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Dynamics and density correlations in matter-wave jet emission of a driven condensate
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Emission of matter-wave jets has been recently observed in a Bose-Einstein condensate confined by a
cylindrical box potential, induced by a periodically modulated interparticle interaction [L. W. Clark et al., Nature
(London) 551, 356 (2017)]. In this paper we apply the time-dependent Bogoliubov theory to study the quantum
dynamics and the correlation effects observed in this highly nonequilibrium phenomenon. Without any fitting
parameter, our theoretical calculations on the number of ejected atoms and the angular density correlations are
in excellent quantitative agreement with the experimental measurements. The exponential growth in time of
the ejected atoms can be understood in terms of a dynamical instability associated with the modulation of the
interaction. We interpret the angular density correlation of the jets as the Hanbury Brown–Twiss effect between
the excited quasiparticles with different angular momenta, and our theory explains the puzzling observation of
the asymmetric density correlations between the jets with the same and opposite momenta. Our theory can also
identify the main factors that control the height and width of the peaks in the density correlation function, which
can be directly verified in future experiments.
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I. INTRODUCTION

The ability to manipulate the interparticle interaction is one
of the truly unique aspects of cold atomic systems [1]. In
particular, the flexibility to precisely control the interaction in
a spatially dependent [2–4] or temporally dependent manner
[5–9] leads to novel situations in a quantum many-body sys-
tem beyond the paradigms of the traditional condensed matter
physics. The recently observed matter-wave jet emissions
from the Chicago group [10,11] is such an example, where a
time-periodic modulation of the interaction strength is carried
out in a cold atomic system with an unconventional trapping
configuration.

In this experimental work [10], a Bose-Einstein condensate
(BEC) is confined within a shallow cylindrical box potential
and the interparticle interaction strength is modulated sinu-
soidally in time, with the modulation frequency much larger
than the height of the barrier. Modulation of the interaction
naturally leads to excitations from the BEC with energies on
the order of the modulation frequency, and as such the shallow
barrier cannot prevent the excitations from escaping the trap.
After some duration of modulation, bursts of narrow streams
of atoms with concentrated density are observed leaving the
barrier along the radial direction, as illustrated in Fig. 1(a).
Such a phenomenon is termed “matter wave jet emission” by
Ref. [10] and, as we shall demonstrate theoretically, provides
an ideal platform for the study of many-body correlation
effects in a highly nonequilibrium setting.

The most conspicuous feature of such jet emissions is the
fractured density pattern of the ejected atoms in the azimuthal
direction in any single measurement. The angular density of
the ejected atoms becomes uniform only after averaging over
sufficiently many measurements for a given time of flight.

The underlying azimuthal density pattern in a single image
is reflected by the angular density-density correlation, which
is found to exhibit peaks at zero and π angles even after the
average. This is reminiscent of the Hanbury Brown–Twiss
(HBT) effect [12–14]. However, Ref. [10] observed a puzzling
effect of the correlation, that is the two correlation peaks at
zero and π angle are highly asymmetric. Since the bosons
are initially condensed in the zero-momentum state, if one
naturally assumes that the modulation of the scattering length
excites pairs of atoms each carrying opposite momentum,
one expects the two correlation peaks to be symmetric [10].
This observed asymmetry has even drawn attention from
the high-energy physics community [15], where jet emission
phenomenon has been studied extensively in high-energy
collisions [16].

In this paper we apply the time-dependent Bogoliubov
theory to study the dynamical behavior and the density cor-
relations observed in the jet emissions of the BEC. Without
requiring any fitting parameter, we find excellent quantitative
agreement between our theory and the experimental observa-
tions. In fact, among the several recent studies [10,15,17,18]
that attempted theoretical analysis of the experimental results,
ours is the only work that achieves such a precise agreement.
A key point of our theory is that we obtain the excitations
in the angular momentum bases which respect the symmetry
of the geometry of the experimental setup. Thus our the-
ory can attribute the asymmetry of the density correlation
function to the destructive interferences between atoms with
different angular momenta, and we further predict that such
destructive interference processes diminish as the time of
flight ttof increases. Furthermore, based on the distribution
of excitations in different angular momenta, we are able to
reveal the dependence of the density correlations on the initial
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FIG. 1. Illustration of the experimental system in Ref. [10].
(a) Matter wave jets detected from a disk-shaped BEC with radius ρ0.
(b) Experimental procedure: the interaction is modulated periodically
for a time interval tmod and the excited atoms travel radially for
another time interval ttof before detection.

condensate size as well as on the driving frequency. All our
predictions can be readily verified in future experiments.

The rest of the paper is organized as follows. In Sec. II we
outline the basics of the time-dependent Bogoliubov theory
and discuss the applicability of this theory to the problems
of interest. In Sec. III, we apply this theory to study the
growth of the excitations in a uniform BEC driven by an
oscillating magnetic field. We show the existence of a dynam-
ical instability beyond which the number of the excitations
grows exponentially. Such an exponential growth underlies
the sudden ejections of atoms observed in the jet emission.
The phenomenon of the jet emission is fully explored in
Sec. IV. We calculate the distribution in angular momentum
of the excitations and the total number of excited atoms, as
well as the angular density-density correlations. The angular
density correlation is in particular analyzed systematically. All
our findings are summarized in Sec. V.

II. TIME-DEPENDENT BOGOLIUBOV THEORY

We consider a trapped and weakly interacting BEC at zero
temperature driven from equilibrium by a time-dependent in-
teraction g(t ). The system is described by the time-dependent
Hamiltonian (h̄ = 1 throughout this paper)

Ĥ (t )=
∫

dr ψ̂†(r)ĥψ̂ (r) + g(t )

2

∫
dr ψ̂†(r)ψ̂†(r)ψ̂ (r)ψ̂ (r),

(1)

where ĥ(r) = −∇2

2m + Vtr (r) is the single particle Hamiltonian
with m being the atom mass and Vtr (r) the trapping potential.

Before we consider the time-dependent situation, let’s
remind ourselves of the time-independent Bogoliubov the-
ory, which describes the collective excitations of the initial
condensate at time t = 0. The initial equilibrium condensate
wave function �0(r) is determined by the time-independent
Gross-Pitaevskii (GP) equation [19]

[
−∇2

2m
+ Vtr(r) + g(0)|�0(r)|2

]
�0(r) = μ�0(r), (2)

where μ is the initial chemical potential and �0(r) normal-
izes to the total number of atoms N . In order to describe
the collective excitations, we need to obtain the Bogoliubov

amplitudes ui,0(r) and vi,0(r), which are determined by the
Bogoliubov–de Gennes equations [19]

L0ui,0(r) − g(0)�0(r)2vi,0(r) = εiui,0(r), (3)

L0vi,0(r) − g(0)�∗
0(r)2ui,0(r) = −εivi,0(r), (4)

where εi is the quasiparticle energy and

L0 = ĥ(r) + 2g(0)|�0(r)|2 − μ. (5)

The so-called fluctuation operator δψ̂ (r) ≡ ψ̂ (r) − �0(r) can
be expressed in terms of the quasiparticle operators β̂ j and β̂

†
j

δψ̂ (r) =
∑

j

[u j,0(r)β̂ j − v∗
j,0(r)β̂†

j ], (6)

where β̂ j and β̂
†
j obey the usual Bose commutation rules.

Conversely we have

β̂ j =
∫

dr[u j,0(r)δψ (r) + v j,0(r)δψ†(r)]. (7)

The dynamics of the system for t > 0 can be inves-
tigated by means of the time-dependent Bogoliubov the-
ory. In this framework, we consider the time evolution of
the grand-canonical Heisenberg field operator ψ̂K (r, t ) ≡
Û†(t )ψ̂ (r)Û (t )eiμt , where Û (t ) is the Schrödinger evolution
operator. We can write

ψ̂K (r, t ) = �0(r)eiμt + δψ̂K (r, t ), (8)

where δψ̂K (r, t ) is the fluctuation operator in the grand-
canonical Heisenberg picture. The latter satisfies the following
equation of motion:

i
∂

∂t
δψ̂K = L(r, t )δψ̂K + g(t )�2

0(r)δψ̂†
K , (9)

where

L(r, t ) ≡ ĥ(r) + 2g(t )|�0(r)|2 − μ. (10)

The above equation can be solved by the Bogoliubov transfor-
mation

δψ̂K (r, t ) =
∑

j

[u j,0(r)β̂ j,K (t ) − v∗
j,0(r)β̂†

j,K (t )]

≡
∑

j

[u j (r, t )β̂ j − v∗
j (r, t )β̂†

j ], (11)

where β̂
†
j,K , β̂ j,K are the quasiparticle operators in the grand-

canonical Heisenberg picture. Substituting the transformation
into Eq. (9), one finds that the time-dependent Bogliubov
amplitudes u j (r, t ), v j (r, t ) are determined by the coupled
Bogliubov–de Gennes (BdG) equations

i∂t u j (r, t ) = L(r, t )uj (r, t ) − g(t )�0(r)2v j (r, t ), (12)

i∂tv j (r, t ) = −L(r, t )v j (r, t ) + g(t )�∗
0(r)2u j (r, t ), (13)

where the Bogoliubov amplitudes satisfy the following or-
thonormal relations:∫

dr[ui(r, t )u∗
j (r, t ) − vi(r, t )v∗

j (r, t )] = δi j . (14)

063624-2



DYNAMICS AND DENSITY CORRELATIONS IN … PHYSICAL REVIEW A 99, 063624 (2019)

It is clear that the initial conditions for the time-dependent
Bogoliubov amplitudes are determined by Eqs. (3) and (4).

In principle, the above BdG equations are a valid descrip-
tion of the dynamics only when the condensate depletion due
to the perturbation is sufficiently small. For large depletions,
a set of modified BdG equations together with a generalized
time-dependent GP equation are generally needed [20–24].
Such modifications are particularly necessary for inhomo-
geneous systems such as harmonically confined condensates
[22,23]. For the systems that we shall consider, however, a
simpler approach can be adopted. The first important sim-
plifying factor is that the system of our interest is almost
uniform due to the unconventional trapping geometry of the
experiment (see also discussion in Sec. IV). In addition, the
type of time-dependent perturbation, namely the modulation
of the interaction strength, does not break the translational
invariance. This is to be contrasted with the more familiar
dynamical situation where the perturbation couples to the lo-
cal density. Finally, we only consider modulation frequencies
much higher than the confining potential barrier, such that the
excited atoms will immediately depart from the system and
no longer interact with the condensate. These considerations
suggest that there exists a time-independent condensate mode
from which the atoms are continuously depleted during the
dynamic process. In other words, we assume that the time-
dependent condensate wave function can be approximated by

�0(r, t ) =
√

N0(t )/N�0(r), (15)

where N0(t ) is the number of the condensed atoms at time
t . This time-dependent condensate wave function �0(r, t )
is then used in the BdG equations (12) and (13) for the
calculations of the Bogoliubov amplitudes. The number of
condensed atoms N0(t ) can be determined self-consistently
using the the conservation of the total number of atoms

N = N0(t ) +
∫

dr〈δψ̂†
K (r, t )δψ̂K (r, t )〉, (16)

where 〈· · · 〉 denotes expectation value with respect to the
initial ground state.

Once the condensate wave function and the Bogoliubov
amplitudes are determined, all relevant physical quantities can
be readily calculated. For example, the number of quasiparti-
cles excited in the jth state at time t is given by

Nj (t ) = 〈β̂†
j,K (t )β̂ j,K (t )〉. (17)

Now using

β̂ j,K (t ) =
∫

dr[u∗
j,0(r)δψ̂K (r, t ) + v∗

j,0(r)δψ̂†
K (r, t )] (18)

and Eq. (11) in Eq. (17), we find

Nj (t ) =
∑

i

∣∣∣∣
∫

dr[v j,0(r)ui(r, t ) − u j,0(r)vi(r, t )]

∣∣∣∣
2

. (19)

We see from the above expression that Nj (t = 0) = 0 as it
should be. The total number of excited quasiparticles at t is
thus

Nex(t ) =
∑

j

Nj (t ). (20)

We wish to point out here that the total number of excited
quasiparticles is generally different from that of atoms not in
the condensate. The latter is given by

Nnc(t ) ≡
∫

dr〈δψ̂†
K (r, t )δψ̂K (r, t )〉

=
∑

j

∫
dr|v j (r, t )|2. (21)

However, as one can easily check, these two quantities, Nex(t )
and Nnc(t ), are identical if the initial condensate is nonin-
teracting, namely if uj,0(r) = ϕ j (r) and v j,0(r) = 0, where
ϕ j (r) is the eigenstate of ĥ(r). In fact, they are almost the
same for the weakly interacting condensates that we shall
consider and for this reason we will not distinguish them in
later discussions.

Similarly one finds that the density and the current density
are respectively given by

n(r) = 〈ψ̂†
K (r, t )ψ̂K (r, t )〉

= n0(r, t ) +
∑

j

|v j (r, t )|2 (22)

and

j(r, t ) = 1

2mi
[〈ψ̂†

K (r, t )∇ψ̂K (r, t )〉 − c.c.]

= 1

2mi

∑
j

[v j (r, t )∇v∗
j (r, t ) − c.c.]. (23)

Finally, we consider the equal-time density-density correla-
tion function [25]

g(2)(r, r′; t ) ≡ 〈δn̂K (r, t )δn̂K (r′, t )〉
〈∫ dr δn̂K (r, t )〉2

, (24)

where

δn̂K (r, t ) ≡ ψ̂
†
K (r, t )ψ̂K (r, t ) − n0(r, t ). (25)

Denoting ψ j−(r, t ) ≡ �0(r, t )[u j (r, t ) − v j (r, t )], the corre-
lation function can be written as

g(2)(r, r′; t ) = 1

N2
nc(t )

∑
j

ψ j−(r, t )ψ∗
j−(r′, t )

+ 1

N2
nc(t )

∑
j j′

{|v j (r, t )|2|v j′ (r′, t )|2

+ [v j (r, t )u j′ (r, t ) + v j′ (r, t )u j (r, t )]

× u∗
j (r

′, t )v∗
j′ (r

′, t )}. (26)

III. A PERIODICALLY DRIVEN UNIFORM CONDENSATE

To gain some insight into how a condensate responds
to an oscillating interaction strength, we turn first to the
simplest case where the condensate is uniform. The advan-
tage of considering such a case is that its driven dynamics
admits some analytical treatment. For a uniform condensate,
momentum k is a good quantum number and the Bogoli-
ubov amplitudes can be written as uk(r, t ) = uk(t )eik·r and
vk(r, t ) = vk(t )eik·r. Furthermore, a time-dependent interac-
tion strength does not break the translational invariance and
thus the condensate wave function remains spatially uniform,
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i.e., �0(t ) = √
n0(t ), where n0 is the condensate density. With

these considerations, Eqs. (12) and (13) become

i∂t uk(t ) = L(k, t )uk(t ) − g(t )n0vk(t ), (27)

i∂tvk(t ) = −L(k, t )vk(t ) + g(t )n0uk(t ), (28)

where L(k, t ) = εk + 2g(t )n0 − μ with εk = k2/2m and μ =
g(0)n0. Here g(t ) = 4π [abg + aam sin(�t )]/m, where abg is
the background scattering length and aam is the amplitude of
the modulation. Defining wk(t ) = vk(t )/uk(t ), Eqs. (27) and
(28) can be recast into a single equation:

i
∂

∂t
wk = −2L(k, t )wk + g(t )n0

(
1 + w2

k

)
. (29)

This type of equation, known as Riccati equation, can be
easily solved numerically. For some analytical understanding,
we consider an initially noninteracting BEC with abg = 0 and
analyze the growth of the excitations due to the modulation of
the interaction. Based on the solutions to Eq. (29) we identify
the following three stages for the dynamics of the driven BEC.

(i) Initial slow growth. Since initially the number of excita-
tions is very small, we can first neglect the w2

k term in Eq. (29).
The resulting linear equation can be solved as

wk(t ) = −i
4πaamn0

m
f (t )

∫ t

0
dt ′ f ∗(t ′) sin �t ′, (30)

where f (t ) = e2iεkt−4iη cos �t with η ≡ 4πaamn0/(m�). For
the moment we have neglected the time dependence of
the condensate density. Using the Jacobi-Anger expansion
eix cos θ = ∑∞

n=−∞ inJn(x)einθ in the above equation, where
Jn(x) is the Bessel function of the first kind, we find that at
the resonance energy εk = �/2, wk(t ) contains a term that
grows linearly in t , namely

wk(t ) ∼ −2πaamn0

m
e2iεkt−4iη cos �t [J0(4η) + J2(4η)]t . (31)

This is distinctively different from the case of nonresonance
energies where no such growth terms exist and wk(t ) remains
oscillatory. Thus at resonance we find at short times

Nk(t ) = |vk(t )|2 = |wk(t )|2
1 − |wk(t )|2 ∼ t2. (32)

(ii) Intermediate exponential growth. At resonance energy,
|wk(t )| quickly saturates to |wk| ≈ 1 at the intermediate time
scale, and the w2

k term can no longer be ignored. In this case
we can write wk(t ) = |wk(t )|eiϕk (t ) ≈ eiϕk (t ) with ϕk(t ) given
by

∂

∂t
ϕk = � + 16π

aamn0

m
sin(�t ) − gamn0 sin(�t ) cos ϕk.

(33)

This equation suggests that wk(t ) is a periodic function
with period T = 2π/� and, without loss of generality,
we can expand the imaginary part of wk(t ) as Imwk =
−∑

n [cn sin(n�t ) + dn cos(n�t )]. Furthermore, using εk =
�/2 and |wk(t )| ≈ 1, we can derive from Eq. (29) the differ-
ential equation satisfied by Nk(t ) = |vk|2:

∂

∂t
Nk(t ) ≈ −8π

aamn0

m
Imwk sin(�t )Nk(t ). (34)

Substituting the Fourier series expansion of Imwk in the above
equation, we can see that Nk(t ) grows exponentially as

Nk(t ) ∼ e4πc1aamn0t/m, (35)

where the coefficient c1 is positive and generally a function of
η.

(iii) Long time saturation. Since the exponential growth rate
of the excitations is proportional to the condensate density n0,
the growth rate gradually becomes smaller when the conden-
sate is continuously depleted and eventually the number of
excitations exhibits a saturation.

We see from the above analysis that for an initially non-
interacting BEC, i.e., abg = 0, the number of excitations
experiences an exponential growth for arbitrary modulation
amplitude aam. We now show that the exponential growth can
be attributed to a certain dynamical instability associated with
the interaction modulation. We note that analogous instabili-
ties exhibit in BECs for which other parts of the Hamiltonian
are modulated periodically [26–32]. Letting uk(t ) = u′

ke−i�t/2

and vk(t ) = v′
kei�t/2, and adopting the rotating wave approxi-

mation (i.e., terms oscillating at multiples of � are neglected
in the equations for u′

k and v′
k), Eqs. (27) and (28) can be

rewritten in the following matrix form:

i
∂

∂t
� = M�, (36)

where � ≡ (u′
k v′

k )T ,

M =
(

εk − �/2 + 4πabgn0/m −2π iaamn0/m
−2π iaamn0/m −εk + �/2 − 4πabgn0/m

)

(37)

and we made use of the fact that μ = 4πabgn0/m. Here for
simplicity we assume that n0 is constant. The time-dependent
behavior of u′

k and v′
k is determined by the eigenvalues of the

matrix M

Ek = ±
√

(εk − �/2 + 4πabgn0/m)2 − 4π2(aamn0/m)2.

(38)

We see that Ek becomes imaginary once the condition

|εk − �/2 + 4πabgn0/m| < 2πaamn0/m (39)

is fulfilled, signaling that the system develops a dynamical in-
stability. It is clear from Eq. (36) that this instability is directly
responsible for the exponential growth of the excitations.

IV. JET EMISSION

We now apply the theory outlined in Sec. II to study
the experiment in Ref. [10]. There the BEC is trapped by a
potential which can be modeled by

Vtr (r) = Vtr (ρ, θ, z) = Vh�(ρ − ρ0) + mω2
z z2/2, (40)

where �(x) is the Heaviside step function, ρ0 and Vh are
respectively the radius and the height of the cylindrical barrier,
and ωz is the trapping frequency in the vertical direction.
At time t > 0, the atomic scattering length is subjected to
a sinusoidal oscillation with the frequency � � Vh for a
duration of tmod and is then held at the background value for
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another duration ttof for the time of flight, that is (see Fig. 1)

g(t ) = 4π [abg + aam sin(�t )�(tmod − t )]/m. (41)

We point out that the main difference between the system
considered in this section and that in Sec. III is that the current
system has an open boundary which allows excited atoms to
leave the trap. Before solving the BdG equations, we make
two observations which will simplify our calculations.

(i) Since the background interaction between the atoms is
extremely weak with abg = 5a0 (a0 being the Bohr radius)
and the vertical trapping is relatively strong with ωz = 2π ×
210 Hz, we find that the number of excitations to higher
harmonic-oscillator states of the vertical trap is negligible dur-
ing the dynamic process. Thus, in the following calculations,
we shall consider that all atoms stay in the lowest single-
particle eigenstate ϕ0(z) of the vertical harmonic trap. This is
also consistent with the experimental fact that the measured
root-mean-square radius of the condensate is in excellent
agreement with the harmonic oscillator length along the ver-
tical direction. Such a consideration essentially reduces the
system to a two-dimensional one. Furthermore, due to the box
trapping potential in the 2D plane, the condensate density
is always uniform within the cylindrical barrier and quickly
vanishes beyond the radius of the barrier. Thus the time-
dependent condensate wave function can be well approxi-
mated by �0(r, t ) ≈ √

n0(t )ϕ0(z)�(ρ0 − ρ), which renders
solving the GP equation unnecessary. Here n0(t ) is the density
of the condensed atoms per unit area.

(ii) The cylindrical-shaped trap makes it most appropriate
to choose the angular momentum eigenstates as the basis to
solve the BdG equations. More specifically we consider as
the basis the eigenstates χlk (r) = ϕ0(z)eilθφlk (ρ)/

√
2π of the

single particle Hamiltonian ĥ(r) with eigenenergy εlk , where
l is the angular momentum quantum number, k labels the
radial modes of ĥ(r), and φlk (ρ) is the radial wave function.
Due to the angular momentum conservation, we can label the
Bogoliubov amplitudes by the index j ≡ (l, q), where q labels
the radial modes of the initial equilibrium BdG equations.
Thus we can write

ulq(r, t ) =
∑

k

χlk (r)U (l )
kq (t ), vlq(r, t ) =

∑
k

χlk (r)V (l )
kq (t ).

Using the above expansion, the BdG equations in Eqs. (12)
and (13) are then converted into two first order differential
equations for the matrices U (l ) and V (l ), which can be solved
under the constraint in Eq. (16).

In the following calculations, all the parameters, including
the initial atom number, interaction strengths, trap parameters,
and the time durations, are chosen to be exactly the same as
those used in the experiment.

A. Angular mode distribution

First, we consider the mode distribution for the excited
atoms. The total number of atoms excited after a modulation
time tmod is

Nex =
∫

dr〈δψ̂†
K (r, tmod)δψ̂K (r, tmod)〉 =

∑
l

Nl , (42)

FIG. 2. (a) Fraction of atoms N̄l with angular momentum l h̄ for
three different driving frequencies at tmod = 4.4 ms. (b) The angular
momentum fluctuation per atom δlz as a function of the driving
frequency at tmod = 4.4 ms. The inset shows δlz as a function of
tmod for � = 2π × 1.9 kHz. The dashed line is a fit by the function
αρ0

√
�. Unless specified otherwise, the following parameters are

the same for all the calculations: the atom number N = 30 000,
the condensate radius ρ0 = 8.5 µm, and the modulation amplitude
aam = 60a0.

where

Nl =
∑

q

∫
dr|vlq(r, tmod)|2 (43)

is the number of atoms excited to states with angular momen-
tum l . For a sufficiently long modulation time, modes with
a range of angular momenta can be significantly occupied.
This is shown in Fig. 2(a), where the fraction of excited atoms
with angular momentum l, N̄l ≡ Nl/Nex, is plotted for several
modulation frequencies with an experimental tmod = 4.4 ms.
For all the occupied radial modes with the same angular
momentum, a sharp resonance is found at the energy ∼�/2.
Physically, the resonance at �/2 results from the fact that
pairs of atoms with opposite angular momentum are excited
due to the angular momentum conservation, splitting the total
energy quanta � absorbed by the condensate.

Now, the energy of an outgoing excited atom can be
divided into a rotational part and a radial kinetic part, which
together yield �/2 at resonance. The radial kinetic energy
decreases as the angular momentum increases, and the occu-
pation of an angular momentum state vanishes when the rota-
tional energy saturates �/2. In other words, the rotational en-
ergy of an atom with angular momentum l is ∼l2/mρ2

0 ��/2.
Thus the occupation in angular momentum states has a cutoff
lc which determines the width of the distribution and is
proportional to ρ0

√
�. A more precise characterization of

the width of the angular momentum distribution is the angu-
lar momentum fluctuation per particle δlz = √∑

l l2Nl/Nex,
which is shown in Fig. 2(b) for various driving frequencies
employed in the experiments. We expect that δlz is propor-
tional to the cutoff lc and, as shown in Fig. 2(b), it is indeed
well described by the function αρ0

√
�, where α is a constant.

Furthermore, we find that after some initial transient period
δlz depends neither on the modulation time nor on the time
of flight. As we can see from the inset of Fig. 2(b), δlz shows
little change for tmod ranging from 2 ms to 10 ms. During the
time of flight, δlz remains unchanged because no more atoms
are excited. As we shall see later, this fact determines the
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FIG. 3. Radial density profile of the ejected atoms for tmod =
4.4 ms at the detection time t1 = 18.4 ms (red solid) and t2 =
34.2 (black dashed). For all calculations, the total atom number
is N = 30 000 and the condensate radius is ρ0 = 8.5 µm. Here the
modulation amplitude and frequency are aam = 60a0 and � = 2π ×
1900 Hz, respectively.

robustness of zero correlation peak in the dynamical process
of jet emission.

B. Ejected atoms

We next calculate the number of ejected atoms and com-
pare with the experimental measurements. Since the radial
kinetic energy of the excited atoms are mostly on the order of
�/2, which is much larger than the height of the cylindrical
barrier, the excited atoms will escape the barrier after some
duration of time of flight ttof . At t = tmod + ttof , the radial
profile of the atomic jets is given by

nej(ρ, t ) =
∑

l

|ṽlq(ρ, t )|2 (44)

and shown in Fig. 2(b) for ttof = 14 ms after a modulation time
tmod = 4.4 ms. As expected (see Fig. 3), the radial distance
traveled by the ejected atoms is bounded by ρd = vres t , where
vres = √

�/m is the resonance velocity for the excited atoms.
Although there was no experimental measurement of the

radial widths of the jets, our calculations are consistent with
the experimental images of the jet profile. Finally, the total
number of ejected atoms at t can be calculated by

Nej(t ) = 2π

∫
dρ ρ nej(ρ, t ). (45)

For a sufficiently long ttof , all the excited atoms will leave
the barrier after the modulation stops at tmod. Thus the number
of ejected atoms Nej(t ) detected at time t = tmod + ttof simply
equals the number of excited atoms Nex(t ) at t = tmod. In
Fig. 4, we show Nex(tmod) calculated from Eq. (42) both as
a function of aam for a fixed tmod and as a function of tmod

for a fixed aam. We have verified that Eq. (45) indeed yields
the same results. Without any fitting parameter, the overall
agreements between our calculations and the experimental
measurements are again excellent.

C. Angular density correlation

We now consider the angular density correlation function
defined in terms of the density correlation function as

C(φ, t ) = 2π

∫
dθ

∫
dρ dz dρ ′dz′g(2)(r, r′; t ), (46)

where in cylindrical coordinates r = (ρ, θ, z) and r =
(ρ ′, θ + φ, z′). Or more explicitly, the angular correlation
function can be written as

C(φ, t ) = 2π
∫

dθ〈δn̂K (θ, t )δn̂K (θ + φ, t )〉
〈∫ dθ δn̂K (θ, t )〉2

, (47)

where δn̂K (θ, t ) ≡ ∫
dz

∫
dρ ρ δn̂K (r, t ). Using the Bo-

goliubov transformation and expressing the Bogoliubov
amplitudes as ulq(r) = ϕ0(z)eilθ ũlq(ρ)/

√
2π and vlq(r) =

ϕ0(z)eilθ ṽlq(ρ)/
√

2π , we obtain

C(φ, t ) = 1 +
∑

ll ′
Cll ′ (t )ei(l+l ′ )φ, (48)
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FIG. 4. (a) Number of excited atoms as a function of aam for � = 2π × 4500 Hz and tmod = 25 ms. (b) The number of excited atoms
(logarithmic scale) as a function of tmod for aam = 60a0 and � = 2π × 1900 Hz. The filled symbols are the experimental measurements.
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FIG. 5. C(φ, t ) calculated with tmod = 4.4 ms (red) and 5.6 ms
(blue) for � = 2π × 1.9 kHz and t = 36 ms. The experimental
measurements are all taken at t = tmod + ttof = 36 ms [33] and are
shown in symbols in corresponding colors. The insets are expanded
views of the correlation peaks.

where

Cll ′ (t ) = N−2
ex

∑
qq′

[Glq,l ′q′ + Gl ′q′,lq]G∗
lq,l ′q′ , (49)

with Glq,l ′q′ (t ) = ∫
dρ ρ ũlq(ρ, t )ṽl ′q′ (ρ, t ). If we consider sit-

uations where the excited atoms have traveled away from
the condensate, the expression in Eq. (48) suggests that the
experiments are essentially measuring a HBT type correlation
between atoms in different angular momentum states. In
Fig. 5, we compare the correlation function calculated from
Eq. (48) for two different modulation times to those measured
in experiment. The agreement between our theory and the
experiment is remarkable, considering that the jet emission
is a highly nonequilibrium process. A noteworthy property
of the correlation function is the asymmetrical distribution
between peaks at φ = 0 and at φ = π , which is accurately
captured by our theory. This asymmetry can in fact be clearly
seen from Eq. (48), where all the terms inside the summation
contribute constructively for φ = 0, while the terms with odd
l + l ′ contribute destructively to the correlation peak at π

leading to a reduction of its height. This is in contrast to the
theory in Ref. [10], which uses the plane wave bases and
assumes the conservation of momentum in pair production.
Consequently, it always leads to a symmetric distribution
between zero and π . In fact, due to the finite size and the disk

geometry of the condensate, the momentum conservation is
not a good assumption as far as the correlation is concerned.

In addition to making comparisons to the experiments, our
theory can also reveal systematically how the density corre-
lation depends on the time of flight ttof, the initial condensate
radius ρ0, and the driven frequency �. For ttof, as shown in
Fig. 6(a), the density correlation function is calculated for
three increasingly longer ttof with the modulation time fixed
at tmod = 4.4 ms. We see that, while the zero peak remains
almost identical during the time of flight, the π peak begins
with a plateau structure at small ttof , becomes progressively
sharper as ttof increases, and eventually becomes similar to
the zero peak.

The robustness of the zero peak during the time of flight
can be understood from the Heisenberg uncertainty principle
δφ δlz ∼ h̄. As demonstrated earlier, the angular momentum
fluctuation per atom δlz ∼ αρ0

√
� depends weakly on tmod or

ttof , which explains a time-insensitive correlation peak at zero
angle. This also leads to the conclusion that the zero peak
width is proportional to 1/ρ0 and 1/

√
�. This is confirmed

by numerical calculation presented in Figs. 6(b) and 6(c).
In Fig. 6(b), we increase the radius of the condensate ρ0

while keeping all other parameters fixed and we find that the
width of the zero peak indeed decreases as 1/ρ0. Similarly
in Fig. 6(c), we vary the driving frequency � alone and find
that the width of the zero peak decreases as 1/

√
�. All these

results are consistent with the uncertainty principle.
We turn next to the time evolution of the π peak shown

in Fig. 6(a). As shown in the inset of Fig. 6(a), we find that
the destructive contribution Sodd = ∑

l+l ′=odd Cll ′ (t ) gradually
decreases toward zero as ttof increases and the asymmetry
eventually disappears. Meanwhile, Seven = ∑

l+l ′=even Cll ′ (t )
grows such that the peak at φ = 0 stays almost unchanged.
For measurements performed at a sufficiently long ttof , the
asymmetry disappears because the ejected atoms are in the
far field where the condensate can be essentially viewed
as a point source. Thus all the atoms emanating from this
point source would have perfect symmetry with respect to
the origin of the ejection. In other words, the relative size
of the condensate from the perspective of the ejected atoms
at the time of detection plays a crucial role in the asymmetry
of the correlation function. This is also confirmed by results
shown in Figs. 6(b) and 6(c). We see in Fig. 6(b) that, for
the same ttof and driving frequency �, the two peaks become

FIG. 6. (a) C(φ) calculated for different ttof with the same tmod = 4.4 ms. The inset shows the behavior of Seven and Sodd during time of
flight (see text). (b) C(φ) calculated for condensates of different radius [same density as that in (a)] with tmod = 4.4 ms and ttof = 31.6 ms. The
inset shows that the half width at half maximum (HWHM) of the zero peak as a function of ρ0 behaves as ∼1/ρ0 (green line). The driving
frequency for both (a) and (b) is � = 2π × 1.9 kHz. (c) C(φ) calculated for different driving frequencies. The inset shows that the HWHM of
the zero peak as a function of � behaves as ∼1/

√
� (green line).
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increasingly more symmetrical when the condensate radius
decreases. In Fig. 6(c), we see that the π peak also becomes
sharper as the driving frequency increases, even though the ttof

is held the same. This is because a higher driving frequency
translates into a larger escape velocity for the ejected atoms
and thus a larger distance from the condensate for the same
ttof . The situation then is similar to that in Fig. 6(a), where the
asymmetry in the correlation diminishes as the ejected atoms
move further away from the condensate.

V. CONCLUSION

In this paper we have studied the quantum dynamics
of a BEC for which the interaction strength is modulated
periodically in time. We show that such a modulation can
result in a dynamical instability, manifesting itself in the
exponential growth of the number of excitations. For a BEC
trapped by a cylindrical barrier, such a modulation leads to the
phenomenon of jet emission, as first explored experimentally
in Ref. [10]. In addition to the exponential growth of the
ejected atoms observed, intriguing angular density correlation
patterns have been found in the experiment. We interpret this
angular density correlation observed in the jet emission as the

HBT effect of quasiparticles in different angular momenta,
excited by a periodical modulation of the interaction of a
cylindrically trapped Bose condensate. The average density
distribution is uniform along the azimuthal direction since
there is no coherence between quasiparticles with different
angular momenta. The density-density correlation, however,
can exhibit interferences manifested as the HBT effect, and
the asymmetry between zero and π peaks are due to the differ-
ence between the constructive and destructive interferences.
Because of the perfect agreement between theory and experi-
ment without any fitting parameter, our theoretical framework
can be applied to study future experiments in this and similar
settings.
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