the blackbody radiation [70]. Below we propose more
realistic parameters, which can be chosen based on the obser-
vations made in the previous sections and which might help in
tackling one of the most notorious experimental challenges—
avalanche dephasing [41,49,71].

Avalanche dephasing occurs when a blackbody-radiation-
induced transition of a single excited atom to another Rydberg
state might trigger a rapid loss of atoms from the system.
The average time after which such a process occurs is given
by [71]

τc = τ

(
b
∑

i

〈n̂e,i〉
)−1

, (11)

where b is the branching ratio of the excited state. τc is in-
versely proportional to the total number of excited-state atoms
in the system. Therefore, the best candidate for experimental
observation of a supersolid phase is the SS3 phase, where the
excited-state fraction is very low. However, since in (11) the
total number of Rydberg atoms in the system appears, rather
than their density, we need to consider relatively small system
sizes. This leads to the further issue of increased Rydberg
fraction at sharp edges of the finite-size system, such as shown
in [45,49]. In order to avoid this problem, we additionally

FIG. 6. Ground-state occupation 〈n̂g,i〉 (filled circles) and con-
densate order parameter φg,i = 〈âi〉 (empty circles) in real space for
an inhomogeneous Rabi frequency �i given by (12). The parameters
of the system are J = 0.0045 �, μ = −0.025 �, U = 0.01 �, � =
−4 �, VvdW = 1.6 × 104 �.

choose a Gaussian profile of the Rabi laser with a narrow
waist on the order of several micrometers, as suggested in
[49], given by

�i = � exp

[ |i − 0|2
κ2

]
, (12)

with 0 corresponding to the position of the center of the
system and �i an effective Rabi frequency at site i.

Taking the above restrictions into account, we consider
a system with bosonic 87Rb atoms loaded into a two-
dimensional triangular optical lattice, e.g., such as described
in [53] with lattice spacing a ≈ 0.5 μm. For such a sys-
tem one should be able to achieve a hopping amplitude of
approximately ∼0.45h̄ kHz [53]. The local interaction is a
tunable parameter, which we set to U = 1h̄ kHz. We choose
to couple the ground state to an excited |26S〉 Rydberg
state by the Rabi term. Using this |26S〉 state on a lattice
with spacing a ≈ 0.5 μm gives a van der Waals interaction
strength on the order of VvdW ≈ 1600h̄ MHz [31] and mean
lifetime of τ ≈ 10 μs [70]. Rabi frequency and detuning on
the order of � ≈ 0.1h̄ MHz, � = −0.4h̄ MHz should also be
feasible experimentally. The remaining issue is to focus the
Rabi laser such that it has a Gaussian profile (12) with κ =
3.5 μm.

Setting everything in units of � and a, we obtain the
parameters of the simulation to be the following: J =
0.0045 �, μ = −0.025 �, U = 0.01 �, � = −4 �, VvdW =
1.6 × 104 �, and κ = 7a. The resulting density pattern is
shown in Fig. 6. In the center of the system we observe the
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same structure as in the SS3 phase. Its visibility, defined as

V = 〈n̂g,i〉 − 〈n̂g, j〉
〈n̂g,i〉 + 〈n̂g, j〉 , (13)

where i corresponds to the site with maximal occupation and
j to the nearest neighbor of i, has the value V ≈ 0.175.

Lastly we note that the average total number of atoms in the
system is

∑
i〈n̂g,i + n̂e,i〉 ≈ 113 while the average total num-

ber of Rydberg excitations is
∑

i〈n̂e,i〉 ≈ 0.0373. Together
with the branching ratio on the order of b ≈ 0.1 [71], the
average time after which the avalanche is set off is τc ≈
3 ms, which is comparable with the characteristic timescale
of the hopping process t ∼ h̄/J and thus is promising for
experimental realization.

While the above approach might help in reducing some of
the problems that are related to a large fraction of Rydberg
atoms in the system, there are still numerous remaining chal-
lenges to be dealt with. One still needs to prepare the system
so that it is close to its ground state. How to do this while
avoiding destructive dissipative effects due to inelastic scat-
tering [54] or dephasing during the state preparation remains
an open question. One should also determine whether other
dissipative effects will destroy the coherence of the supersolid
phase. Some steps to answer this last question have been
investigated in [52].

IV. CONCLUSIONS

In this work we have studied the effect of frustration
on the formation of crystalline and supersolid states in the
extended Bose-Hubbard model with two bosonic species—
one itinerant and one subject to two-body van der Waals
long-range interaction. The two species are also coupled by
a Rabi term and local interaction. We have focused on a
system at zero temperature, without including explicitly the
effects of coupling to the environment. We have also used the
Hartree mean-field approximation to decouple the long-range
interaction term.

Within B-DMFT the same model has been previously
investigated on a two-dimensional square lattice [47]. Here
we solve the problem with two methods: B-DMFT and the
Gutzwiller static mean-field approach. Comparison of the B-
DMFT results for the two lattice geometries allowed us to
determine the effect of the (frustrated) triangular geometry
on ordered states. Comparison of B-DMFT results to those
of the static mean-field approach allowed us to estimate the
significance of local quantum fluctuations.

We have obtained a rich phase diagram, including insu-
lating density-wave, superfluid, and supersolid phases. We
observed that the phase diagram on the triangular lattice is
qualitatively similar to the one observed for a system with
square lattice geometry [47]. Within the parameter regimes
considered the only significant discrepancy is the absence of
the checkerboard ordered supersolid and of the supersolid
below a critical value of the detuning �c (determined in
the frozen limit). The similarity of the results for the two
geometries can be attributed to the low density of atoms and
the large wavelength of the observed ordered structures when
compared to the lattice spacing. We have also expanded the
previous research by analyzing the properties of supersolid

phases in more detail. We have observed that they can be
divided into two general classes distinguished by the spatial
modulation of condensate fraction and by the total fraction
of excited-state bosons. Comparison of the B-DMFT and
static mean-field methods shows an overall good agreement
between the two approaches. The differences are limited to
small regions of the phase diagram and small phase-boundary
shifts.

Furthermore, we have studied the model on a finite-size
lattice with Gaussian profile of the Rabi term, where we have
chosen experimentally convenient parameters. We have found
a supersolid phase with a low fraction of excited atoms and
a visible spatial modulation of the density. While this does
not solve all of the issues that render the experiment challeng-
ing, we believe this to be the most promising approach for
experimental realization of supersolid phases with Rydberg
atoms.
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APPENDIX A: SCALING OF Nuc CLOSE TO �c

IN THE FROZEN LIMIT

Below we give a simplified argumentation for the depen-
dence of the size of the unit cell Nuc on the detuning close
to the critical detuning strength �c in the frozen limit J = 0.

FIG. 7. Average occupation of the excited-state bosons 〈n̂e〉 as a
function of hopping amplitude for � = 0. Other parameters are the
same as in Fig. 2. Red line with points represents results obtained
with full B-DMFT self-consistency conditions. Black line represents
results obtained with simplified self-consistency condition given by
(10). Gray shading represents ranges of different phases labeled in
the graph as determined by the full self-consistency.
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FIG. 8. Local condensate order parameter of ground-state bosons φi,g = 〈âi〉 (filled circles) and local number fluctuations δn2
i = 〈n̂2

i 〉 −
〈n̂i〉2 (empty circles) for different phases observed in Fig. 2 at (a) � = 2.45, J = 0.053; (b) � = 1, J = 0.046; (c) � = 1, J = 0.06; (d) � =
0, J = 0.045; (e) � = 0, J = 0.04; and (f) � = 0, J = 0.038. Here n̂i = n̂g,i + n̂e,i. Each graph represents sites within a quadrupled unit cell
in the same way as in Fig. 3. Note the ranges used for the SS3 and SS4 phases, and the rescaling of the magnitude of fluctuations used for better
visibility.

We assume the system is d dimensional. We first consider
the energy gain due to adding a single particle into an empty
system. In such cases the only relevant energy scales in the
Hamiltonian (1) are the chemical potential μ, the detuning �,
and the Rabi frequency �. In order to have a finite value of �c,
which marks the transition of the system to vacuum, we set
μ < 0. Finding the single-particle eigenstates in such a case
is simple and their energies are given by

e± = −μ − � ± √
�2 + �2

2
. (A1)

The low-energy state is given by e+, and when e+ < 0 it
is energetically favorable to put the particles in the system.
Thus the condition e+ = 0 determines the critical value of
detuning �c (e.g., in case of � = 1 and μ = −0.25 we get
�c = −0.75, cf. Sec. III A). Note that this argumentation can
be extended beyond the frozen limit of J = 0. By taking a
completely delocalized single-particle state of the ground-
state bosons, giving −zJ contribution to the energy, one
can obtain critical value of the hopping amplitude Jc as a
function of the chemical potential, the detuning, and the Rabi
frequency, yielding (7). We further consider the energy gain
per particle in the vicinity of �c, with � = �c + δ and 0 <

δ � 1. Expanding (A1) up to first order in δ we get

e+ ≈ −1

2

(
1 + �c√

�2
c + �2

)
δ. (A2)

Therefore, energy gain per particle due to adding particles in
the system is proportional to δ = (� − �c).

However, upon adding particles into the system we in-
crease the potential energy due to the van der Waals inter-
action. We therefore need to estimate the energy cost due to
having a certain density of particles in the system. We assume
that the particles form a uniform Wigner crystal with certain
density ρ ∼ 1/Nuc. In such cases the average distance between
particles is given by rc ∼ ρ−1/d . The energy per particle due
to the van der Waals interaction can be estimated by the
integral

evdW ∼ ρ

∫ ∞

rc

rd−1

r6
dr = ρ

rd−6
c

6 − d
∼ ρ6/d . (A3)

If we now require the energy cost of interaction to be
compensated by the energy gain due to the Rabi frequency
we obtain (� − �c) ∼ ρ6/d ∼ N−6/d

uc , which for d = 2 gives
Nuc ∼ (� − �c)−1/3, cf. Fig. 1.

APPENDIX B: SUPPLEMENTARY RESULTS

1. Self-consistency test

In order to determine the accuracy of our assumption
regarding the self-consistency condition (10) described in
Sec. II B, we have implemented the full self-consistency
condition and performed calculations for a limited range of
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parameters. We have chosen to set the detuning to � = 0
and vary the hopping amplitude J , as this gives a cross
section of the most interesting part of the phase diagram
shown in Fig. 2. We compare the average occupation of the
excited-state bosons as a function of J . The result is shown in
Fig. 7.

One can see that for the majority of values of the hop-
ping amplitude J the two self-consistency equations yield
quantitatively comparable results. The major difference ap-
pears in the region of J ∈ [0.031, 0.039 25]. In the simpli-
fied self-consistency the extent of the DW′

7 phase is much
smaller while the extent of the SS′

7 phase is slightly larger.
In the latter phase the simplified approach also yields a larger
rate of change of the average occupation of excited-state
bosons with increasing J . We note that while the extent of
these phases is affected, the general features of the phase
diagram remain unaffected. We do not observe significant
differences, e.g., the appearance of new types of phases.
Tests for other values of �, not shown here, confirmed this
conclusion.

2. Condensate order parameter and local fluctuations

In Fig. 8 we present additional results showing local
condensate fraction φi,g = 〈âi〉 and local fluctuations of site
occupation δn2

i = 〈n̂2
i 〉 − 〈n̂i〉2, for different sites i. In the

phases SS7, SS9, and SS12 we observe that both the conden-
sate order parameter and local fluctuations are significantly
suppressed at the sites occupied by the excited-state bosons.
This is consistent with our interpretation that in these phases
we observe frozen bosons on selected sites with nonvan-
ishing excited-state fraction and condensed bosons in the
intermediate sites, which are responsible for the superflow.
A qualitatively different behavior is observed for the SS3,
SS4, and SS′

7 phases. There the condensate fraction and local
fluctuations are actually larger at the sites with a significant
excited-state bosons fraction. This property is reminiscent of
the bubble supersolids observed in Refs. [66,67], although
here we work in the significantly different regime of small
detuning. We note that the spatial modulation of the two
observables considered here is much smaller in the SS3 and
SS4 phase than in the SS′

7 phase.
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[47] A. Geißler, I. Vasić, and W. Hofstetter, Condensation versus
long-range interaction: Competing quantum phases in bosonic
optical lattice systems at near-resonant Rydberg dressing, Phys.
Rev. A 95, 063608 (2017).

[48] Y. Li, A. Geißler, W. Hofstetter, and W. Li, Supersolidity of
lattice bosons immersed in strongly correlated Rydberg dressed
atoms, Phys. Rev. A 97, 023619 (2018).

[49] A. Geißler, U. Bissbort, and W. Hofstetter, Quasiparticle spectra
of supersolid lattice gases at near-resonant Rydberg dressing,
Phys. Rev. A 98, 063635 (2018).

[50] H. Weimer, Variational Principle for Steady States of Dissi-
pative Quantum Many-Body Systems, Phys. Rev. Lett. 114,
040402 (2015).

[51] S. Ray, S. Sinha, and K. Sengupta, Phases, collective modes,
and nonequilibrium dynamics of dissipative Rydberg atoms,
Phys. Rev. A 93, 033627 (2016).

[52] M. Barbier, A. Geißler, and W. Hofstetter, Decay-dephasing-
induced steady states in bosonic Rydberg-excited quantum
gases in an optical lattice, Phys. Rev. A 99, 033602 (2019).

[53] C. Becker, P. Soltan-Panahi, J. Kronjäger, S. Dörscher, K.
Bongs, and K. Sengstock, Ultracold quantum gases in triangular
optical lattices, New J. Phys. 12, 065025 (2010).

[54] T. Manthey, T. Niederprüm, O. Thomas, and H. Ott, Dynam-
ically probing ultracold lattice gases via Rydberg molecules,
New J. Phys. 17, 103024 (2015).

[55] B. Misra and E. C. G. Sudarshan, The Zeno’s paradox in
quantum theory, J. Math. Phys. 18, 756 (1977).

[56] J. J. García-Ripoll, S. Dürr, N. Syassen, D. M. Bauer, M.
Lettner, G. Rempe, and J. I. Cirac, Dissipation-induced hard-
core boson gas in an optical lattice, New J. Phys. 11, 013053
(2009).
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