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Low-energy effective theory of nonthermal fixed points in a multicomponent Bose gas
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Nonthermal fixed points in the evolution of a quantum many-body system quenched far out of equilibrium
manifest themselves in a scaling evolution of correlations in space and time. We develop a low-energy
effective theory of nonthermal fixed points in a bosonic quantum many-body system by integrating out
long-wavelength density fluctuations. The system consists of N distinguishable spatially uniform Bose gases
with U(N )-symmetric interactions. The effective theory describes interacting Goldstone modes of the total and
relative-phase excitations. It is similar in character to the nonlinear Luttinger-liquid description of low-energy
phonons in a single dilute Bose gas, with the markable difference of a universal nonlocal coupling function
depending, in the large-N limit, only on momentum, single-particle mass, and density of the gas. Our theory
provides a perturbative description of the nonthermal fixed point, technically easy to apply to experimentally
relevant cases with a small number of fields N . Numerical results for N = 3 allow us to characterize the
analytical form of the scaling function and confirm the analytically predicted scaling exponents. The predicted
and observed exponentially suppressed coherence at short distances takes the form of that of a quasicondensate
in low-dimensional equilibrium systems. The fixed point which is dominated by the relative phases is found to
be Gaussian, while a non-Gaussian fixed point is anticipated to require scaling evolution with a distinctly lower
power of time.
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I. INTRODUCTION

Relaxation of quantum many-body systems after a quench
far out of equilibrium has been studied intensely during recent
years. Little is known about the general structure of possible
evolutions. Various scenarios have been proposed and ob-
served, including prethermalization [1,2], generalized Gibbs
ensembles [3–5], many-body localization [6], critical and
prethermal dynamics [7–10], decoherence and revivals [11],
turbulence [12], and the approach to a nonthermal fixed point
[13,14]. The rich spectrum of different possible phenomena
highlights the capabilities of quantum dynamics as compared
to what is possible in classical statistical ensembles.

An important difference concerns the phase angle of the
quantum mechanical wave function and the associated su-
perposition principle. In the case of a quantum many-body
system, the phase angle gives rise to interference effects
and decoherence and encodes the collective dynamics of the
fundamental field degrees of freedom. For example, long-
range coherence and thus stiffness of the phase form the
basis of sound excitations on the top of a Bose-Einstein
condensate of (weakly) interacting particles. This is related
to local (quasi)particle-number conservation reflecting a U(1)
symmetry of the underlying model description.

Here, we focus on universal scaling dynamics in the
relaxation of a dilute Bose gas quenched far out of
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equilibrium. Universal dynamics depends on a few basic
symmetry properties only and thus can be classified inde-
pendently of the details of microscopic properties and initial
conditions. Scaling dynamics has been discussed for classical
systems almost as long as spatial scaling alone. From dynam-
ical critical phenomena [15,16], the discussion extended to
coarsening and phase-ordering kinetics [17], glassy dynamics
and aging [18], (wave) turbulence [19–21], and its variants in
the quantum realm of superfluids [22–34]. Different types of
prethermal and universal dynamics after quenches of quantum
many-body systems far out of equilibrium have been studied
recently [2,35–55], many of them in the context of ultracold
Bose gases. Nonthermal fixed points have been proposed,
without [56–63] and with [64–72] reference to order parame-
ters, topological defects, and ordering kinetics, paving the way
to a unifying description of universal dynamics.

A major part of the analytical work on nonthermal fixed
points is based on scalar model systems with quartic inter-
actions between N-component Bose fields, O(N ) symmetric
under orthogonal transformations in the space of field com-
ponents. A nonperturbative large-N approximation [73,74]
allows for a description of scaling at nonthermal fixed points
[56–61,63].

Here, we develop a low-energy effective field theory (EFT)
of such systems. We describe the linear phase-angle excita-
tions around ground states with broken U(N ) symmetry. Their
nonlinear bare interactions are, in general, nonlocal and, at
the fixed point, characterized by the momentum-dependent
coupling which scales analogously to the resummed couplings
in the nonperturbative theory. We use this to outline a comple-
mentary approach to nonthermal fixed points which is based
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on a leading-order coupling expansion, practically applicable
for small N � 1, and discuss consequences for N = 1.

We furthermore study numerically universal scaling dy-
namics in an N = 3 component (d = 3)-dimensional dilute
Bose gas to test our analytical predictions. Our simulations
corroborate the predicted scaling exponents and at the same
time point to modifications of the pure scaling behavior at
relatively early evolution times. While the nonthermal fixed
point is conjectured to be approached asymptotically in time,
prescaling of the short-distance correlations which are more
easily accessible in experiment can be seen at much earlier
evolution times [75].

Our paper is organized as follows: In the remainder of this
section, we introduce the model system under consideration.
In Sec. II, we develop the nonlinear low-energy effective
theory and discuss the limit of infinitely many number of com-
ponents N → ∞. In this limit, in Sec. III, we make predictions
for the scaling at a nonthermal fixed point using the kinetic
equation derived in the same section. Finally, in Sec. IV, we
show the numerical results for N = 3 component Bose gas in
d = 3 dimensions, partially reproducing data from [75], and
discuss the central properties of the fixed point. We summarize
and draw our conclusions in Sec. V. The Appendices contain
further details.

A. Model

We consider a system of N spatially uniform Bose gases
of identical particles. The different gases are distinguished by,
e.g., the hyperfine magnetic level the gas atoms are in. They
are described by a U(N )-symmetric Gross-Pitaevskii (GP)
model with quartic contact interaction in the total density,

HU(N ) =
∫

dd x

[
−�†

a

∇2

2m
�a + g

2
(�†

a�a)2

]
. (1)

Here and in the following, we use units implying h̄ = 1,
space-time field arguments are suppressed, and m is the parti-
cle mass. Summation over the a = 1, . . . , N Bose fields which
are obeying standard commutators [�a(x, t ),�†

b(y, t )] =
δabδ(x − y) is implied. The identical interspecies and in-
traspecies contact interactions are parametrized by the cou-
pling g. As a result, the model exhibits a full U(N ) symmetry
under unitary transformations U ∈ U(N ) of the fields �a →
Uab�b. The generalization to inhomogeneous systems in a
trap is possible but disregarded here.

B. Universal scaling dynamics at a nonthermal fixed point

The nearly condensed gas is assumed to exhibit long-range
order in the total phase, while domain walls and topological
defects of any kind are assumed to be subdominant during
the time evolution. Relative phases, though, can be strongly
excited, representing particlelike and holelike Goldstone
excitations with single-particle dispersion as further discussed
below.

This can be achieved in a system with sufficiently large N
by, e.g., a strong cooling quench or an instability: An extreme
version of a cooling quench would be to first tune adiabatically
to a chemical potential 0 < −μ � kBTc, with the condensa-
tion temperature Tc, and then remove all particles with ener-
gies higher than a certain energy scale ω(kq) ∼ |μ| [63]. Such

an extreme initial condition, in experiment, can alternatively
be prepared by means of an instability [13,56]. In both cases,
the crucial condition is to build up strong overoccupation
such that the majority of particles and energy is around the
small but nonzero momentum scale kq, ideally close to the
healing-length scale set by the chemical potential μ [63]. This
induces a far-from-equilibrium evolution starting from modes
with the comparatively high excitation energy ω(kq).

During this evolution, the majority of particles is trans-
ported to lower momenta while the major part of the energy is
deposited by a few particles being scattered to even higher-
momentum modes, where they eventually form a thermal
tail. The highly occupied modes which take up most of the
particles have excitations energies ω(k) below the scale set
by μ. This allows us to use a low-energy effective theory
description.

From this type of initial conditions, the system can ap-
proach a nonthermal fixed point and show universal scaling
evolution [60,61,63]. This universal scaling in space and time
at the fixed point is expected, e.g., in the occupation numbers
na(k, t ) = 〈�†

a(k, t )�a(k, t )〉 of the Bose field excitations in
each component a in momentum space, in the form of

na(k, t ) = (t/tref )αnS,a([t/tref ]
βk). (2)

The scaling function nS,a(k) = na(k, tref ) depends only on a
single argument, and defines the scaling form together with
the exponents α, β. The reference time tref is chosen within
the scaling regime.

As an example, we study, in Fig. 1, the evolution of a Bose
gas with N = 3 components in d = 3 dimensions, starting
from a far-from-equilibrium initial condition [gray box in
Fig. 1(a)] with momentum distributions na(k, t0) = n0�(kq −
|k|), a = 1, 2, 3, while all phases θa(k, t0) are random. The
data shown here and in the following are partially reproduced
from [75]. The figure shows that, for times t � tref = 31 t	,
and within a limited range of low momenta, the evolution
of the momentum distribution exhibits approximate scaling
according to (2). Rescaling the momentum occupation spectra
at different times, they fall onto a single universal scaling
function as shown in Fig. 1(b), in accordance with the find-
ings of [60] for the case N = 1. At late evolution times,
tref = 200 t	 < t < 350 t	, we extract α = 1.62 ± 0.37, β =
0.53 ± 0.09 (see Fig. 2).

The scaling function is characterized by a plateau up to an
inverse coherence-length scale k
(t ), which rescales in time
according to k
(t ) ∼ t−β . At momenta larger than this inverse
coherence-length scale, |k| = k 
 k
(t ), the scaling function
takes the power-law form na(k) ∼ k−ζ , with ζ � d + 1 = 4,
confirming earlier predictions [60,62,63].

Taking the Fourier transform of the momentum distribution
na(k) one obtains the first-order spatial coherence function
g(1)

a (r, t ) = 〈�†
a(x + r, t )�a(x, t )〉, which, at short distances

	 � r � V −1/3 (with volume V ), takes an exponential form
g(1)(r, t ) ∼ e−k
(t ) |r| [see Fig. 1(c)]. Here, 	 = [2m ρ (0)g]−1/2

denotes the healing length corresponding to the total density.
The exponential form at comparatively short distances is rem-
iniscent of the buildup of a quasicondensate with a rescaling
coherence-length scale.

The scaling evolution in the vicinity of a nonthermal
fixed point in a dilute Bose gas has been described in terms
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FIG. 1. (a) Universal scaling dynamics of the single-component occupation number n1(k) ≡ n1(k, t ) according to (2), for a (d = 3)-
dimensional gas with N = 3 components. For details of the truncated Wigner simulations, see Sec. IV. The time evolution is starting from
the initial distribution n1(k, t0 ) = n0 �(kq − |k|), identical in all three components a (gray solid line), with n0 = (4πk3

q )−1ρ (0), kq = 1.4 k	

(k	 = 	−1 = [2m ρ (0)g]1/2). Colored dots show n1 at five different times. (b) The collapse of the data to the universal scaling function fS,1(k) =
n1(k, tref ), with reference time tref/t	 = 31 (units of t−1

	 = gρ (0)/2π ), shows the scaling (2) in space and time. For the time window tref =
200 t	 < t < 350 t	, we extract exponents α = 1.62 ± 0.37, β = 0.53 ± 0.09. (c) Universal scaling dynamics of the single-component first-
order coherence function g(1)

1 (r) = g(1)
1 (r, t ) (colored dots), for the same system and the same color encoding of t as in (a) and (b). At short

distances r � 	 the first-order coherence function takes an exponential form, reminiscent of a quasicondensate, which is characterized by a
correlation length rescaling in time. Note the semilog scale.

of kinetic equations with many-body T matrices derived
from a nonperturbative approximation of the underlying field-
theoretic equations of motion [60,63]. As shown in [63], the
nonperturbative collisional properties of the bosons become
relevant in the low-energy region of momenta below the
healing-length scale k	 = 	−1, i.e., for momenta k � k	,
where the occupation number is strongly overoccupied [cf.
Figs. 1(a) and 1(b)] and exhibits momentum scaling na(k) ∼
k−ζ for momenta above k
 which defines the transition from
the plateau to the power-law falloff.

Here, we present an alternative approach in which we first
reformulate the theory in terms of phase excitations only
which are the relevant degrees of freedom at momentum
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FIG. 2. Scaling exponents α/3 (orange stars) and β (blue dots)
obtained from least-square rescaling fits of the occupancy spectra
n1(k) ≡ n1(k, t ) shown in Fig. 1(b). The exponents correspond to
the mean required to collapse the spectra within the time window
[tref , tref + �t] with �t = 146 t	. Error bars denote the least-square-
fit error.

scales k � k	. This leads to a low-energy effective theory
which takes the form of a nonlinear Luttinger liquid, with
density fluctuations integrated out at quadratic order, induc-
ing cubic and quartic interactions of the phase excitations.
The theory is used to obtain a Boltzmann-type kinetic equa-
tion with a T -matrix evaluated in leading perturbative order.
Close to the nonthermal fixed point, where the far-from-
equilibrium dynamics is dominated by the overoccupied low-
energy excitations at k � k	, this perturbative approximation
remains valid because the resulting T -matrix is power-law
suppressed at the low momenta transferred between these
modes. Similar to equilibrium systems in d < 3 dimensions
we find quasicondensate-type coherence close to the nonther-
mal fixed point, characterized by g(1)(r, t ) ∼ e−k
(t ) |r| of the
time-evolving system in three spatial dimensions.

II. LOW-ENERGY EFFECTIVE THEORY

In this section, we provide details of the derivations of
the low-energy effective theory for the U(N )-component di-
lute Bose gas (1) with U(N )-symmetric contact interactions,
which forms the central result of this paper.

A. Collective excitations

We start our analytical discussion of the universal scaling
dynamics with a brief summary of the collective low-energy
linear excitations of the model (1). From Eq. (1), one obtains
the classical action in terms of fluctuating complex fields
ϕa(x), with x ≡ (x, x0) ≡ (x, t ):

S[ϕ] =
∫

x

{
i

2
[ϕ∗

a (x)∂tϕa(x) − ϕa(x)∂tϕ
∗
a (x)]

− 1

2m
[∇ϕ∗

a (x)] · [∇ϕa(x)] − g

2
[ϕ∗

a (x)ϕa(x)]2

}
, (3)
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where
∫

x = ∫ dd+1x and sums over double indices are im-
plied. Using the Madelung field representation in terms of
polar coordinates [76],

ϕa(x, t ) =
√

ρa(x, t ) exp{iθa(x, t )}, (4)

with densities ρa and phases θa, the Lagrangian reads as

L = −
∑

a

{
ρa∂tθa + 1

2m
[ρa(∇θa)2 + (∇√

ρa)2]

}
− g

2
ρ2,

(5)

where ρ =∑a ρa. From this, a continuity equation relating
the density to the particle current ja = ρa∂xθa/m, and an
equation for the phase θa follow, which, in the limit of
small fluctuations θa and δρa = ρa − ρ (0)

a about the uniform
ground-state densities ρ (0)

a = 〈�†
a(x)�a(x)〉 [77], reduce to

the linearized equations of motion

∂tθa = 1

4mρ
(0)
a

∇2δρa − g
∑

b

δρb, ∂tδρa = −ρ (0)
a

m
∇2θa.

(6)

In Fourier space, taking a further time derivative, they can be
combined to the Bogoliubov-type wave equation for the θa,

∂2
t θa(k, t ) + k2

2m

(
k2

2m
δab + 2gρ (0)

b

)
θb(k, t ) = 0, (7)

where Einstein’s sum convention is implied. While, for
N = 1, we recover the Bogoliubov dispersion, for general N ,
diagonalization of the coefficient matrix yields the eigenfre-
quencies of N − 1 Goldstone and one Bogoliubov mode [78]

ωc(k) ≡ ωG(k) = k2

2m
, c = 1, . . . , N − 1 (8)

ωN (k) ≡ ωB(k) =
√

k2

2m

(
k2

2m
+ 2gρ (0)

)
, (9)

where ρ (0) =∑a ρ (0)
a is the total condensate density (see

Appendix C for details). Note that the Goldstone theorem
[79] predicts, due to the spontaneous breaking of the U(N ) →
U(N − 1), 2N − 1 gapless Goldstone modes. However, only
N of these modes, with frequencies (8) and (9), are inde-
pendent due to the absence of Lorentz invariance and thus
particle-hole symmetry [80–82].

The general solution can be written as a linear combination
of the eigenmodes

θa(k, t ) =
N∑

b=1

C(a)
b eba cos

(
ωb(k) t + ϑ

(a)
b

)
, (10)

where eba = (eb)a are the eigenvector components (C3) and
(C5), and C(a)

b and ϑ
(a)
b are real constants defined by the initial

conditions. We find that the free-particle excitations are the
relative phases between the different components, while the
Bogoliubov excitation is in the total phase.

We can always choose the eigenbasis such that all modes
(equations) decouple due to the U(N ) symmetry of the action.
On the other hand, in experimentally realistic scenarios, this
symmetry may be explicitly broken by the initial density
matrix ρ̂0 which fixes the mean densities ρ (0)

a . Therefore, it

is suggestive to stick with the initial “physical” basis (see also
the discussion in Appendix D). The solution for the density
fluctuations has the same form, i.e.,

δρa(k, t ) =
N∑

b=1

D(a)
b eba cos

(
ωb(k) t + φ

(a)
b

)
. (11)

Taking the time derivative of (11), we notice that, at low
energies, i.e., for k � k	, where

k	 = [2m ρ (0)g]1/2 (12)

is a momentum scale set by the inverse healing length corre-
sponding to the total density, the Bogoliubov mode contribu-
tion to the time derivative of fluctuations dominates, i.e.,

∂tδρa(k, t ) ∼ ωN (k, t )δρa(k, t ). (13)

Then, according to (6), below k	,

δρa(k)

ρ
(0)
a

∼ |k|
k	

θa(k) � θa(k) (k � k	). (14)

Here we assumed that, at low energies,∣∣D(a)
N ωN (k) sin φ

(a)
N

∣∣ � ∣∣D(a)
b ωb(k) sin φ

(a)
b

∣∣, (15)

i.e., that either both terms in ∂tδρa are of the same order or that
the Bogoliubov term dominates, which depends, in general, on
the initial conditions.

B. Luttinger-liquid-type effective action

1. Derivation of the effective action

In order to demonstrate the implications of the collective
excitations introduced above for the possible nonequilibrium
dynamics of the system, we use the density-phase represen-
tation to obtain a low-energy effective field theory of the
model (1) with all ρ (0)

a > 0. As for a single-component GP
system, the quartic interactions proportional to the square
of the local total density ρ =∑a ϕ∗

aϕa give rise to a re-
duction of density fluctuations at low energies. While this
does not necessarily imply a suppression of the fluctuations
of the single-species densities below some energy scale,
such a suppression may be generated dynamically for cer-
tain initial conditions. In this section, we will derive the
effective theory with a single-species density fluctuations
suppression, while the more general case is considered in
Appendix G.

To begin with, we again adopt the Madelung representation
and expand the Lagrangian (5) up to the second order in
density fluctuations. The resulting action reads as

S[θ, δρ] = SG[θ, δρ] + SnG[θ, δρ], (16)

where

SG = −
∫

x

{
Jaδρa + 1

2
δρagabδρb + ρ (0)

a

[
∂tθa + (∇θa)2

2m

]}
,

(17)

Ja = gρ (0) + ∂tθa + 1

2m
(∇θa)2, (18)
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gab = g − δab

4mρ
(0)
a

∇2, (19)

SnG =
∫

x

(∇δρa)2

8mρ
(0)
a

(
δρa

ρ
(0)
a

)
+ h.o.t. (20)

and we introduced ρ (0) ≡∑a ρ (0)
a . Note that the neglected

higher-order terms (h.o.t.) involve powers of the density
fluctuations only, while all phase-dependent terms have been
taken into account. Hence, there is no approximation made
concerning the size of the phase fluctuations. This is relevant,
e.g., for Bose gases in d < 3 dimensions where even below
the BEC crossover the quasicondensate exhibits large phase
fluctuations.

As it was mentioned above, the derivation of the low-
energy effective action consists of integrating out density
fluctuations. This can be formally done adopting a Feynman-
Vernon influence functional approach [83] explained in Ap-
pendix B. In this paper, for the sake of simplicity, we assume
that the initial state can be well described by a product state
of a (Gaussian) density matrix of phase fluctuations and a
ground-state density fluctuations matrix, i.e.,

ρ̂(t0) ≈ ρ̂δρ (t0) × ρ̂θ (t0), ρδρ (t0) ≈ |�〉〈�|. (21)

While this approximation might look extreme, it should be
noted that the kinetic theory which we are going to use in the
following disdains details of the initial conditions regardless.

With the aforementioned approximations, the derivation
of the low-energy effective action is reduced to the standard
procedure within zero-temperature quantum field theory:

Z =
∫

Dθ Dδ ρeiS[θ,δρ] ≡
∫

Dθ eiSeff [θ]. (22)

In general, the integral (22) is non-Gaussian and thus cannot
be computed exactly. We can, nevertheless, compute it pertur-
batively, ∫

Dδ ρeiSG+iSnG = Z0

∞∑
n=0

in〈(SnG)n〉
n!

, (23)

where Z0 = ∫ Dδ ρeiSG , and restrict ourselves to some finite
number of terms in the above expression. For instance, at the
lowest order

exp (iSeff [θ ]) ≈
∫

Dδ ρ exp (iSG[θ, δρ]). (24)

Equivalently, one can truncate the expansion (16) at the Gaus-
sian order from the very beginning, also resulting in (24).

Since the kernel (19) contains a spatial derivative, it is more
convenient to proceed in Fourier space (see Appendix A for
details of the notation):

SG[θ, δρ] = −1

2

∫
k, t

k′, t ′
δρa(k, t )gab(k, t ; k′, t ′)δρb(k′, t ′)

−
∫

k,t

{
Ja(k, t )δρa(k, t )

+ ρ (0)
a

2m
k2θa(k, t )θa(−k, t )

}
, (25)

where the total-derivative term ρ (0)∂tθa is dropped, and where

Ja(k, t ) = gρ (0) (2π )dδ(k) + ∂tθa(−k, t )

+ 1

2m

∫
k′

k′(k + k′)θa(k′, t )θa(−k − k′, t ),

(26)

gab(k, t ; k′, t ′) = g

(
1 + δab k2

2k2
	,a

)
(2π )dδ(k + k′) δ(t − t ′).

(27)

Here, k	,a = [2m ρ (0)
a g]1/2 is a momentum scale taking the

form of the inverse healing length of a single component. We
recall that no condensate is required such that the interpreta-
tion of 1/k	,a as a healing length is in general not applicable.

We can absorb the first term in the definition of Ja

[Eq. (26)] by going over to a (grand-)canonical formulation,
effectively shifting the energy of the zero mode by a constant

gρ (0) (2π )dδ(k) + ∂tθa(−k, t ) → ∂tθa(−k, t ). (28)

In our path-integral formulation in terms of the fundamental
Bose fields, this can be achieved by shifting all densities by a
background term (see Appendix D). As a result of the above,
the current field simplifies to

Ja(k, t ) = ∂tθa(−k, t ) + 1

2m

∫
k′

k′(k + k′)

× θa(k′, t )θa(−k − k′, t ). (29)

Note that the operator (27) is diagonal both in k space and in
t space so that the only nontrivial step is to invert the matrix
part of the kernel.

Before we perform the Gaussian integral over the δρa to
obtain the effective action, we rescale the density fluctuations

δρa →
√

Nρ
(0)
a

ρ (0)
δρ ′

a, (30)

which multiplies the path-integral measure by an irrelevant
constant. With this, we obtain a modified kernel in (25),

g̃ab(k, t ; k′, t ′) = Ng

[(
ρ (0)

a ρ
(0)
b

)1/2

ρ (0)
+ δab k2

2k2
	

]

× (2π )dδ(k + k′) δ(t − t ′), (31)

and also need to take into account the rescaling in the linear
term Ja(k, t )δρa(k, t ) → Ja(k, t )(Nρ (0)

a /ρ (0) )1/2δρ ′
a(k, t ).

To absorb these factors which take into account the devi-
ation from the mean density per component ρ (0)/N , we also
rescale the remaining fluctuating phase-angle fields as

θ ′
a =

√
Nρ

(0)
a
/
ρ (0)θa, (32)

with the condition∫
Dθ O(θ ) eiSeff [θ] =

∫
Dθ ′ O(θ ) eiS′

eff [θ ′], (33)

where the argument of the operator O is understood to be
expressed in terms of the rescaled field. Equation (33) yields
exp (iSeff [θ ]) = const × exp (iS′

eff [θ
′]), with an insignificant

multiplicative constant. This implies a corresponding rescal-
ing of Ja → J ′

a.
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As discussed in detail in Appendix E, the inverse of g̃ab is

(g̃−1)ab(k, t ; k′, t ′) = 1

N

2k2
	

gk2

⎛
⎝δab −

√
ρ

(0)
a ρ

(0)
b /ρ (0)

1 + k2/2k2
	

⎞
⎠(2π )dδ(k + k′)δ(t − t ′). (34)

After completing the squares and Gaussian integration over the δρ ′, and taking into account the rescaling of Ja, this kernel enters
the contribution

1

2

∫
kk′tt ′

J ′
a (k, t )(g̃−1)ab(k, t ; k′, t ′)J ′

b (k′, t ′) (35)

to the effective action which is quadratic in the Ja. The effective action finally becomes

S′
eff [θ

′] =
∫

k,t

1

2N

{
1

g1/N(k)

(
δab − k	,ak	,b/k2

	

1 + k2/2k2
	

)
J ′

a (k, t )J ′
b (−k, t ) − ρ (0)k2

m
θ ′

a(k, t )θ ′
a(−k, t )

}
, (36)

where

J ′
a(k, t ) = ∂tθ

′
a(−k, t ) +

(
ρ (0)

Nρ
(0)
a

)1/2 ∫
k′

k′(k + k′)
2m

θ ′
a(k′, t )θ ′

a(−k − k′, t ), (37)

with momentum-dependent “coupling function”

g1/N(k) = gk2

2k2
	

. (38)

The effective action can be split into a Gaussian and a non-Gaussian interaction part. Omitting primes in denoting the fields
and the action in what follows, we get

Seff = Seff,G + S(3)
eff,nG + S(4)

eff,nG, (39)

with

Seff,G[θ ] =
∫

k,t

1

2N

{
1

g1/N(k)

(
δab − k	,ak	,b/k2

	

1 + k2/2k2
	

)
∂tθa(k, t )∂tθb(−k, t ) − ρ (0)k2

m
θa(k, t )θa(−k, t )

}
, (40)

and the three- and four-wave interaction parts

S(3)
eff,nG[θ ] =

∫
kk′,t

1

N3/2

1

g1/N(k)

(
δab − k	,ak	,b/k2

	

1 + k2/2k2
	

)
k	

k	,b

k′(k′ − k)

2m
∂tθa(−k, t )θb(k′, t )θb(k − k′, t ), (41)

S(4)
eff,nG[θ ] =

∫
kk′k′′,t

1

2N2

1

g1/N(k)

(
δabk2

	

k2
	,a

− 1

1 + k2/2k2
	

)
k′(k′ + k)

2m

k′′(k′′ − k)

2m

× θa(k′, t )θa(−k − k′, t )θb(k′′, t )θb(k − k′′, t ). (42)

Note that the quadratic term in Eq. (40), for a single-
component gas (N = 1), reduces to the standard Luttinger-
liquid action [84] accounting for noninteracting sound modes
on the background of a (quasi)condensate, useful for describ-
ing equilibrium low-temperature Bose gases in one and two
spatial dimensions [85]. In the following, the nonlinear terms
(41) and (42), however, will be crucial to describe the kinetic
transport of phase excitations close to the nonthermal fixed
point.

In equilibrium, the Luttinger liquid serves as a low-energy
effective theory for near-zero-temperature Bose gases in less
than three dimensions, where no spontaneously broken field
is available as a Bogoliubov mean field to expand around
[85]. Here, we will exploit that the same low-energy effec-
tive theory, with nonlinear terms taken into account, serves
to describe transport in momentum space within a kinetic
formulation of the time evolution. We emphasize that the

formulation of the low-energy effective theory is indepen-
dent of the particular state the system is in, provided the
assumption of having a constant high mean density in each
field component to expand about is well satisfied. Hence, far-
from-equilibrium phenomena can be described by our theory
provided the mode occupancies of the state are dominated by
the low-energy range of momenta below k	.

2. Large-N limit of the Luttinger-liquid-type effective action

To allow comparisons with previous formulations of scal-
ing at a nonthermal fixed point, including [56–61,63], it
is necessary to consider the limit N → ∞. Using the fact
that k	,a/k	 ∼ 1/

√
N one easily obtains that all the “tensor

structures” in (40), (41), and (42) become diagonal to the
leading order in 1/N [86].
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Summarizing the above derivations and going back to the
nonrescaled phase fields, we obtain, in the large-N limit, the
following low-energy effective action (see Appendix F for
details):

Seff [θ ] =
∫

k,k′,C

1

2
θa(k, t )iD−1

ab (k, t ; k′, t ′)θb(k′, t ′)

−
∫

{ki},C

k2
	,a

k2
	

k1 · k2

2m g1/N(k3)

× θa(k1, t ) θa(k2, t )∂tθa(k3, t ) δ

(
3∑

i=1

ki

)

+
∫

{ki},C

k2
	,a

k2
	

(k1 · k2) (k3 · k4)

8m2 g1/N(k1 − k2)

× θa(k1, t ) . . . θa(k4, t ) δ

(
4∑

i=1

ki

)
, (43)

with free inverse propagator, defining δk,−k′ ≡ (2π )d δ(k +
k′),

iD−1
ab (k, t ; k′, t ′) = δk,−k′

Ng1/N(k)
δabδC(t − t ′)

× (−∂2
t − (k2/2m)2

)
. (44)

We note that the large-N limit can be taken either for a
fixed total density ρ (0), or keeping the single-component den-
sities ρ (0)

a constant. In the former case, the single-component
densities vanish for N → ∞, such that one eventually obtains
a classical gas of distinguishable bosons. As a result, the
condition δρa/ρ

(0)
a � θa [cf. (14)] breaks down asymptoti-

cally as the particles become distinguishable and lose mutual
coherence.

Hence, the low-energy effective theory, in the large-
N limit, rather applies to the situation of fixed, i.e., N-
independent, densities ρ (0)

a equal in each of the N effectively
decoupled copies of field components. To avoid, in this case,
that the gas loses its diluteness and becomes a dense fluid
as the total density ρ (0) = Nρ (0)

a [87] increases, one needs to
adjust the coupling g. A sensible choice is to keep the rele-
vant Gross-Pitaevskii coupling, i.e., the healing-length energy
scale corresponding to the total density k2

	/(2m) = gρ (0) fixed
and thus the rescaled coupling λ = gN . For this choice, the
low-energy effective action becomes invariant under changes
of N . Moreover, its regime of validity, with excitations on
scales longer than the healing length [cf. (14)], remains fixed
at large N .

We remark that rescaling the density with N and the
coupling with 1/N implies that, in d > 1 spatial dimensions,
the diluteness parameter of the total gas scales as

ζd = [ρ (0)]1/d ad ∼ N1/d−1, (45)

where ad ∼ g is the length scale associated with the coupling
g in d dimensions. For example, in d = 3 dimensions, the
diluteness of the total gas increases with N such that, in the
large-N limit, the theory becomes perturbative, and quantum
fluctuations can be neglected.

Taking the single-component densities fixed as discussed
above, we will write all expressions, in what follows, in terms

= i (k1·k2) (k3·k4)
2m2gG(k1−k2)

+ perms × (2π)d δ( ki)

= −i 2k1·k2
mgG(k3)

∂t3 + perms × (2π)d δ( ki)

FIG. 3. Diagrammatic representation of the interaction terms.

of the Goldstone coupling

gG(k) ≡ N g1/N(k). (46)

Finally, we note that the interaction terms can be conveniently
represented by the diagrams depicted in Fig. 3.

III. KINETIC THEORY AND SCALING ANALYSIS

In the previous section, we have derived the effective action
(39) to describe dynamics of the U(N )-symmetric Gross-
Pitaevskii model below the scale k	. To do so, we integrated
out density fluctuations which, as was shown in Sec. II A,
are suppressed by the factor k/k	 as compared to phase
fluctuations. Furthermore, in the limit N → ∞, the effective
description reduces to N-independent and identical copies
described by the action (43).

Our aim now is to apply the low-energy effective theory
developed in Sec. II B to universal scaling dynamics at non-
thermal fixed points. A first step in this direction is to derive a
kinetic description of transport in momentum space, as has
been done previously within the nonperturbative approach
based on the fundamental Bose fields [56–61,63]. We first
set up kinetic equations and scattering integrals, in analogy
to standard derivations (see, e.g., [61,74,88,89] for details).

The procedure is then to state a scaling hypothesis of the
form (2) for the momentum distribution function whose time
evolution is governed by the kinetic equation. Hence, while
the distribution evolves by rescaling in time and space, it is
assumed to keep a stationary scaling form which is governed
by a fixed-point equation corresponding to a rescaled form
of the kinetic equation. As a result, the analysis focuses,
mathematically speaking, on the fixed-point configuration,
providing the properties of the quasistationary scaling form
and the scaling exponents governing the time evolution.

Most of the discussion is kept within the large-N limit, ex-
cept for the case of N = 1 discussed separately in Sec. III B 4.

A. Kinetic description

The kinetic description focuses on the evolution of equal-
time two-point correlators, specifically on occupation-number
distributions of quasiparticles in momentum space (assuming
identical excitations in all modes, e.g., in a large-N approxi-
mation),

fa(k, t ) = 〈θa(k, t )θa(−k, t )〉. (47)

One starts with Kadanoff-Baym dynamic equations for the
Schwinger-Keldysh time-ordered two-point Greens functions
Gab(x, y) = 〈TC θa(x)θb(y)〉. After decomposing into spectral
and Keldysh statistical components, one introduces a quasi-
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particle ansatz for the spectral functions. Finally, performing a
gradient expansion, in Wigner coordinates, along the relative-
time direction, and sending the initial time t0 → −∞, one
obtains, in two-loop approximation of the two-particle irre-
ducible effective action (Luttinger-Ward functional), a kinetic
equation for the time evolution of a suitably defined momen-
tum spectrum fk ≡ f (k, t ) ≡ fa(k, t ) of phase excitations

∂t f (k, t ) = I[ f ](k, t ), (48)

where I[ f ] is a scattering integral to be specified below.
From the action (43), we infer (see Appendix H for details)

that the scattering integral has the form

I[ f ](k, t ) = I3(k, t ) + I4(k, t ), (49)

with

I3(k, t ) ∼
∫

k0,p,q
|γ (k, p, q)|2ρ̃k ρ̃pρ̃q δ(k + p − q)

× [( fk + 1)( fp + 1) fq − fk fp( fr + 1)], (50)

I4(k, t ) ∼
∫

k0,p,q,r
|λ(k, p, q, r)|2ρ̃k ρ̃pρ̃qρ̃r δ(k + p − q − r)

× [( fk + 1)( fp + 1) fq fr − fk fp( fq + 1)( fr + 1)],
(51)

where the (d + 1)-dimensional delta distributions imply en-
ergy and momentum conservation, with k0 = ω(k) = k2/2m
denoting the quasiparticle frequencies, and where the scatter-
ing matrices are defined as

γ (k, p, q) = (k · p) ω(q)

m gG(q)
+ perms, (52)

λ(k, p, q, r) = (k · p)(q · r)

2m2 gG(k − p)
+ perms, (53)

with momentum-dependent coupling function which, in the
large-N limit, takes the form gG(k) = Ngk2/(2k2

	) [cf.
Eqs. (38) and (46)]. Assuming that the quasiparticle (on-shell)
approximation is valid, i.e., that the spectral functions ρ̃(k) =
ρ̃(k0, k) describe free stable quasiparticles, we find that for
our EFT the bare retarded Green’s function has the form

G(0)
R (k, ω) = gG(k)

(ω + i0+)2 − ω2(k)

= gG(k)

2ω(k)

[
1

ω − ω(k) + i0+ − 1

ω + ω(k) + i0+

]
.

(54)

Using the definition of the spectral function in terms of GR,
ρ̃(k, ω) = −2 ImGR(k, ω), as well as the relations

Im
1

x + iε
= − ε

x2 + ε2
, lim

ε→0

ε

x2 + ε2
= πδ(x), (55)

we obtain the bare spectral function of our EFT (43),

ρ̃ (0)(k, ω) = πgG(k)

ω(k)
[δ(ω − ω(k)) − δ(ω + ω(k))], (56)

so that the T matrices adopt the following form:

|T3(k, p, q)|2 = |γ (k, p, q)|2 gG(k) gG(p) gG(q)

8 ω(k) ω(p) ω(q)
, (57)

|T4(k, p, q, r)|2 = |λ(k, p, q, r)|2 gG(k) . . . gG(r)

2ω(k) . . . 2ω(r)
. (58)

B. Scaling at a nonthermal fixed point

We have now the tools at hand to proceed to the main phys-
ical results of this paper, predictions for the scaling behavior
of the considered model at a nonthermal fixed point. The
procedure is as follows. The kinetic equation derived above
is assumed to describe the transport process in momentum
space of low-energy phase excitations toward infrared scales.
As illustrated by our numerical data obtained for the evolution
after a strong quench (see Fig. 1), this transport assumes a
universal scaling form after having passed a brief period of
fast initial evolution.

The main task of the analytical work presented here is to
formulate and evaluate fixed-point equations which allow one
to predict the scaling functions and exponents characterizing
this universal dynamics. We focus on the analysis at the fixed
point, i.e., we assume that the scaling evolution has already
been fully established. This allows us to insert a scaling
hypothesis for the solution into the kinetic equation and apply
power-counting techniques to determine the unknown scaling
exponents [20,22,59,60,63]. In this way we will rederive
previously known scaling exponents and complement them
with results for situations which have not been considered
before, in particular for the experimentally relevant case of
a single field component N = 1, including in particular the
three-vertex term I3.

1. Spatiotemporal scaling

Using the T matrices given above, we can perform a
scaling analysis of universal dynamics of the system at a
nonthermal fixed point. To this end, we consider the scattering
integrals corresponding to each vertex. According to the scal-
ing hypothesis, the quasiparticle spectral distribution satisfies
the scaling form

f (k, t ) = sα/β f (sk, s−1/βt ), (59)

and so do the T matrices

|Tl (k1, . . . , kl ; t )| = s−ml |Tl (sk1, . . . , skl ; s−1/βt )|, (60)

where the index l ∈ {3, 4} denotes the l-point vertex. From the
above, one obtains the spatiotemporal scaling of the scattering
integral [63]

Il [ f ](k, t ) = s−μl Il [ f ](sk, s−1/βt ). (61)

Using (51) and (50) together with (59) and (60), one derives
the expression for a scaling exponent μl for each collision
term:

μl = (l − 2)d − z + 2ml − (l − 1)
α

β
, (62)

where

2ml = 2m̃l + l (γ − z), (63)
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with

m̃3 = z + 2 − γ , (64)

m̃4 = 4 − γ , (65)

and γ being defined as the scaling exponent of gG:

gG(k) = s−γ gG(sk). (66)

Note that we here assume that the scaling of the coupling
gG appearing in the retarded Green’s function (54), and in
the couplings (52) and (53), is the same, i.e., the momenta
as well as their differences are in the same scaling regime.
This should be guaranteed if the external momentum k of the
scattering integrals is in the infrared (IR) scaling limit and thus
the integrals are dominated by momenta in this regime.

If the distribution function f obeying the scaling form (59)
is to solve the kinetic equation (48) for a given μ = μl , the
scaling exponents need to satisfy the relation

α = 1 − βμ. (67)

In addition, in the presence of global conservation laws for
the integral

∫
k f (k, t ) (quasiparticle number) or the inte-

gral
∫

k ω(k) f (k, t ) (quasiparticle energy), the following con-
straints apply for the scaling exponents:

α = βd, number conservation; (68)

α′ = β ′(d + z), energy conservation. (69)

We note that the conservation of quasiparticle number is, in
general, not expected. In the low-energy regime of a Bose
gas considered here, the quasiparticles are gapless phonon
and relative-phase modes as described above whose number
can change due to the cubic interaction terms appearing in the
action (43). It appears nevertheless as one of the key properties
of nonthermal fixed points that the transport underlying the
universal scaling dynamics is related to conservation laws
which can include that of quasiparticle number.

Here and in the following, primed exponents α′, β ′ refer to
transport-conserving energy. Collecting the above results, we
obtain

μ3 = d + 4 − 2z + γ − 2α/β, (70)

μ4 = 2d + 8 − 5z + 2γ − 3α/β, (71)

which, together with (67), gives

l = 3 : β(d + 4 − 2z + γ ) = 1 + α, (72)

l = 4 : β(2d + 8 − 5z + 2γ ) = 1 + 2α. (73)

One should note that, in principle, (72) and (73) provide the
closed system of equations allowing to determine α and β:

α = (d + 4 − 3z + γ )/z, (74)

β = 1/z. (75)

However, since, depending on the dimensionality d and the
momentum region of interest, one type of interaction can

dominate over the other one, it is more reasonable to analyze
the two terms independently. In order to close the system in
that case, an additional relation is required, which, in fact,
is provided by either quasiparticle-number conservation (68)
or energy conservation (69) within the scaling regime. For
particle-number conservation, we obtain

l = 3 : β = 1

4 − 2z + γ
, (76)

l = 4 : β = 1

8 − 5z + 2γ
, (77)

while, for energy conservation, one gets

l = 3 : β ′ = 1

4 − 3z + γ
, (78)

l = 4 : β ′ = 1

8 − 7z + 2γ
. (79)

Substituting, in the large-N limit, the scaling exponent z =
2 of the free Goldstone dispersion (C6) and γ = 2 of the
coupling function (38), the T matrices scale with

m3 = 2, m4 = 2, (80)

and the resulting scaling exponents read as

β = 1/2, (z = 2), (81)

α = d/2 (82)

for both three- and four-point vertices, and

β ′ = −1/2, (83)

α′ = −(d + z)/2 (84)

for the four-point vertex, while, at the same time, for the
three-point vertex, no valid solution exists. We point out that
the above exponents are equivalent to the respective exponents
derived in [60,63] using the large-N resummed kinetic theory
for the fundamental Bose fields, for the case of a dynamical
exponent z = 2, and a vanishing anomalous dimension η = 0
(see also Sec. III B 3 below).

The question which arises here is whether both three- and
four-wave interactions are equally relevant. To answer this,
we need to compare the spatiotemporal scaling properties
of the scattering integrals (50) and (51), for given fixed-
point solutions f (k, t ). Focusing on the infrared transport of
quasiparticles, for which α/β = d , we obtain, from (70) and
(71), inserting also the relation γ = 2(z − 1) valid for both
free (z = 2) and Bogoliubov (z = 1) quasiparticles, that

−μ3 = d − 2, (85)

−μ4 = d − 4 + z. (86)

Hence, we find, for z = 2 in the large-N limit, that μ3 = μ4,
which implies that the relative importance of the scattering
integrals I3 and I4 is not expected to change in time.
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2. Scaling function

A further important question concerns the form of the
scaling function. This form is determined by the stationary
fixed-point equation, i.e., self-consistently, by the infrared
scaling properties of the scattering integrals (50) and (51),
for given fixed-point solutions f (k, tref ) at a fixed reference
time tref . Inserting s = (t/tref )β into the scaling hypothesis
(59) yields the scaling form

f (k, t ) = (t/tref )α fS([t/tref ]
βk), (87)

with universal scaling function

fS(k) = f (k, tref ). (88)

For the spatial form of the scaling function we make the
scaling ansatz

fS(k) = sκ fS(sk), (89)

which we will motivate in more detail later on. Inserting (89)
into the kinetic equation (48) yields the stationary fixed-point
equation

(α − βκ ) fS(p) = tref I[ fS](p). (90)

If both sides of Eq. (90) are nonzero, they must scale in the
same way in p. Taking into account the fixed-time scaling

Il [ f ](k, tref ) = s−μκ,l Il [ f ](sk, tref ) (91)

of the scattering integral Il defined by the scaling exponent
μκ,l , one finds that the momentum exponent κ of the scaling
function fS is

κ = −μκ,l , (92)

provided that the scaling of Il determines that of I .
Hence, we need to determine the exponents μκ,l , which,

in general, can take different values for the three-wave and
the four-wave collision integrals. As we will show in the
following, κ > 0 such that, in the scaling limit of small
momenta, all distribution functions in the scattering integrals
can be assumed to be in the semiclassical regime where
fp 
 1, etc., for the other momenta appearing. Hence, only
the terms quadratic (cubic) in f can be assumed to contribute
to I3 (I4). As a result, power counting of (50) and (51) in this
semiclassical regime, taking into account that the scaling

|Tl (k1, . . . , kl ; tref )| = s−ml |Tl (sk1, . . . , skl ; tref )| (93)

of the T matrices (57) and (58), respectively, is valid also at a
fixed reference time, gives

l = 3 : μκ,3 = 4 + d + γ − 2z − 2κ, (94)

l = 4 : μκ,4 = 8 + 2d + 2γ − 5z − 3κ. (95)

These scaling exponents, together with Eq. (92), yield the
momentum exponent of the quasiparticle scaling function as

l = 3 : κ = κ3 = 4 + d + γ − 2z, (96)

l = 4 : κ = κ4 = 4 + d + γ − 5z/2, (97)

given that either of the scattering integrals with l = 3, 4
dominates in the region of momenta considered.

For a given κl , and with the large-N exponents z = 2 and
γ = 2 inserted, one finds that

μκ,3 − μκ,4 = κl − d � 1. (98)

As a result, the four-wave scattering integral is expected to
dominate at small momenta k → 0 over the three-wave term,
such that

κ = κ4 = d + 1 (z = 2) (99)

results as the momentum scaling exponent of the quasiparticle
distribution f (k, t ) ∼ k−κ at the nonthermal fixed point.

This appears to contradict the previous analysis of spa-
tiotemporal scaling [cf. Eqs. (61) and (85) and (86)], which,
for z = 2 showed equal importance of I3 and I4 while, for
z = 1, the integral I3 dominated the late-time scaling in the
IR. We emphasize, however, that the spatiotemporal scaling
exponents (76) and (77) were obtained from scaling relations
which are independent of the precise form of the scaling
function f (k, t ) but only require the scaling relation (87).
Hence, the question as to which of the vertices dominates the
transport can be independently answered from the question
of which vertex is responsible for the shape of the scaling
function.

In contrast, in this section, we argue that the scaling func-
tion f (k, tref ) at a fixed reference time, in the IR scaling limit,
i.e., for k
(tref ) → 0, is the solution of a fixed-point equation
dominated by I4(k, tref ). We note that, at a given early time
of the evolution, when k
 is still large and this spatial scaling
limit has not been reached yet, our estimate may not apply to
the evolution starting from a given initial condition. We will
discuss this in more detail when comparing with numerical
results in the following section.

3. Relation between phase and phase-angle scaling forms

The result (99), as well as the temporal scaling expo-
nents (81) and (82) derived above appear, remarkably, in full
agreement with earlier findings from nonperturbatively re-
summed kinetic theory (see [60,63]). To show this rigorously,
however, still requires a translation between the quasiparticle
distribution fa(k, t ) characterizing the phase-angle excitations
considered here and the scaling of the particle-number distri-
bution na(k, t ) encoded in the fundamental Bose field

na(k, t ) = 〈�†
a(k, t )�a(k, t )〉 � ρ (0)

a F [Ca(x − y, t )](k),
(100)

where the Fourier transform F (cf. Appendix A) is taken with
respect to r = x − y of the on average translation-invariant
phase correlator

Ca(r, t ) = 〈e−iθa (x+r,t )eiθa (x,t )〉, (101)

independent of x.
Defining the (single-source) Schwinger-Keldysh generat-

ing functional of correlation functions of the phase-angle
field θa,

Z[J] =
∫

Dθ eiSeff [θ]+i
∫

x,C Ja(x)θa(x), (102)
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we can express the phase correlator as

Ca(r, t ) = Z[{Ja = [−δ(x − r) + δ(x)]δC(x0 − t ), 0}],
(103)

where we take into account that the generating functional, for
J = 0, evaluates to unity on the closed time path Z[0] = 1,
and that all other Jb, b �= a, vanish. Using the standard repre-
sentation of the generating functional in terms of connected
Green’s functions [90]

Z[J]=exp

{ ∞∑
n=1

∫
{xi}n

i=1,C

in

n!
G(n)

θ (x1, . . . , xn)J (x1) · · · J (xn)

}
,

(104)
with

G(n)
θ,a(x1, . . . , xn, t ) = 〈θa(x1, t ) . . . θa(xn, t )〉c (105)

being an equal-time n-point connected correlator of the phase-
angle field θa, we can express the two-point phase correlator
as

Ca(r, t ) = exp

⎧⎨
⎩

∞∑
n=1

∑
xi=0,r

cnG(n)
θ,a(x1, . . . , xn, t )

⎫⎬
⎭, (106)

where

cn = in

n!
exp

{
n∑

i=1

iπδr,|xi|

}
(107)

contains a combinatorial factor in/n! as well as a sign which
depends on the coordinates of the cumulants.

The above result provides a strong constraint on the scaling
of the cumulants of the phase angle given that the phase
correlator Ca satisfies the scaling relation

Ca(r, t ) = sα/β−dCa(s−1r, s−1/βt ), (108)

which follows directly from the scaling of na(k, t ). It should
be emphasized that the above scaling exponents α and β

are those associated with the scaling of fundamental bosonic
fields �, for which the particle-number conservation is ex-
pected due to U(1) symmetry. Then, assuming the absence of
accidental cancellations, the relation (106) between the two-
point correlator and the phase-angle connected correlation
functions thus implies

exp
{
G(n)

θ,a({xi}, t )
}∣∣

xi∈{0,r}

= s−α/β+d exp
{
G(n)

θ,a({s−1xi}, s−1/βt )
}∣∣

xi∈{0,r}, (109)

which, after taking the logarithm and recalling that α = dβ is
satisfied, yields

G(n)
θ,a({xi}, t )

∣∣
xi∈{0,r} = G(n)

θ,a({s−1xi}, s−1/βt )
∣∣
xi∈{0,r} (110)

or, after taking s = tβ ,

G(n)
θ,a({xi}, t )

∣∣
xi∈{0,r} = G(n)

S,θ,a([t/tref ]
−βr) (111)

with β independent of the correlator order n.
To summarize, we have shown that if density fluctuations

are suppressed and hence (100) and (101) are applicable, the
two-point equal-time correlator of fundamental Bose fields
can be expressed in terms of connected correlation functions
of the phase field as (106). This furthermore implies, recalling

that the particle number associated with the fundamental
field �a is conserved, a strong constraint on the scaling of
the phase-field correlators (110). This proves that, under the
above assumptions, the scaling exponents derived from the
Luttinger-liquid-like low-energy EFT coincide with those of
the fundamental bosonic particles.

Finally, let us consider the leading-order term n = 2 [91]
in (106) which corresponds to the Gaussian approximation

Ca(r, t ) � exp
{
G(2)

θ,a(r, t ) − G(2)
θ,a(0, t )

}
. (112)

If the Gaussian approximation is sufficient, which is go-
ing to be discussed below, we can infer the scaling of the
phase correlator Ca from the scaling of the two-point
equal-time cumulant G(2)

θ,a of the angle. According to (87),
(89), and (99), we can take the momentum-space correlator
(47) to have the form

fa(k, t ) ∼ k
(t ) |k|−(d+1) (113)

for momenta kIR < |k| < kUV in the power-law region. Here,
the IR scale is expected to be associated with k
(t ), while
the UV scale reflects the presence of a thermal tail that
is typically developed in quenched ultracold atomic sys-
tems. To see (113) explicitly, we note that (89) and (99)
require f (k, tref ) ∼ |k|−(d+1). On the other hand, (87) im-
plies f (k, t ) ∼ tα (tβ |k|)−(d+1), which combined with the
aforementioned constraint α = dβ results in (113), where
k
(t ) ∼ t−β .

A simple scaling analysis of the Fourier transform of
(113) in d dimensions gives the spatial two-point function
G(2)

θ,a(r, t ) = F [ fa](r, t ) as

G(2)
θ,a(r, t ) − Cθ,a(0, t ) = −const × k
(t ) |r|, (114)

which is normalized to some constant at r = 0, and we added
a minus sign reflecting that the correlations are expected to
fall off at larger distances. Combining these results, we find
that the two-point correlation function of the fundamental
field should have a pure exponential decay at intermediate
distances, which is consistent with our numerical results
[cf. Fig. 1(c)]

Ca(r, t ) � exp {−k
(t ) |r|}, (
k−1

UV � |r| � k−1
IR

)
. (115)

This corresponds to the angle-averaged spatial first-order
coherence function g(1)(x − y, t ) = 〈�†(x, t )�(y, t )〉 of the
Bose field �(x, t ):

g(1)
a (r, t ) = ρ (0)

a exp{−k
(t ) |r|}, (
k−1

UV � |r| � k−1
IR

)
,

(116)

with uniform particle density ρ (0)
a and background phase θ (0)

a .
Its Fourier transform yields the occupation-number distribu-
tion of the bosons

nG
a (k, t ) = Cd k
(t )

[k
(t )2 + |k|2]ζ/2
, (kIR � |k| � kUV), (117)

with normalization constant Cd = ρ (0)
a �([d + 1]/2)/π (d+1)/2

and momentum exponent ζ = d + 1.
Precisely this scaling form has been assumed in the previ-

ous nonperturbative analysis [63], where the scaling at large
momenta |k| 
 k
(t ) was predicted to be given by ζ =
d + 1 for z = 2 as recovered in the Gaussian approximation
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assumed here. Furthermore, na(k, t ) was assumed to satisfy a
scaling relation of the form (87):

na(k, t ) = sα/βna(sk, s−1/βt ), (118)

such that the time-dependent constant scales as k
(t ) ∼ t−β .
The exponents were predicted to be β = 1/z = 1

2 and α =
β d , assuming z = 2 and taking into account the conservation
of the momentum integral over na(k, t ) (cf. [60,63]).

Hence, provided the validity of the Gaussian approxima-
tion (112), the scaling properties derived here in the large-N
limit, defined by the exponents z = 2, α = d/2, β = 1

2 , and
κ = d + 1, as well as by the scaling form (114), are consistent
with the scaling properties derived within the nonperturbative
approach of [60,63], for the case of a dynamical exponent
z = 2, and a vanishing anomalous dimension η = 0.

As we will discuss in more detail in the following, the
Gaussian approximation, for the situations studied here, is
supported by the scaling analysis of the effective action. One
expects this limit to be reached, ideally, for infinite system
size in position as well as momentum space, at t → ∞.
In this limit, the interaction part of the action vanishes as
compared to the part quadratic in the phase-angle fields, such
that also any correlations are expected to become Gaussian.
This will, however, not be the general case. As we will argue,
for sufficiently small β, the respective fixed point is expected
to have a non-Gaussian character.

In summary, we observe that the values of the exponents
obtained above are in agreement with the results of [63],
under the assumption of a vanishing anomalous scaling η = 0.
With this, we conclude that, if (a) the kinetic description is
adequate; (b) the T -matrix has the form (57) and (58) for
the three- and four-point interactions, respectively; (c) the
quasiparticle number or energy of the system are conserved
in the scaling regime; then, our low-energy EFT predicts the
universal self-similar dynamics close to the nonthermal fixed
point in agreement with the previously developed nonpertur-
bative approach in the special limit of infinite N .

4. The case N = 1 of a single field component

One can also apply our scaling analysis to the limiting case
N = 1 in which the action, in the next-to-leading order of a
derivative expansion, reads as

Seff [θ ] = 1

2g

∫
x,C

{
θ (x)

(−∂2
t + c2

s ∇2
)
θ (x)

+ 1

m
∂tθ (x)(∇θ (x))2 + 1

4m2
(∇θ (x))4

}
, (119)

with c2
s = ρ (0)g/m being the speed of sound. It describes,

in the IR limit, the scattering of modes with linear Bogoli-
ubov dispersion, with z = 1 and γ = 0. Equivalently, the
tensor couplings in Eqs. (41) and (42) reduce to g−1

1/N(k)[1 −
(1 + k2/2k2

	)−1] = g−1(1 + k2/2k2
	)−1, i.e., at low energies

k � k	, the coupling g1/N (k) in (43) is replaced by the
constant bare coupling g.

Given the scaling behavior of the dispersion and the cou-
pling, the scaling analysis of the kinetic equation proceeds, for
N = 1, as described above in the large-N limit. In particular,
the scaling relations between the different exponents, for

general z and γ , are equally valid in both cases. Inserting
γ = 0 and z = 1 into (76) and (77), one finds for quasiparticle
transport the exponents

l = 3 : β = 1/2, (120)

l = 4 : β = 1/3, (121)

and, from (85) and (86), that −μ3 = d − 2 > −μ4 = d − 3.
Hence, with increasing time, the scattering integral I4, for
z < 2, loses out against I3 such that the transport is predicted
to occur, in the scaling limit, with β = 1

2 according to (120).
As a result, despite z = 1, the same values α = d/2 and β = 1

2
describe transport of quasiparticles toward the IR, dominated
by one-to-two scattering.

Determining the spatial exponent κ by using the same ar-
guments as for the case z = 2, which imply that the four-wave
interactions dominate, one finds κ = κ4 = d + 3/2. Note,
however, that according to the arguments leading to the dom-
inance of I3 in the long-time limit, one rather expects, in the
case N = 1, the three-wave interaction to also dominate the
stationary fixed-point equation. Under these circumstances,
we rather predict

κ = κ3 = d + 2 (z = 1) (122)

to represent the momentum scaling exponent in the large-time
scaling limit t → ∞. It should be remarked that this exponent
describes the scaling of a vortex-dominated state, for d � 2,
as found in many simulations for the case N = 1 (cf., e.g.,
[64–67,70]). This is rather unexpected as the Luttinger-liquid-
based kinetic approach chosen here does not take into account
the compact property of the phase and thus the excitations of
vortices. The question as to whether the above result is just
a coincidence or consequence of some physics thus remains
open.

5. Upper “critical” dimension

Given the above predictions for the scaling behavior at
nonthermal fixed points we can use standard power-counting
arguments to obtain the respective upper “critical” dimension.
With this, we refer to the spatial dimension above which non-
Gaussian terms in the action scale to zero at the nonthermal
fixed point.

Note, however, that there is no critical point reached in the
conventional sense: the scaling limit is expected to be attained,
in the thermodynamic limit, at infinite evolution times. In
practice, however, scaling already shows up at intermediate
times, while the approach of the precise scaling function
defining the scaling limit takes asymptotically long times.
This can be conjectured from the results of our simulations
shown in Fig. 1, in particular also from the observation that
the higher-order powers in k
(t )r contributing to the scaling
form of g(1)(r, t ) take much longer to form than the low-order
ones (see [75]).

To obtain an estimate for the upper critical dimension,
we analyze the relative scaling of the quadratic and higher-
order contributions to the effective action (43). Considering
the Schwinger-Keldysh action S(t ) = ∫ t

C,tref
dt ′L(t ′) integrat-

ing from a reference time tref to the present evolution time t

063622-12



LOW-ENERGY EFFECTIVE THEORY OF NONTHERMAL … PHYSICAL REVIEW A 99, 063622 (2019)

and back, its scaling is defined as

S(s−1/βt ) = sdS S(t ), (123)

with canonical scaling dimension dS = [S] of the action.
Using the dynamical canonical scaling dimension of the field
θa at the nonthermal fixed point

[θa] = −α/2β = −d/2, (124)

we obtain (see Appendix I for details) the canonical scaling of
the quadratic, cubic, and quartic parts of the action (43):

[S(2)] = 2z − γ − 1/β = 0, (125a)

2[S(3)] = d + 4 + 2z − 2γ − 2/β = d + 4 − 2z, (125b)

[S(4)] = d + 4 − γ − 1/β = d + 4 − 2z, (125c)

where we considered twice the scaling dimension of the 3-
vertex as it occurs in even multiples in any diagram contribut-
ing to the two-particle irreducible (2PI) effective action, and
inserted, in the respective second equations, γ = 2z − 2 and
1/β = 2.

For the nonthermal fixed point to be a Gaussian fixed point
in the IR scaling limit, the relative scaling conditions

2[S(3)] > [S(2)], [S(4)] > [S(2)] (126)

need to be fulfilled. This is the case in any dimension d > 0,
as d + 4 − 2z > 0 for z < (d + 4)/2.

A remark is in order. The above analysis is to be un-
derstood, in general, as giving a first estimate as, strictly
speaking, time-dependent correlation functions need to be
analyzed, e.g., within a functional renormalization-group ap-
proach [57,92,93] by studying the flows of �(n). Nonetheless,
for the fixed point considered here, the above arguments are
unlikely to fail for our fixed point in the large-N limit since
1/β = z and thus any scaling in time is governed by the
same exponent. The Gaussianity of the fixed point is further
corroborated by the fact that also the scattering described by
the integrals Il [ f ] scales to zero in the infinite-time limit. This
can be inferred from their scaling exponents μl defined in (85)
and (86) since, for z = 2, μ3 = μ4 = 2 − d , such that −μl −
α/β = −2 < 0 and thus Il [ f ](k, t ) = t−2Il [ f ]([t/t0]1/2k, t0).
One should, however, be careful since that may rather in-
dicate a critical slowdown. Furthermore, we emphasize that
Gaussianity of the nonthermal fixed point here refers to phase
quasiparticles only, while in terms of the fundamental fields
the fixed point can easily appear to be non-Gaussian.

In this context, we furthermore point out that the scaling
of the T -matrix with ml = 2 is crucial for the validity of
the perturbative Boltzmann approach. As laid out in detail in
Ref. [63], the overoccupied momentum distributions would
lead to a divergence of the scattering integral in the low-
momentum limit and thus to a breakdown of the perturbative
kinetic Boltzmann description of the transport process. In the
context of wave turbulence, this problem is well known to
lead to what is called strong wave turbulence [21], requir-
ing a modified kinetic equation. Within the formulation in
fundamental fields, a nonperturbative approximation of the
kinetic equation is required to remedy this problem for the
present case of a nonthermal fixed point, implying a T -matrix
which scales to zero at low-momentum transfers [60,61,63].

Here, however, the T -matrix scales to zero at low-momentum
transfers already within the perturbative Boltzmann approxi-
mation, implying a Gaussian nonthermal fixed point and thus
validity of the approach also in the scaling limit.

Given the applicability of the above arguments, comparing
(125a) and (125c), we find that the 4-vertex is irrelevant as
compared to the free action for z < (d + 4)/2, independent of
the value of β. Leaving β arbitrary, we find that the condition
for the nonthermal fixed point to be non-Gaussian in d � dup

gives the upper critical dimension

dup = 2z − 6 + β−1, (127)

which is determined solely by the 3-vertex. To obtain an upper
critical dimension dup � 1 requires

β−1 � dup + 6 − 2z. (128)

For example, considering the scaling exponent β−1 � 5 found
in [70,94] in d = 2 dimensions and assuming the above gen-
eral arguments to be applicable there, the value of β implies
dup = 2z − 1 � 1 for z � 1. Hence, for the fixed point to be
a non-Gaussian one in d = 2 dimensions, the relevant z is
required to be equal to or exceed z = 3

2 .
We finally remark that one can analyze, in an analogous

manner, the stationary spatial scaling of the cubic and quartic
parts of the Lagrangian as compared to the Gaussian part.
This shows as well that, for the cases considered here, the
upper critical dimension vanishes or is negative. Hence, we
expect that in the scaling limit, the Gaussian approximation
considered in the previous sections is valid. Nevertheless,
the interaction part of the action is crucial for the universal
scaling transport to occur at all. In the course of the rescaling,
leading closer to the fixed point, these interactions become
increasingly suppressed, vanishing asymptotically at the fixed
point.

C. Concluding remarks on the scaling dynamics

To close the topic, let us briefly summarize the results
obtained above and compare them with already known ones.

For the model (1), the scaling exponent β has previously
been predicted, within a large-N approximation, by means of
a scaling analysis of nonperturbative wave-Boltzmann-type
kinetic equations governing the time evolution of na(k, t )
[60,61,63]. As the scaling evolution is subject to a con-
servation law, α and β are not independent. In the large-
N limit studied there, the scaling dynamics corresponds to
transport in momentum space which conserves the density
ρa = ∫k na(k, t ) ≡ const [95], i.e., one finds α = β d in d
dimensions. As β is positive, the transport is directed toward
the infrared.

Analyzing this transport to lower k by means of kinetic
equations describing the four-wave scattering between free
quasiparticle modes, it was found that β = 1/z [63]. This
result is independent of d and N and related to the dynami-
cal scaling exponent z governing the dispersion ωqp(k) ∼ kz

of the quasiparticles entering the kinetic description of the
transport.

Our low-energy effective theory derived above provides an
alternative, perturbative way of predicting scaling evolution of
the type (2), which is complementary to the nonperturbative
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approach chosen in [60,61,63]. According to our theory, the
occupation numbers at k � k	 are dominated by the phase ex-
citations na(k, t ) � ρ (0)

a F [〈e−iθa (x,t )eiθa (y,t )〉](k), where F de-
notes the Fourier transform with respect to x − y of the on av-
erage translation-invariant phase correlator (cf. Appendix A).
We find analytically that the dynamical exponent z, in the
large-N limit, is z = 2, corresponding to the Goldstone disper-
sion (8) and confirming the numerical results of, e.g., [62,96].

The effective action (43) includes nonlinear interaction
terms ∼θ l , l = 3, 4, between the phase modes. These in-
teractions lead to the nonlinear transport describing scaling
evolution of the type (2). This can be shown in terms of
kinetic wave-Boltzmann equations governing the phase exci-
tation spectra 〈θa(k, t )θa(−k, t )〉, in analogy to [60,63] (cf.
Sec. III A). As we outline in more detail in Sec. III B, for
the four-wave interaction term, which dominates the spatial
scaling in the IR limit, the scaling analysis of our kinetic
integrals in a large-N approximation yields β = 1

2 and ζ =
d + 1. Hence, the infrared scale is predicted to algebraically
decrease in time, k
(t ) ∼ t−β .

We have, moreover, studied the case of N = 1. We find,
in particular, the same value for the exponent β = 1

2 is pre-
dicted despite the different dynamical exponent z = 1 of the
sound-wave dispersion, linearly scaling at low momenta (see
Sec. III B 4). The cases 1 � N < ∞ are less straightforward
and will be the subject of a forthcoming publication.

Our analytical results are, within errors, consistent with
the truncated Wigner simulations shown in Fig. 1. This is
seen when taking into account that in leading approxima-
tion, the phase and phase-angle correlators of the transla-
tionally invariant system are related by 〈e−iθa (x,t )eiθa (y,t )〉 �
exp{〈θa(x, t )θa(y, t )〉}. From this relation, the phase-angle
correlator is approximately given by

〈θa(r + x, t )θa(x, t )〉 ≈ −k
(t ) |r| + O(|r|2). (129)

If this is valid in d dimensions, up to additive terms involving
cutoffs, the phase correlator scales as 〈θa(k, t )θa(−k, t )〉 ∼
|k|−(d+1), as analytically predicted within our low-energy
effective theory (ζ = d + 1).

We find that the consistency between our perturbatively
obtained scaling exponent and the nonperturbative results of
[60,62,63] crucially relies on the momentum scaling of the
effective coupling (38) which is shown here to be related to
the scaling ∼k2 of the hydrodynamic kinetic energy. In fact,
g1/N depends only on momentum, density, and particle mass,
but not on the microscopic coupling g. These same properties
were found for the universal effective coupling function which
enters the nonperturbative kinetic scattering integrals derived
previously [63].

We stress that, whereas in [42–47] scaling evolution after
quenches of the gap and interaction parameters from a thermal
initial state have been discussed in the context of a large-
N approximation applied to a scalar O(N ) model, as well
as perturbative, ε expansion, and functional renormalization
group, resulting scaling forms do not allow for the scaling to
be discussed here. While the cited work accounts for scaling
in the context of critical coarsening, initial-slip dynamics
and aging phenomena [18,97–100], for the type of quenches
considered there, the same (initial-slip) scaling exponent re-
sults for the correlation and response functions [100]. It is an

interesting question beyond the scope of this work as to how
initial-slip scaling manifests in the context of a nonthermal
fixed point.

We finally emphasize that the nonthermal fixed point iden-
tified within the low-energy effective theory derived here
turns out to have a Gaussian character with respect to the
relevant degrees of freedom. As we discussed in more detail
in Sec. III B 5, the contributions to the action which are cubic
and quartic in θ exhibit subdominant scaling as compared
to the Gaussian part and thus rescale to zero in the scaling
limit. One thus obtains, by standard scaling arguments for
the bare action, an upper critical dimension which is negative
for the nonthermal fixed point with β = 1

2 , dominated by the
sound and relative-phase excitations. We anticipate that fixed
points with smaller β, as observed in [70,94], involving the
interaction of nonlinear excitations and topological defects,
may have a positive upper critical dimension and thus have a
non-Gaussian character [101].

IV. NUMERICAL SIMULATIONS FOR N = 3 and d = 3

In the remainder of this article we complement our numer-
ical results presented in Ref. [75] and briefly in Sec. I with
further details and observables. We have solved the coupled
Gross-Pitaevskii equations resulting from the Hamiltonian (1)
for N = 3, in d = 3 spatial dimensions, by means of a spec-
tral split-step algorithm. We compute the time evolution of
the correlation functions within the semiclassical truncated
Wigner approximation [102].

We start with a far-from-equilibrium initial condition given
by a “box” momentum distribution na(k, t0) = n0 �(kq −
|k|), where, in the thermodynamic limit one can express
the occupation number as n0 = (4πk3

q )−1ρ (0), and all phases
θa(k, t0) are chosen randomly on the circle. As before, a =
1, 2, 3 enumerates the three components. We choose the
momentum cutoff for the initial condition to be kq = 1.4k	

leading to an initial occupation number of n0 � 2350. All
simulations are performed on a grid with Ng = 2563 grid
points using periodic boundary conditions. The corresponding
physical volume of our system is V = Ng	

3. The total parti-
cle number is N = ρ (0)V = 6.7 × 109, i.e., we have N a =
2.23 × 109 particles in each of the three components. The
correlation functions are averaged over 144 trajectories. Vary-
ing the UV cutoff of the grid does not change our numerical
results.

The initial condition in our simulations is chosen to take
an extreme out-of-equilibrium form. The modes are strongly
occupied, on the order of n0 ∼ ζ

−3/2
d . Here, ζd = aρ (0)1/3 is

the diluteness parameter which measures the scattering length
a in units of the interparticle spacing. The occupancy distri-
bution is cut off at a maximum scale kq which is on the order
of the relevant (healing) length scale set by the interactions,
i.e., of k	 = (8πaρ (0) )1/2. In physical terms, this means that
all particles are placed, predominantly, at a momentum scale
with kinetic energy equal to the interaction energy or chemical
potential μ = gρ (0) the gas has stored if it was fully Bose
condensed. The phases of the excited modes are random, i.e.,
no significant coherence prevails.

In practice, one may prepare such an initial state, e.g., by
applying a strong cooling quench to an equilibrated system
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FIG. 4. Zero-momentum mode of the single-component occupa-
tion number n1(k = 0, t ) (blue dots). According to (2) the universal
time evolution is given by n1(k = 0, t ) = (t/tref )α fS,1(k = 0). At late
times, t � 200 t	, we find α � d/2 = 3

2 (black solid line) consistent
with the analytical prediction within our low-energy EFT.

or by allowing the system to pass through an instability after
a parameter quench [56,63]. During the intermediate to long-
time evolution, the system can approach a nonthermal fixed
point and obey the scaling evolution (2) within a range of
modes 0 < k � k	.

In Fig. 1(a), we depict the evolution of the occupation
numbers of our system, starting from the above-described
initial condition (gray box). Figure 1(b) shows that, for times
t � tref = 31 t	, the momentum distribution, to a good ap-
proximation, undergoes a scaling evolution according to (2).
Rescaling the distributions at different times during this period
they collapse to a single universal scaling function.

We have determined the respective scaling exponents α

and β resulting from least-square rescaling fits of the occupa-
tion spectra within a time window [tref , tref + �t] with �t =
146 t	. The resulting tref -dependent exponents are shown in
Fig. 2, confirming, within errors, the relation α = β d in
d = 3 dimensions. We find similar results (not shown) for the
other components. For all three components, the exponent β

is slightly larger than the value β = 1
2 analytically predicted

in the large-N limit and for N = 1.
Analyzing the time evolution of the zero-momentum mode

occupation n1(k = 0, t ) gives direct access to the scaling
exponent α as the universal dynamics according to (2) reduces
to n1(k = 0, t ) = (t/tref )α fS,1(k = 0). Figure 4 shows that at
late times t � 200 t	, the evolution is governed by α � d/2 =
3
2 consistent with our analytic prediction in the case of a
conserved quasiparticle number.

In Fig. 1(c), we show the first-order spatial coherence func-
tion g(1)

1 (r, t ) = 〈�†
1(x + r, t )�1(x, t )〉 for different times.

They take, to a good approximation, an exponential form at
short distances r � 	. Similar results are found (not shown)
for the components a = 2, 3. Such an exponential form of the
coherence function is reminiscent of that of a quasicondensate
in an equilibrium gas in one spatial dimension [85]. Hence, the
coherence function signals the buildup of a nonequilibrium
quasicondensate in three spatial dimensions, rescaling in time
and space toward a longer-range coherence. Further studies of
the correlation properties of this state concerning its relation
to an equilibrium quasicondensate are beyond the scope of this
work and are to be presented elsewhere.

FIG. 5. (a) Enlarged representation of the infrared scaling evo-
lution of the single-component occupation number n1(k) ≡ n1(k, t ),
for the same evolution times as shown in Fig. 1 (same color coding).
The solid black and dashed gray lines show the results obtained
by fitting the corresponding scaling functions to the IR part of the
distribution. At late times (cyan and purple), the data are close to
the scaling function n1(k, t ), defined in (130), which corresponds to
a first-order coherence function with exponential times cardinal-sine
form (131). For all evolution times, the data differ from the scaling
function nG

1 (k, t ) defined in (117) which corresponds to the purely
exponential first-order coherence function (116). This shows that,
although we observe an exponential decay at short distances in the
first-order coherence function, an additional oscillatory contribution
is present (see [75] for more details). Note that we do not claim
(130) to be the precise scaling form. (b) n1(k)−1 − n1(0)−1, with
the respective extrapolated fit value inserted for n1(k = 0) in order
to be independent of possible deviations due to the buildup of a
condensate in the zero mode. This representation clearly shows that
the data are better described by the scaling function n1 at late times.
The solid black line corresponds to the fit of Eq. (130) to the data for
the latest time shown (purple dots).

In the following, we want to briefly comment on the
form of the scaling function of the momentum distribution
na(k). Therefore, we compare the momentum distribution,
at different times, with two different scaling functions (see
Fig. 5). The first one, quoted in (117), is obtained within
the Gaussian approximation (112) of the relation between the
phase angle and the phase correlators. It corresponds to the
purely exponential first-order coherence function (116). The
second scaling function used takes the form

na(k, t ) = Cd k
(t )
[
4kd+1


 (t ) + |k|d+1
]−1

. (130)

Taking the Fourier transform of (130), for d = 3, gives

g(1)(r, t ) ≈ ρ (0)e−k
(t ) |r| sinc(k
(t ) |r|), (131)

which has an oscillatory contribution due to the cardinal-
sine function. We find that at late times, our data are ap-
proximatively described by the scaling function (130). The
scaling form (117), however, differs from the data for all
evolution times. Hence, the corresponding first-order coher-
ence function has an additional oscillatory contribution, which
becomes visible at larger distances. See [75] for more de-
tails. Accounting for the oscillatory part within our analytical
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FIG. 6. (a) Universal scaling dynamics of the relative phases C12(k, t ) = 〈|(�†
1�2)(k, t )|2〉 for a (d = 3)-dimensional gas with N = 3

components. The time evolution is starting from the initial box distribution. Colored dots show C12 at five different times. (b) The collapse of
the data to the universal scaling function fS,C (k) = C12(k, tref ), with reference time tref/t	 = 31 (units of t−1

	 = gρ (0)/2π ), shows the scaling
(87) in space and time. The universal scaling of C12(k, t ) confirms our hypothesis that the scaling behavior also affects the relative phases
of the components. Note that C12(k, t ) does not show a plateau in the IR but goes over to follow a scaling function with similar falloff at
higher momenta as the one for na(k, t ). The power law C12 ∼ k−4 in the scaling regime is only slightly modified as compared to that of na.
(c) Corresponding first-order coherence function of the relative phases g(1)

12 (r, t ) (colored dots), for the same system and the same color encoding
of time as in (a) and (b). Similar to the single-component first-order coherence functions we an exponential form of g(1)

12 (r, t ) at short distances
r � 	. Note the semilog scale.

treatment requires a more refined analysis of nonlinear phase
excitations, which is beyond the scope of this work.

We remark that the scaling form (130) is only one ex-
emplary choice which takes into account the most striking
features of na(k). To capture all details of the data, the scaling
form might involve additional terms. To determine the exact
scaling function is beyond the scope of this work.

We furthermore analyze the scaling evolution of the mo-
mentum distribution C12(k, t ) = 〈|�†

1�2(k, t )|2〉 and the cor-
responding spatial coherence function g12(r, t ) of the relative
phase operator which we show in Fig. 6. The rescaled data
collapse in a similar manner as the single-component occu-
pation numbers, with extracted exponents presented in Fig. 7.
The scaling function g(1)

12 in position space [Fig. 6(c)] shows a
form reminiscent of an exponential decay comparable to the
first-order coherence function.
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FIG. 7. Scaling exponents α/3 (orange stars) and β (blue dots)
obtained from least-square rescaling fits of the occupancy spectra
C12(k) ≡ C12(k, t ) shown in Fig. 6(b). The exponents correspond to
the mean required to collapse the spectra within the time window
[tref , tref + �t] with �t = 146 t	. Error bars denote the least-square-
fit error.

We finally analyze, in Fig. 8, the time evolution of the total
momentum distribution ntot (k, t ) =∑3

a=1 na(k, t ) in hydrody-
namic decomposition. This is obtained by decomposing the
kinetic energy distribution in momentum space into quantum
pressure (q), spin (s), nematic (n), incompressible (i), and
compressible (c) parts, as defined in detail in Appendix J.
The decomposition provides additional information on the
character of the hydrodynamic flows corresponding to the
phase field θa.

We point to the observation that the incompressible flow
arising from vortical motion is subdominant as compared to
the nematic and spin parts which determine the leading scaling
of the occupation number as ntot (k) ∼ k−4. The vortex flow
contributes significantly only at very small momenta, where
the plateau appears in the total number distribution at very
low momenta. In this regime, as is seen at times t/t	 = 31,
61, the nematic and spin parts fall off toward zero momentum
but this is compensated for by the incompressible part. Note
that the distributions shown in Fig. 8 result from the tensor
decomposition of the current which is a four-point function of
the Bose fields. Hence, nkin(k, t ). which is the sum of the hy-
drodynamic parts, deviates from ntot (k, t ) in the infrared [65].

We emphasize that the spin and nematic fluctuations are
determined by the fluctuations of the relative phases between
the field components a = 1, 2, 3. The corresponding momen-
tum distributions take the same form as the scaling function
shown in Fig. 6(b). The universal scaling of C12(k, t ) confirms
our hypothesis that the scaling behavior is dominated, for
nonzero N , by the relative phases of the components.

We additionally find that the incompressible as well as the
spin and nematic parts of the hydrodynamic decomposition
also exhibit universal scaling according to (2) (see Fig. 9).
The late-time value of β � 0.5 extracted for the universal
scaling of the spin and nematic parts [see insets Figs. 9(b) and
9(c)] demonstrates the crucial role of the relative phases to
the scaling behavior of the system. Interestingly, the scaling
behavior of the subdominant vortical flow in the system
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FIG. 8. Hydrodynamic decomposition of the flow pattern encoded in the phase-angle field θa, at an early time as well as for the four
evolution times in the universal scaling regime. Shown are momentum distributions n(δ)(k), derived from the decomposition of the kinetic
energy density into ε(δ)(k) = k2 n(δ)(k). The total occupation number ntot (blue dots) is compared to the distributions representing the quantum
pressure part n(q) (orange diamonds), the nematic n(n) (green squares), compressible n(c) (red triangles), incompressible n(i) (purple pentagons),
and spin n(s) (brown arrows) parts, as well as their sum nkin (pink thin diamonds). The incompressible part arising from vorticity in the system
exhibits a power-law decay with n(i)(k) ∼ k−14/3 (see dotted line). The total occupation number is dominated by the nematic and the spin parts
except for momenta deep in the IR regime where the decomposition is expected to fail. The interplay of the dominant parts with the steep
power law in the incompressible part leads to an overall power-law decay of ntot (k) ∼ k−4 (see dashed line) at intermediate momenta.

seems to be characterized by a scaling exponent β � 0.58
nearly unaffected by variations of the reference time [see inset
Fig. 9(a)]. For smaller N , in particular N = 1, vortices are ex-
pected to play a more prominent role [64–70] in the evolution
following a quench of the type considered here [103].

We finally mention that during the approach of the scal-
ing limit and thus of the nonthermal fixed point, the sys-
tem shows prescaling [75] (see also [105] in a perturbative
high-energy context). Our analysis demonstrates that (cf. in
particular Fig. 8) effects of nonlinear excitations such as
vortices, contributing to the incompressible flow, can induce
scaling violations of the single-component occupation num-
bers and coherence functions. On the other hand, also other

contributions such as 1/N corrections to the scaling analysis
could explain certain systematic deviations of the exponents
found at the largest simulation times from the predictions
presented in this work. A more detailed finite-N analysis is
the subject of future work.

V. CONCLUSIONS

We present a low-energy effective theory for the inter-
acting phase-angle excitations of a U(N )-symmetric Gross-
Pitaevskii model of N Bose fields with local quartic self-
coupling of the total particle density. The theory provides a
perturbative formulation of far-from-equilibrium low-energy

10−1 100

k (t/tref)
β (units of 1/Ξ)

100

102

104

106

n
(i

)
(k

)/
(t

/
t r

e
f
)α

Time (units of tΞ)

31

61

122

245

10−1 100

k (t/tref)
β (units of 1/Ξ)

100

101

102

103

104

105

n
(n

)
(k

)/
(t

/
t r

e
f
)α

Time (units of tΞ)

31

61

122

245

10−1 100

k (t/tref)
β (units of 1/Ξ)

100

101

102

103

104

105

n
(s

)
(k

)/
(t

/
t r

e
f
)α

Time (units of tΞ)

31

61

122

245

100 200

tref (units of tΞ)

0.5

0.6

0.7

β α/3

100 200

tref (units of tΞ)

0.5

0.6

β α/3

100 200

tref (units of tΞ)

0.5

0.6

β α/3

(a) (b) (c)

FIG. 9. Universal scaling dynamics of the occupation numbers representing the (a) incompressible n(i), (b) nematic n(n), and (c) spin n(s)

parts of the hydrodynamic decomposition (see Fig. 8) according to (2). The collapse of the data to the universal scaling functions f (δ)
S (k) =

n(δ)(k, tref ), with reference time tref = 31 t	, shows, in each case δ = i, n, s, the scaling (2) in space and time. The universal scaling exponents
α/3 (orange stars) and β (blue dots) obtained by means of a least-square fit to the data within the time window [tref , tref + �t] with �t = 146 t	
are depicted in the insets of each panel. For late times we find that the scaling exponent β extracted for the nematic and spin parts approaches
β � 0.5 while for the incompressible part it settles into β � 0.58. The scaling exponents corresponding to the time evolution of the nematic
and spin parts corroborate our hypothesis that the scaling behavior is dominated by the relative phases of the components.
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universal scaling dynamics at a nonthermal fixed point. This
is complementary to the nonperturbative approach on the basis
of fundamental Bose fields chosen previously, while being
technically easier to evaluate in the scaling regime.

Our approach provides the leading-order dynamical scaling
exponent z = 2 of the quasiparticle eigenfrequencies in the
large-N limit. This result for z closes a longstanding gap in
the nonperturbative kinetic-theory formulation of nonthermal
fixed points [56–61,63]. Applying the theory in the large-N
limit, we recover the universal scaling exponents at a nonther-
mal fixed point predicted previously within the nonperturba-
tive approach (cf. [60,63]).

We find analytically that, in leading order, the first-
order coherence function, close to a nonthermal fixed point,
falls off exponentially in space, g(1)(r, t ) ∼ e−k
(t ) |r|, with
a coherence-length scale rescaling as k
(t ) ∼ t−β in time,
with β = 1

2 both for the cases N = 1 and N → ∞. This
is reminiscent of equilibrium systems in d < 3 dimensions
where such an exponentially reduced long-range phase order
indicates the presence of a quasicondensate, with the static
coherence length depending on the coupling and/or tempera-
ture. Also in these situations, without spontaneous symmetry
breaking and a field expectation value singling out a zero-
momentum condensate mode, the states are characterized by
strong occupancies of the low-energy momentum modes of
the system.

Our analytical predictions are corroborated by the results
of truncated Wigner simulations for N = 3 in d = 3 dimen-
sions. Considering g(1)(r, t ) at short distances r = |r| where
it falls off exponentially, we are able to confirm, with high
accuracy, the analytic predictions β = 1

2 and α = d/2 for
the spatiotemporal scaling exponents, effectively leaving little
space for anomalous deviations.

This finding is consistent with our analytical result that the
corresponding nonthermal fixed point, which is approached
in the scaling limit of infinite evolution times, has a Gaussian
character as we argue by standard scaling arguments applied
to the bare action of the low-energy effective theory. In con-
trast, to obtain a positive upper “critical” dimension a much
smaller exponent β is required as, e.g., was found numerically
for an anomalous fixed point dominated by vortex interactions
in two spatial dimensions [70,94].

We emphasize that the numerically determined coher-
ence function, however, shows oscillations at larger distances
which are not covered by the analytical approach which rests
on a homogeneous background phase θ (0)

a . An extension of the
theory to a nonuniform θ (0)

a (r, t ) seems viable but is beyond
the scope of this work.

When evaluating our low-energy effective description for
the case of a single-component Bose gas N = 1, we find the
same spatiotemporal scaling exponent β = 1

2 , despite the fact
that the dynamical exponent is z = 1 in this case. This analyt-
ical result corroborates earlier numerical findings presented in
[60,62,96].

Our results support the conjecture that related universal
scaling in O(N )-symmetric relativistic models (cf. [60,106]),
while the O(N ) symmetry is broken by the evolution, is
connected with the appearance of an approximately conserved
charge due to a remaining U(1) symmetry not broken by the
flow [75]. This was also seen in numerical simulations [107].

In consequence, we presume that β = 1
2 would apply also

for these systems, independent of N , reflecting relative phase
fluctuations between the field components and their universal
transport toward low momenta. As the nonthermal fixed-point
scaling relation α = dβ, to a good approximation, holds also
for the relative-phase correlators Cab(k, t ) shown in Fig. 6 as
well as for the spin contributions to the energy spectrum seen
in Fig. 9, a further emerging symmetry is expected to play
an important role. This symmetry has been conjectured to be
related to the suppression of density fluctuations in the system
[75] and will be further discussed elsewhere.

From our analytical results in the large-N limit and for
the case N = 1 together with our numerical results for
N = 3, we propose that the universality class correspond-
ing to the scaling exponent β is related to the dynamical
breaking of a U(1) symmetry and therefore independent of
N . Our approach offers itself for a refinement using field-
theoretic renormalization-group techniques and for applica-
tions to small-N spin systems available in experiment.

In the following Appendices, we provide further details of
the calculations leading to our results presented in the main
text.
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APPENDIX A: NOTATION

In this paper, we adopt the (−,−,−,+) signature
convention for the metric so that the scalar product of
two (d + 1) vectors x = (x1, . . . , xd , x0) = (x, x0) and y =
(y1, . . . , yd , y0) is given by xy = x0y0 − xy. Define the Fourier
transform as

F [ f (x)](p) ≡ f (p) =
∫

x
e−ipx f (x),

(A1)

F−1 [ f (p)](x) ≡ f (x) =
∫

p
eipx f (p),

063622-18



LOW-ENERGY EFFECTIVE THEORY OF NONTHERMAL … PHYSICAL REVIEW A 99, 063622 (2019)

with the shorthand notations
∫

x ≡ ∫ dd+1x and
∫

p ≡∫
dd+1 p/ (2π )d+1. We also introduce the Fourier transform

over only space (time) variables:

f (k, t ) =
∫

x
eikx f (x, t ) =

∫
ω

eiωt f (k, ω),

f (x, ω) =
∫

t
e−iωt f (x, t ) =

∫
k

e−ikx f (k, ω). (A2)

APPENDIX B: LOW-ENERGY EFFECTIVE ACTION
OUT OF EQUILIBRIUM

In many cases, the description of a system of interest can
be significantly simplified if one only considers the physics
above some length scale 1/
 or, equivalently, below a mo-
mentum and thus energy scale 
. This typically is the case if
there is a separation of scales and the dynamics distinguishes
fields with different masses (“heavy” vs “light” field modes)
or if some degrees of freedom are suppressed compared to the
others (“fast” vs “slow” modes). A low-energy effective field
theory is then obtained by integrating out the fast (i.e., heavy)
fluctuations. The matching condition reads as

Tr [ρ(t )O(t )] = Tr [ρeff (t )O(t )], (B1)

where O(t ) is an operator measuring only slow (light) degrees
of freedom.

In the following, we will discuss the evaluation of the
above expectation value within the Schwinger-Keldysh ap-
proach and the Feynman-Vernon influence-functional ap-
proach [83] (for details, see also [108]). Assuming that the
initial density matrix ρ̂(t0) at a distant past time t0 splits into
phase and density fluctuations, and that the density fluctuation
part can be taken in Gaussian approximation, it becomes clear
that the computation of the low-energy effective action can be
done as in a standard zero-temperature approach. The reason
behind this is that, when moving toward a nonthermal fixed
point in a closed system, the system loses its memory about
the details of the initial state, similarly as driven-dissipative
[109] and equilibrium systems. As a consequence, the above
assumptions are expected to be well justified.

Let us consider the example where ϕ(x) describes the slow
modes and ψ (x) the fast ones with the following action:

S[ϕ,ψ] = Sϕ[ϕ] + Sψ [ψ] + Sint[ϕ,ψ], (B2)

where Sϕ[ϕ] and Sψ [ψ] are the (semi)classical actions that do
not contain any mixing terms and thus describe independent
dynamics of the fields, while Sint[ϕ,ψ] corresponds to inter-
action between two fields.

The total density matrix of the whole system is given by

ρ[ϕ,ψ ; t] = 〈ϕ+, ψ+| ρ̂(t ) |ϕ−, ψ−〉, (B3)

where ± denotes that the field is defined on the positive or
negative branch of the closed time path, respectively. Accord-
ing to the above, the reduced (or effective) density matrix,
which is the object of interest, is then defined by tracing out
the fast modes at the time t considered,

ρeff [ϕ; t] =
∫

dψ 〈ϕ+, ψ | ρ̂(t ) | ϕ−, ψ〉. (B4)

→ ∞

C+

C−

x0

ψ−
0 , ϕ−

0

ψ+
0 , ϕ+

0

t0

ψ̄, ϕ̄+

ψ̄, ϕ̄−

t

FIG. 10. Contour summarizing (B9) and (B10).

Quite often, the initial state can be chosen to be described by
a Gaussian density matrix. Higher-order correlations in this
case are built up during the evolution. Similarly, hereafter we
assume that the initial density matrix is factorized, i.e.,

ρ̂(t0) = ρ̂ϕ (t0) × ρ̂ψ (t0), (B5)

where ρ̂ϕ (t0) and ρ̂ψ (t0) are the initial density operators of
the fields ϕ and ψ , respectively. The condition (B5) implies
the absence of correlation between ϕ and ψ at t = t0. Never-
theless, due to the presence of the interaction term Sint[ϕ,ψ],
the latter will be generated at later times t > t0. In our case,
ϕ → θ and ψ → δρ so that (B5) means that there is no
correlation between phase and density fields in the initial
configuration. In the absence of topological defects, this is
typically an adequate assumption.

The evolution of the reduced matrix ρeff [ϕ, t] then reads as

ρeff [ϕ̄; t] =
∫

[dϕ+
0 ][dϕ−

0 ] (ϕ̄; t | ϕ0; t0)ρeff [ϕ0; t0], (B6)

where we use the bar to label the value at the time t . The
transition amplitude can be expressed in terms of a closed-
time path functional integral

(ϕ̄; t | ϕ0; t0) =
∫ ϕ̄+

ϕ+
0

D ′ϕ+
∫ ϕ̄−

ϕ−
0

D ′ϕ− eiSeff [ϕ], (B7)

with

Seff [ϕ] = Sϕ[ϕ+] − Sϕ[ϕ−] + SIF[ϕ+, ϕ−] (B8)

being the full effective action while SIF is the influence action.
The latter is given by

F[ϕ+, ϕ−]

≡ eiSIF[ϕ+,ϕ−]

=
∫

[dψ̄]
∫

[dψ+
0 ][dψ−

0 ] ρψ [ψ0; t0]
∫ ψ̄

ψ+
0

D ′ψ+

×
∫ ψ̄

ψ−
0

D ′ψ− ei{Sψ [ψ+]+Sint [ϕ+,ψ+]−Sψ [ψ−]−Sint [ϕ−,ψ−]},

(B9)

where we have introduced the so-called Feynman-Vernon in-
fluence functional F [83], which can be conveniently rewritten
as

F[ϕ+, ϕ−] = 〈TC eiSint [ϕ,ψ]〉ψ, (B10)

with average being defined with respect to the ψ-field density
matrix. Note that the Schwinger-Keldysh contour can be
depicted as shown in Fig. 10.
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Now, given the effective action Seff [Eqs. (B8) and (B9)], we can define the effective generating functional Zeff [J, R; ρ̂eff,0]:

Zeff [J, R; ρ̂eff,0] =
∫

[dϕ+
0 ][dϕ−

0 ] ρeff [ϕ0; t0]
∫ ϕ−

0

ϕ+
0

D ′ϕ ei{Seff [ϕ]+∫x,C ϕ(x)J (x)+ 1
2

∫
xy,C ϕ(x)R(x,y)ϕ(y)}

=
∫

[dϕ+
0 ][dϕ−

0 ] ρeff [ϕ0; t0]
∫ ϕ−

0

ϕ+
0

D ′ϕ ei{Sϕ [ϕ+]−Sϕ [ϕ−]+SIF[ϕ+,ϕ−]+∫x,C ϕ(x)J (x)+ 1
2

∫
xy,C ϕ(x)R(x,y)ϕ(y)}

=
∫

[dϕ0dψ0] ρ[ϕ0, ψ0; t0]
∫ ϕ−

0 ,ψ−
0

ϕ+
0 ,ψ+

0

D ′ϕ D ′ψ ei{Sfull[ϕ,ψ]+∫x,C ϕ(x)J (x)+ 1
2

∫
xy,C ϕ(x)R(x,y)ϕ(y)}

, (B11)

where we have introduced

Sfull[ϕ,ψ] ≡ (Sϕ[ϕ+] + Sψ [ψ+] + Sint[ϕ
+, ψ+]) − (Sϕ[ϕ−] + Sψ [ψ−] + Sint[ϕ

−, ψ−]), (B12)

and the condition ψ̄+ = ψ̄− = ψ̄ is implied. In the last line, we also used the following property:

ρeff [ϕ0; t0] =
∫

dψ 〈ϕ+
0 , ψ | ρ̂(t0) | ϕ−

0 , ψ〉 = ρϕ[ϕ0; t0]
∫

dψ 〈ψ | ρ̂ψ (t0) | ψ〉 = ρϕ[ϕ0; t0] Tr[ρ̂ψ (t0)] = ρϕ[ϕ0; t0]. (B13)

By comparing the first line of (B11) with the last one we get the final expression for the effective action:

exp {iSeff [ϕ]} = exp {i(Sϕ[ϕ+] − Sϕ[ϕ−])}
∫

[dψ+
0 ][dψ−

0 ] ρψ [ψ0; t0]

×
∫ ψ−

0

ψ+
0

D ′ψ exp {i(Sψ [ψ+] + Sint[ϕ
+, ψ+] − Sψ [ψ−] − Sint[ϕ

−, ψ−])}, (B14)

with condition ψ̄+ = ψ̄− = ψ̄ being, again, implied. As a
result, assuming that the initial density matrix of the heavy
modes ρψ [ψ0; t0] takes the form of a Gaussian ground states,
the integral in (B14) falls into two independent factors, the
positive and negative closed-time path zero-temperature con-
tributions. It follows that the influence functional F is formally
equivalent to the Keldysh vacuum generating functional, and
the influence action (B9) is the vacuum effective action. Since
in this work we concentrate on dynamics at the nonthermal
fixed point, which is formally reached only at t → ∞, we
can use the memory loss property of nonthermal fixed points,
as well as the fact that density fluctuations are suppressed,
to choose the reference time t0 such that the density matrix
of the corresponding density fluctuations can be taken in
Gaussian approximation in the ground state, thus reducing the
computation of the effective action to the zero-temperature
case, as pointed out above.

APPENDIX C: EIGENVALUES OF THE MASS MATRIX

In this Appendix, we determine the eigenvalues of the mass
matrix

Mab =
(

k2

2m

)2

δab + 2gρ (0)
n

k2

2m
δnb, (C1)

where no assumptions on the values of ρ
(0)
b were made.

We define a = (k2/2m)2, bn = 2gρ (0)
n (k2/2m) such that this

matrix can be rewritten as

M = a IN×N + JN×N P

=

⎛
⎜⎜⎝

a + b1 b2 . . . bN

b1 a + b2 . . . bN
...

...
. . .

...
b1 b2 . . . a + bN

⎞
⎟⎟⎠. (C2)

Here, IN×N is the unit matrix, JN×N is the matrix of ones, and
P = diag (b1, . . . , bN ).

We now take a look at the second term. This matrix
contains N identical rows, and hence it has the eigenvalue
λ = 0 with an algebraic multiplicity N − 1. It is easy to check
that the corresponding eigenvectors are given by

e1 = (−1, 1, 0, . . . , 0)T , e2 = (−1, 0, 1, . . . , 0)T , . . . ,

eN−1 = (−1, 0, 0, . . . , 1)T , (C3)

meaning that the geometric multiplicity is also N − 1. The
remaining eigenvalue

JN×N P eN =
(∑

i

bi

)
eN (C4)

corresponds to the eigenvector

eN = (1, 1, . . . , 1)T . (C5)

Hence, we conclude that M possesses the eigenvalue λ = a
with multiplicity N − 1 and λ = a +∑i bi with multiplicity
1. We thus have two types of excitation modes, with eigenfre-
quencies being the square roots of these eigenvalues:

ω1(k) = ω2(k) = · · · = ωN−1(k) = k2

2m
, (C6)

ωN (k) =
√

k2

2m

(
k2

2m
+ 2gρ (0)

)
. (C7)

APPENDIX D: SPONTANEOUS SYMMETRY BREAKING

In this Appendix, we discuss the breaking of the U(N )
symmetry by the particular choice of initial conditions we
apply. In the respective ground state, this corresponds to
spontaneous symmetry breaking. Consider the N-component
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Gross-Pitaevskii Lagrangian in the absence of external poten-
tial:

L = i

2
[ϕ∗

a (x)∂tϕa(x) − ϕa(x)∂tϕ
∗
a (x)]

− 1

2m
[∇ϕ∗

a (x)] · [∇ϕa(x)] − g

2
[ϕa(x)ϕa(x)]2. (D1)

On a classical level, a mean-field expectation value of ϕ can
be derived from the classical potential

V (|ϕa|) = g

2

(∑
b

|ϕa|2
)2

, (D2)

which yields a zero-valued ground state. This is not surprising
since (D1) corresponds to a vacuum QFT. In condensed
matter physics, one is typically interested in field theories with
nonzero background densities. To obtain a finite background
density, one introduces Lagrange multipliers associated with
the U(1) charges for each component,

j0
a = ∂L

∂ (∂0ϕa)

δϕa

δα
+ c.c. = ϕ∗

aϕa = ρa, (D3)

where ∂0 ≡ ∂t , and the aforementioned U(1) symmetries read
as

ϕa → e−iαϕa, ϕ∗
a → eiαϕ∗

a . (D4)

Introducing the chemical potentials one replaces

H → H − μaNa, (D5)

with particle number Na = ρaV in volume V , and thus, in
nonrelativistic case,

L → L + μaϕ
∗
aϕa. (D6)

We note that this, in general, explicitly breaks the U(N )
symmetry into a product U(1)×N . The classical potential then
takes the form

V (|ϕa|) = −μa|ϕa|2 + g

2

(∑
b

|ϕa|2
)2

. (D7)

Varying with respect to, e.g., ϕ∗
b one gets the conditions(

μb − g
∑

a

|ϕa|2
)

ϕb = 0, b = 1, . . . , N. (D8)

It follows directly that, in order to have a nonvanishing am-
plitude ϕb of component b, the associated chemical potential
must be μb = gρ, with total density ρ =∑a ρa. Hence, the
chemical potentials for all nonvanishing densities need to be
equal and given by the total density. Therefore, in the ground
state, the densities will be nonzero in the subspace having
identical chemical potentials with the largest value, while the
rest are zero. These nonvanishing ground-state densities ρ (0)

a
add up to the total density ρ (0) = μ/g set by the chemical
potential μ for the respective components.

In order to have a nonzero total density without speci-
fying densities of each component and thus remain a U(N )

symmetry, a chemical-potential term is introduced as

H → H − μN ←→ L → L + μϕ∗
aϕa, (D9)

which is equivalent to fixing only the total density. We note
that the above is equivalent to replacing, with μ = gρ (0),

− g

2

(∑
b

ϕ∗
bϕb

)2

→ − g

2

(∑
b

ϕ∗
bϕb − ρ (0)

)2

. (D10)

Let us close the discussion with the following remark.
Above we tried to preserve a full U(N ) symmetry. On the
other hand, this symmetry might be explicitly broken in
experimentally relevant scenarios. Indeed, in the experiment,
particle number is typically specified for each component.
One can take care of this by choosing an appropriate initial
density matrix ρ̂(t0) which fixes the expectation values of the
particle-number operators at t = t0. In this paper, we disregard
this subtlety and only take it into account by choosing the
vacuum with ρ (0)

a �= 0 for each component.

APPENDIX E: INVERSE OF THE KERNEL g̃ab

To derive the inverse of g̃ab defined in Eq. (34), we consider
a general N × N matrix of the form U (u, v) = uI + v ⊗ v,

where v = (v1, v2, . . . , vN )T and ⊗ denotes an outer (tensor)
product. To find the inverse of U (u, v) we use the ansatz
U −1(u, v) = xI − y ⊗ y, which yields the condition

xu δi j − u yiy j + x viv j − (v · y) viy j = δi j, (E1)

where we used (v ⊗ v) · (y ⊗ y) = (v · y)v ⊗ y. We note that,
if v = 0, then obviously also y = 0 such that we get x = 1/u
and the above condition becomes

yiy j − vi

u

v j

u
+ (v · y)

vi

u
y j = 0. (E2)

This is a system of nonlinear equations, which, in principle,
cannot be solved analytically. However, we note that the above
system is almost symmetric in y ↔ v/u, which gives a hint to
use the following ansatz as a solution: y = cv, where c > 0 is
some positive constant. Using this we obtain

(
c2 − 1

u2
+ c2∑

j v
2
j

u

)
viv j = 0, (E3)

such that

c2 = 1

u
(
u +∑ j v

2
j

) → yi = vi√
u
(
u +∑ j v

2
j

) . (E4)

According to (31) we can use these results with u =
(Ng/2)(k2/k2

	) and va = (Ngρ (0)
a /ρ (0) )1/2, a = 1, . . . , N , to

obtain the inverse of g̃ab as given in Eq. (34).
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APPENDIX F: REARRANGEMENT OF 3- AND 4-VERTICES

The three- and four-wave coupling terms (41) and (42), respectively, can be rewritten using∫
k,k′

k′ · (k′ − k)

g1/N(k)
∂tθa(−k, t )θa(k′, t )θa(k − k′, t ) =

∫
k2,k3

k2 · (k2 + k3)

g1/N(−k3)
∂tθa(k3, t )θa(k2, t )θa(−k2 − k3, t )

= −
∫

k1,k2,k3

k1 · k2

g1/N(k3)
δ(k1 + k2 + k3)θa(k1, t )θa(k2, t )∂tθa(k3, t ) (F1)

and ∫
k,k′,k′′

g−1
1/N(k) k′ · (k + k′)[k′′ · (−k + k′′)]θa(k′)θa(−k − k′)θa(k′′)θa(k − k′′)

= −
∫

k1,k2,k3

g−1
1/N(k1 − k2)(k1 · k2)[k3 · (k1 + k2 + k3)]θa(k1)θa(k2)θa(k3)θa(−k1 − k2 − k3)

=
∫

k1,k2,k3,k4

g−1
1/N(k1 − k2)(k1 · k2)(k3 · k4)θa(k1)θa(k2)θa(k3)θa(k4)δ(k1 + k2 + k3 + k4), (F2)

where we also used that g1/N(k) = g1/N(−k). Taking the above terms together gives the effective action (43).

APPENDIX G: NONLINEAR SIGMA MODEL

In Sec. II in the main text, the derivation of the low-
energy effective action required suppression of the density
fluctuations for each component. While possible, such an as-
sumption is definitely not always satisfied. For that reason, we
outline, in this Appendix, following [81], the derivation of the
effective theory which is independent of the aforementioned
assumption and only requires the suppression of the total
density fluctuations.

1. Field parametrization

To begin with, let us recall the basic statement of the
(Lorentz-invariant) Goldstone theorem. Suppose the La-
grangian is left invariant by a symmetry group G with n(G)
generators, whereas the vacuum is only invariant under a sub-
group H with n(H ) generators. Then, there are n(G) − n(H )
Nambu-Goldstone gapless bosons. In other words, Goldstone
excitations live in the coset space G/H . In our case, G is U(N )
and H is U(N − 1). Having the above in mind, we write the
following mathematical statement:

U(N )/U(N − 1) = S2N−1 . (G1)

In principle, we can now use the standard field parametrization
procedure as described in, e.g., [110]. However, since our
theory is not Lorentz invariant, the Goldstone theorem cannot
be applied directly [80,81]. Furthermore, recalling that the
Bogoliubov excitation is associated with a global phase, it
is tempting to set it apart directly. Since a phase can always
be seen as a point on a circle S1, we would like to, in some
sense, divide S2N−1 into an S1 piece and the rest. Using
the mathematical language, this can be done by a Hopf-type
fibration. One considers the S2N−1 sphere as an S1 bundle over
the complex projective space CPN−1.

The elements of the projective space CPN−1 are the
complex planes through the origin. For a complex plane
spanC(w = (Z1, . . . , ZN )T ) ⊆ R2N all points are associated
with each other and represented by a representative geometry.
In principle, the choice of the representative is completely
arbitrary, though usually it is possible to give a construction

that relates this abstract space to geometric shapes. To do so,
we normalize w: w′ = w/|w|. We note that w′ now lies on the
S2N−1 sphere. The intersection of the complex plane spanC(w)
and S2N−1 defines a circle of points S1. Any point on that
circle can now be chosen as the representative. Here, we just
take all points of the circle to be associated with one point
of the complex projective space. This defines the following
projection:

π : S2N−1 → S2N−1/S1 ∼= CPN−1, w′ → w′/S1. (G2)

This projection cannot be inverted globally but only locally.
S2N−1 can be understood as the set of representatives called
projective space with a circle S1 attached to each point.
Mathematically, this, together with some requirements on the
smoothness of the attachment, defines a fiber bundle on the
CPN−1 with fiber S1. Compared to the product CPN−1 × S1

the above fiber bundle has to be seen as a collection of circles
(S1

z )z∈CPN−1 , where copies are distinguished by the base point
z. This type of decomposition of a sphere is also called Hopf
fibration.

The fiber bundle should locally look like a product. There-
fore, around the ground state we are allowed to write the point
of the sphere as a product:

ψ = eiθχ, with ψ ∈ S2N−1, eiθ ∈ S1, χ ∈ CPN−1.

(G3)

Next, we parametrize the complex projective space using
homogeneous coordinates. Choosing some point (1, z), z ∈
CN−1, one can find a representative of the complex plane
spanned by this point

χ (z) = 1√
1 + z†z

(
1
z

)
, with z ∈ CN−1, (G4)

which lies on a unit sphere. We are now able to assemble our
field parametrization:

ϕ = √
ρψ = √

ρeiθ 1√
1 + z†z

(
1
z

)
, z ∈ CN−1, (G5)

with the ground state chosen ϕ(0) = (
√

μ/g, 0, . . . , 0)T , for
the sake of simplicity.
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2. Classical picture

Plugging the parametrization (G5) into the Gross-
Pitaevskii Lagrangian, one can then find that the Lagrangian
now takes the following form:

L = −ρ∂tθ + i

2

ρ

1 + z†z
(z†∂t z − H.c.)

− 1

2m

{
(∇√

ρ )2 + ρ

[(
∇θ + i

2

(∇z†)z − H.c

(1 + z†z)2

)2

+ (∇z†)(∇z)

1 + z†z
− (∇z†)z · z†(∇z)

(1 + z†z)2

]}
− g

2
ρ2 + μρ. (G6)

We first analyze the classical picture behind (G6). To that end,
we expand the Lagrangian up to the second order in fields and
use μ = gρ (0). The result reads as

L(2) = −δρ∂tθ + i

2
ρ (0)(z†∂t z − H.c.) − g

2
δρ2

− 1

2m

[
1

4ρ (0)
(∇δρ)2 + ρ (0)(∇θ )2 + ρ (0)∇z∇z†

]
.

(G7)

The corresponding Euler-Lagrange equations take the follow-
ing form:

∂tδρ = −ρ (0)

m
∇2θ, (G8a)

∂tθ = 1

4mρ (0)
∇2δρ − gδρ, (G8b)

i∂t z = −ρ (0)

2m
∇2z, (G8c)

and the same (complex-conjugate) equation for z†. Combining
(G8a) with (G8b), we get

∂2
t θ = ∇2

2m

(
−∇2

2m
+ 2gρ (0)

)
θ, (G9a)

i∂t z = −ρ (0)

2m
∇2z. (G9b)

With this, one obtains a global phase excitation with Bogoli-
ubov dispersion and N − 1 coupled (particle-hole) z excita-
tions with free-particle dispersion.

3. Effective action

Following the same procedure as in Sec. II B, we now want
to integrate out heavy degrees of freedom. In this case, those
are the longitudinal density fluctuations δρ since they cor-
respond to positive eigenmodes of the potential’s curvature.
By integrating them out, one can find, to the leading order in
derivative expansion, the following effective Lagrangian [81]:

Leff = ρ (0)

(
−∂tθ + i

2

z†∂t z − ∂t z†z

1 + z†z

)

− ρ (0)

2m

(
∇θ + i

2

z†∇z − ∇z†z

1 + z†z

)2

− ρ (0)

2m

(∇z†∇z

1 + z†z
− (∇z†z)(z†∇z)

(1 + z†z)2

)

− 1

2g

(
−∂tθ + i

2

z†∂t z − ∂t z†z

1 + z†z

)2

+ h.o.t. (G10)

We note that the resulting effective Lagrangian has a form
of a (nonrelativistic) nonlinear sigma model (NLSM) with
the Fubini-Study metric. As it was shown in [80], different
types of NLSM also appear in the experimentally relevant
system of an ultracold Bose gas with spin-spin interactions.
Furthermore, such models are known to enjoy stable topo-
logically nontrivial configurations, and it was observed that
dynamical properties of a nonthermal fixed point can change
dramatically in presence of topological defects (vortices) in
a Bose gas [64–67,70]. Finally, to close the discussion, let
us mention that out-of-equilibrium dynamics of nonlinear
sigma models has been considered in the context of disor-
dered metals and superconductors [111]. The discussion of
far-from-equilibrium dynamics within such nonlinear sigma
models is beyond the scope of this work and of interest for
future research.

APPENDIX H: KINETIC EQUATION

In this Appendix, we discuss the derivation of the quan-
tum Boltzmann equation for the Luttinger-liquid-like effec-
tive action (43) following the standard routine (see, e.g.,
[61,74,88,89]). We start with the Dyson equation written in
the following form:∫

z,C
G−1

0 (x, z)G(z, y) −
∫

z,C
[�(x, z) + iR(x, z)]G(z, y)

= δC(x − y). (H1)

In the absence of explicit external sources, the term R(x, y)
has a support only for x0 > t0 reflecting the initial density
matrix contribution. The initial condition for G(x, y) has to
be specified at x0, y0 = t0, while the subsequent evolution for
times t > t0 follows from (H1) with R = 0. Therefore, we
can set R(x, y) to zero at t > 0. See Appendix B for a more
detailed discussion of the relevance of the initial state within
our low-energy effective field theory description.

Recalling that θ (x) has a zero macroscopic value, we note
the classical inverse propagator G0(x, y) coincides with the
free propagator (44), which in real space reads as [112]

iG−1
0 (x, y; 〈θ〉 = 0)

= −K (x − y)∂2
x0δC(x0 − y0) + n(0)

a

m
∇2

xδC(x − y), (H2)

with

K (x − y) =
∫

k

e−ik(x−y)

gG(k)
. (H3)

Equation (H2) then takes the form

∂2
x0

∫
z

K (x − z)G(z, x0; y) − n(0)
a

m
∇2

x G(x, y)

+i
∫

z,C
�(x, z)G(z, y) = −iδC(x − y). (H4)
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Next, we decompose the propagator G(x, y) and the proper self-energy �(x, y) into spectral and statistical parts:

G(x, y) = F (x, y) − i

2
ρ(x, y) sgnC(x0 − y0), (H5a)

�(x, y) = −i�(0)(x)δ(x − y) + �F (x, y) − i

2
�ρ (x, y) sgnC(x0 − y0), (H5b)

where we also introduced the local part of the self-energy �(0)(x). Let us analyze each term in (H4) separately. The first term
takes the form∫

z
K (x − z)∂2

x0

[
F (z, x0; y) − i

2
ρ(z, x0; y) sgnC(x0 − y0)

]

=
∫

z
K (x − z)

[
∂2

x0 F (z, x0; y) − i

2
sgnC(x0 − y0)∂2

x0ρ(z, x0; y) − 2iδC(x0 − y0)∂x0ρ(z, x0; y) − iρ(z, x0; y)∂x0δC(x0 − y0)

]

=
∫

z
K (x − z)

[
∂2

x0 F (z, x0; y) − i

2
∂2

x0ρ(z, x0; y) sgnC(x0 − y0)

]
− iδC(x − y), (H6)

where we have used that [113]

∂x0 sgnC(x0 − y0) = 2δC(x0 − y0), ρ(z, x0; y)∂x0δC(x0 − y0) = −δC(x0 − y0)ρ(z, x0; y) (H7)

and

δC(x0 − y0)
∫

z
K (x − z)∂x0ρ(z, x0; y) = iδC(x0 − y0)

〈[∫
z

K (x − z)∂x0θ (z, x0), θ (y, y0)

]〉

= −iδC(x0 − y0)〈[θ (y, y0), πθ (x, x0)]|x0=y0〉 = δC(x0 − y0)δ(x − y) = δC(x − y). (H8)

Since the second term and the local part of the third one in (H4) are trivial, it is only left to consider the nonlocal part of the
latter:

i
∫

z,C

(
�F (x, z) − i

2
�ρ (x, z) sgnC(x0 − z0)

)(
F (z, y) − i

2
ρ(z, y) sgnC(z0 − y0)

)

=
∫

z

(∫ x0

t0

dz0 �ρ (x, z)F (z, y) − i

2
sgnC(x0 − y0)

∫ x0

y0
dz0 �ρ (x, z)ρ(z, y) −

∫ y0

t0

dz0 �F (x, z)ρ(z, y)

)
, (H9)

where we have used sgnC(x) = θC(x) − θC(−x) and properties of the Schwinger-Keldysh contour.
Collecting the results obtained above and comparing the real and imaginary parts of the resulting equation, we find the

following set of equations for statistical and spectral functions:

(D̂xF )(x, y) = −
∫ x0

t0

dz �ρ (x, z)F (z, y) +
∫ y0

t0

dz �F (x, z)ρ(z, y), (H10a)

(D̂xρ)(x, y) = −
∫ x0

y0
dz �ρ (x, z)ρ(z, y), (H10b)

where we have adopted the shorthand notation
∫ t2

t1
dz = ∫ t2

t1
dz0
∫

dd z. Above, we also introduced an integrodifferential operator

D̂x related to the real-space Green’s function and defined as

(D̂xh)(x, y) =
∫

z
K (x − z)∂2

x0 h(z, x0; y) − n(0)
a

m
∇2

x h(x, y) + �(0)(x)h(x, y). (H11)

The system of coupled equations (H10) describing the evolution of a two-point Green’s function is commonly referred as the
Kadanoff-Baym equations. Note that in the absence of approximations on the self-energy, these equations are exact. These
equations, however, are not feasible to solve analytically. Therefore, some further approximations are required, leading to
Boltzmann-type kinetic equations. Note that, in this work, we intend to perform a scaling analysis of the system at nonthermal
fixed points. This can be achieved using the Kadanoff-Baym equations directly [56–58], while, however, the scaling analysis of
the kinetic equations [59,60,63] is more straightforward and employs standard procedures [20,22].

To proceed, we perform the so-called gradient expansion [114,115] of the Kadanoff-Baym equations. To do so, we first
interchange x and y in the equations and subtract the result from (H10a) and (H10b), respectively. Using the relation between
retarded/advanced and spectral components one then gets

{(D̂x − D̂y)F }(x, y) =
∫

z
θ (z0)(F (x, z)�A(z, y) + GR(x, z)�F (z, y) − �R(x, z)F (z, y) − �F (x, z)GA(z, y)), (H12a)

{(
D̂x − D̂y

)
ρ
}

(x, y) =
∫

z
(GR(x, z)�ρ (z, y) + ρ(x, z)�A(z, y) − �ρ (x, z)GA(z, y) − �R(x, z)ρ(z, y)). (H12b)
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Next, we introduce center and relative coordinates

X μ
xy = xμ + yμ

2
, sμ

xy = xμ − yμ. (H13)

The idea is to approximate a finite-time description of the
system by employing the above equations with t0 → −∞.
This then allows for a systematic expansion with respect
to derivatives of X μ and powers of sμ. The analysis of the
right-hand side of (H12) is standard and can be found in, e.g.,
[61], and we therefore concentrate on the left-hand side. From
(H13) it immediately follows that

∂2
x0 = ∂2

s0
xy

+ ∂2
s0

xyX 0
xy

+ ∂2
X 0

xy
, (H14a)

∂2
y0 = ∂2

s0
xy

− ∂2
s0

xyX 0
xy

+ ∂2
X 0

xy
, (H14b)

which yields∫
z

{
K (x − z)∂2

x0 F (z, x0; y) − K (z − y)∂2
y0 F (x; z, y0)

}
=
∫

z

{
∂2

s0
xyX 0

xy
[K (x − z)F (z, x0; y) + K (z − y)F (x; z, y0)]

+ (∂2
s0

xy
+ ∂2

X 0
xy

)
[K (x − z)F (z, x0; y)

− K (z − y)F (x; z, y0)]
}
. (H15)

Next, following the idea of the Wigner distribution function,
we perform a Fourier transform with respect to relative coor-
dinates, i.e., we define

F (k, ω, X )

=
∫ 2X 0

−2X 0
ds0e−iωs0

∫ ∞

−∞
dd s eiksF

(
X + s

2
, X − s

2

)
, (H16)

ρ̃(k, ω, X )

= −i
∫ 2X 0

−2X 0
ds0e−iωs0

∫ ∞

−∞
dd s eiksρ

(
X + s

2
, X − s

2

)
,

(H17)

and similarly for �F and �ρ . Here, the imaginary unit i factor
was added to have ρ̃(X, k, ω) real [116]. Finally, while, for
given finite X 0, relative coordinate s0 is limited by ±X 0, it
is standard to extend the integration limits in (H16) to ±∞,
which is related to the assumption t → −∞ that has been
done above. With all that in mind, we perform a Fourier
transform of both sides of (H12) with respect to the relative
coordinate sxy. Again, we focus on (H15) since the rest is
either similar or standard for any (scalar) theory. To that end,
we first perform a spatial transformation, e.g.,

∫
z

∫
sxy

eiksxy K (sxz )F

(
Xzy + szy

2
, X 0

xy + s0
xy

2
; Xzy − szy

2
, X 0

xy − s0
xy

2

)

=
∫

z

∫
sxy

∫
p

eiksxy−ipsxz K
(

Xzy + szy

2

)
F

(
p, X 0

xy + s0
xy

2
; Xzy − szy

2
, X 0

xy − s0
xy

2

)

=
∫

z

∫
sxy

∫
p

∫
q

eiksxy−ipx+iqy+i(p−q)zK (p)F (q, x0, y0) =
∫

sxy

∫
p

ei(k−p)sxy K (p)F (p, x0, y0) = K (k)F (k, x0, y0), (H18)

where K (k) = (gG(k))−1, which immediately follows from (H3). Here, we have already assumed no dependence on spatial
central coordinates due to homogeneity of the system. We thus conclude that after the spatial Wigner transform the right-hand
side of (H15) becomes

(H15) → ∂2
s0

xyX 0
xy

[K (k)F (k, x0, y0) + K (k)F (k, x0, y0)] + (∂2
s0

xy
+ ∂2

X 0
xy

)
[K (k)F (k, x0, y0) − K (k)F (k, x0, y0)]

= 2K (k)∂2
s0

xyX 0
xy

F (k, x0, y0). (H19)

As it was already mentioned, the remaining part of the anal-
ysis is standard and can be found in [61]. In short, we finally
end up with the set of the so-called transport equations

2k0

gG(k)

∂F (k, X 0)

∂X 0
= �̃ρ (k, X 0)F (k, X 0)

−�F (k, X 0)ρ̃(k, X 0), (H20a)

2k0

gG(k)

∂ρ̃(k, X 0)

∂X 0
= 0, (H20b)

which are the leading-order equations with respect to ∂X μ

and kμ expansion. Note that (H20b) implies that the spectral
remains unchanged during the evolution.

It remains to compute the self-energies �̃ρ and �F in some
chosen approximation. In this paper, we restrict ourselves
to only first nontrivial contributions to the self-energy (see
Fig. 11 for a diagrammatic representation). We discuss the ad-
equacy of such an approximation a posteriori when discussing
the properties of the scattering matrix (see Sec. III B).

FIG. 11. First nontrivial diagrams that contribute to the proper
self-energy �(x, y). The lines represent full propagators G(x, y), the
vertices are introduced in Fig. 3.
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Before we proceed, let us define the real-space couplings:

γ (x1, . . . , x3) =
∫

p1,...,p3

ei(p1x1+···+p3x3 )γ (p1, . . . , p3)(2π )d δ

(
3∑

i=1

pi

)
, (H21a)

λ(x1, . . . , x4) =
∫

p1,...,p4

ei(p1x1+···+p4x4 )λ(p1, . . . , p4)(2π )dδ

(
4∑

i=1

pi

)
. (H21b)

Note that the sign might seem to be off (cf. Appendix A), but it reflects the definition∫
{ki}

gl (k1, . . . , kl )θ (k1, t ) . . . θ (kl , t ) ≡
∫

{xi}
gl (x1, . . . , xl )θ (x1, t ) . . . θ (xl , t ). (H22)

We are now in the position to analyze the diagrams. First, we note that the left, so-called tadpole, diagram is typically local
and only gives a shift of a mass. However, since the interactions of our low-energy effective action are nonlocal, one has to be
a bit more careful. Because the interaction term is still local in time, so is the tadpole. Therefore, it only contributes to �F and
has only a central coordinate X 0 = t . This implies that in Wigner space, i.e., after taking a Fourier transform with respect to
relative coordinates, it is proportional to δ(k0), as one expects from a time-local tadpole. Lastly, we notice that it only enters the
transport equations (H20) together with ρ̃(X 0, k), which is zero at k0 = 0. Hence, we conclude that the tadpole diagram does
not contribute to the kinetic equation.

Next, we consider the central (sunset) diagram. Its symbolic expression reads as

�2-loop(x, y) = −
∫

x1, x2, x3
y1, y2, y3

λ(x, x1, x2, x3)λ(y, y1, y2, y3)G(x1, t ; y1, t ′)G(x2, t ; y2, t ′)G(x3, t ; y3, t ′). (H23)

Introducing the shorthand notation G(xi, t ; yi, t ′) ≡ Gi, and employing the definition (H5a), it is straightforward to show that

G1G2G3 =
[

F1F2F3 − 1

4
(F1ρ2ρ3 + ρ1F2ρ3 + ρ1ρ2F3)

]
+
[

F1F2ρ3 + F1ρ2F3 + ρ1F2F3 − 1

4
ρ1ρ2ρ3

](
− i

2
sgnC(t − t ′)

)
,

(H24)
which combined with (H5b) yields

�F
2-loop(x, y) = −

∫
x1, x2, x3
y1, y2, y3

λ(x, x1, x2, x3)λ(y, y1, y2, y3)

[
F1F2F3 − 1

4
(F1ρ2ρ3 + ρ1F2ρ3 + ρ1ρ2F3)

]
, (H25a)

�
ρ
2-loop(x, y) = −

∫
x1, x2, x3
y1, y2, y3

λ(x, x1, x2, x3)λ(y, y1, y2, y3)

[
F1F2ρ3 + F1ρ2F3 + ρ1F2F3 − 1

4
ρ1ρ2ρ3

]
. (H25b)

Now, we perform a Wigner transformation. Since all the terms have a similar structure, we only consider a single of them:∫
{xi}, {yi}

sxy

λ(x, x1, x2, x3)λ(y, y1, y2, y3)ρ1F2ρ3e−iksxy =
∫

λ(p, p1, p2, p3)λ(q, q1, q2, q3)ρ1F2ρ3 e−iksxy+i(px+···+q3y3 )

× (2π )2d δ(p + p1 + p2 + p3)δ(q + q1 + q2 + q3). (H26)

Here, we suppressed the integration variables to ease the notation. Next, we notice that the integration over {xi} and {yi} can be
transformed into the integration over {sxy,i} and {Xxy,i} via a unitary transformation. Furthermore, we use that

eipixi+ipixi = ei(pi+qi )Xxy,i+i(pi−qi )sxy,i/2, (H27)

which, recalling that, for a spatially homogeneous system, Fi and ρi do not depend on spatial central coordinates, yields a series
of delta functions (2π )d δ(pi + qi ). We thus obtain

(H26) =
∫

λ(p, p1, p2, p3)λ(q,−p1,−p2,−p3) ei(−ksxy+px+qy+p1sxy,1+p2sxy,2+p3sxy,3 )ρ1F2ρ3(2π )2d δ(p + p1 + p2 + p3)

× δ(q − p1 − p2 − p3) =
∫

|λ(p, p1, p2, p3)|2ei(−ksxy+psxy+p1sxy,1+p2sxy,2+p3sxy,3 )ρ1F2ρ3(2π )d δ(p + p1 + p2 + p3)

= i2
∫

|λ(−k, p1, p2, p3)|2ei(−k0+p0
1+p0

2+p0
3 )s0

xyρ(p1, p0
1, X 0)F (p2, p0

2, X 0)ρ(p3, p0
3, X 0)(2π )d δ(−k + p1 + p2 + p3)

= −
∫

p,q,r
|λ(−k, p, q, r)|2ρ(p, X 0)F (q, X 0)ρ(r, X 0)(2π )d+1 δ(k − p − q − r), (H28)
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where in the last line we have changed the notation of dummy variables. Here, we adopted the notation |λ(k, p, q, r)|2 ≡
λ(k, p, q, r)λ(−k,−p,−q,−r). Repeating the same procedure for each term in (H25a) and recalling that for �ρ an additional
factor −i has to be added, we conclude that up to two loops the transport equations take the form

2k0

gG(k)

∂Fk

∂X 0
=
∫

p,q,r
|λ(−k, p, q, r)|2

[
ρ̃kFpFqFr + 1

4
ρ̃k (Fpρ̃qρ̃r + ρ̃pFqρ̃r + ρ̃pρ̃qFr )

− FkFpFqρ̃r − FkFpρ̃qFr − Fk ρ̃pFqFr − 1

4
Fk ρ̃pρ̃qρ̃r

]
(2π )d+1 δ(k − p − q − r), (H29a)

2k0

gG(k)

∂ρ̃k

∂X 0
= 0, (H29b)

where Fk ≡ F (k, X 0), ρ̃k ≡ ρ̃(k, X 0). We now write, without any loss of generality, the generalized relation

F (k, X 0) = ( f (k, X 0) + 1
2

)
ρ̃(k, X 0), (H30)

which in the equilibrium case reduces to the Callen-Welton fluctuation-dissipation theorem. Changing in (H29a) the integration
variable p → −p and employing that for a real scalar theory one has

F (−p, X ) = F (p, X ), ρ̃(−p, X ) = −ρ̃(p, X ), (H31)

we obtain, after some simple algebra,

2k0

gG(k)
ρ̃k∂t fk =

∫
p,q,r

|λ(k, p,−q,−r)|2(2π )d+1 δ(k + p − q − r)[( fk + 1)( fp + 1) fq fr − fk fp( fq + 1)( fr + 1)] ρ̃pρ̃k ρ̃qρ̃r,

(H32)
where we have relabeled the central coordinate X 0 to t , reflecting the fact that it plays the role of time in our limit, and used
|λ(−k,−p, q, r)|2 ≡ |λ(k, p,−q,−r)|2.

At last, we adopt the quasiparticle (or on-shell) approximation, i.e., assume that the spectral function takes the form of a free
one, ρ̃(p) ≈ ρ̃ (0)(p) [117]. From (44) one can derive

GR,(0)(k) = gG(k)

(ω + i0+)2 − ω2
k

= gG(k)

2ωk

(
1

ω − ωk + i0+ − 1

ω + ωk + i0+

)
, (H33)

with k = (k, ω) and ωk = k2/2m. Recalling that

lim
ε→0

1

x + iε
= − lim

ε→0

ε

x2 + ε2
= −πδ(x) (H34)

and using the relation between spectral and retarded Green functions, one gets

ρ̃(k, ω) = πgG(k)

ωk
[δ(ω − ωk ) − δ(ω + ωk )]. (H35)

It should be emphasized that naively it might seem that (H35) violates the sum rule. We note, however, that the prefactor
suggests that the sum rule has to be enhanced with a prefactor 2k0/gG(k) prefactor, similar to relativistic systems. This is further
corroborated by (H36) and the commutation relation of the phase field.

Finally, we substitute this into (H32) and integrate over
∫∞

0
dk0

2π
. The left-hand side (LHS) then reads as

LHS = ∂t

∫ ∞

0

dk0

2π

2k0

gG(k)

πgG(k)

ωk
[δ(ω − ωk ) − δ(ω + ωk )] f (k, t ) = ∂t f (k, t ), (H36)

where we have defined the occupation-number distribution function as

f (k, t ) ≡ f (k, ωk, t ). (H37)

This definition is motivated by the equilibrium limit of (H30), for which f (X 0, k) becomes a thermal distribution function. The
right-hand side is a bit more elaborate, yet very straightforward as well. First, we notice that, since integration over p, q, and
r goes from −∞ to +∞, both δ functions in (H35) contribute, and we thus have to deal with 23 = 8 different terms. In order
to analyze them, it is convenient to split the frequency integrals, e.g.,

∫∞
−∞ d p0 · · · = ∫ 0

−∞ d p0 · · · + ∫∞
0 d p0 . . . with p → −p

variable change for the negative part and then use f (p,−p0, t ) = −[ f (p, p0, t ) + 1]. For completeness, let us consider one term
explicitly:

−
∫

p,q,r

∫ ∞

0
dk0

∫ ∞

0

d p0

2π

∫ 0

−∞

dq0

2π

∫ ∞

0

dr0

2π
|λ(k, p,−q,−r)|2 π4gG(k)gG(p)gG(q)gG(r)

ωkωpωqωr
δ(k0 − ωk )δ(p0 − ωp)

× δ(q0 + ωq)δ(r0 − ωr )(2π )d+1 δ(k + p − q − r)[( fk + 1)( fp + 1) fq fr − fk fp( fq + 1)( fr + 1)]
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=
∫

p,q,r
|λ(k, p,−q,−r)|2 gG(k)gG(p)gG(q)gG(r)

2ωk2ωp2ωq2ωr
(2π )d+1 δ(ωk + ωp + ωq − ωr )δ(k + p − q − r)

×[( f (k, t ) + 1)( f (p, t ) + 1)( f (q, t ) + 1) f (r, t ) − f (k, t ) f (p, t ) f (q, t )( f (r, t ) + 1)], (H38)

where the minus sign in the first line comes from the one in front of δ(q0 + ωq). Finally, we assume that f (t, p) has no explicit
momentum dependence, i.e., it only depends on p via ωp (cf. [63]), and change the integration variable p → −p:

(H38) =
∫

p,q,r
|λ(k, p, q,−r)|2 gG(k)gG(p)gG(q)gG(r)

2ωk2ωp2ωq2ωr
(2π )d+1 δ(ωk + ωp + ωq − ωr )δ(k + p + q − r)

× [( fk + 1)( fp + 1)( fq + 1) fr − fk fp fq( fr + 1)], (H39)

where we have used that gG(p) and ωp are even functions and adopted the shorthand notation f (k, t ) ≡ fk.
The remaining terms can be computed following exactly the same procedure. With that we conclude

∂t fk = I[ f ](k, t ) = I3[ f ](k, t ) + I4[ f ](k, t ), (H40)

with

I4[ f ](k, t ) = I2↔2[ f ](k, t ) + I3↔1[ f ](k, t ) + I1↔3[ f ](k, t ) + I4↔0[ f ](k, t ), (H41)

where

I2↔2[ f ](k, t ) =
∫

p,q,r
|λ(k, p,−q,−r)|2 gG(k)gG(p)gG(q)gG(r)

2ωk2ωp2ωq2ωr
(2π )d+1 δ(ωk + ωp − ωq − ωr )δ(k + p − q − r)

× [( fk + 1)( fp + 1) fq fr − fk fp( fq + 1)( fr + 1)] + (p → −p,−q → q) + (p → −p,−r → r), (H42a)

I3↔1[ f ](k, t ) =
∫

p,q,r
|λ(k, p, q,−r)|2 gG(k)gG(p)gG(q)gG(r)

2ωk2ωp2ωq2ωr
(2π )d+1 δ(ωk + ωp + ωq − ωr )δ(k + p + q − r)

× [( fk + 1)( fp + 1)( fq + 1) fr − fk fp fq( fr + 1)] + (p → −p,−r → r) + (q → −q,−r → r), (H42b)

I1↔3[ f ](k, t ) =
∫

p,q,r
|λ(k,−p,−q,−r)|2 gG(k)gG(p)gG(q)gG(r)

2ωk2ωp2ωq2ωr
(2π )d+1 δ(ωk − ωp − ωq − ωr )δ(k − p − q − r)

× [( fk + 1) fp fq fr − fk( fp + 1)( fq + 1)( fr + 1)], (H42c)

I4↔0[ f ](k, t ) =
∫

p,q,r
|λ(k, p, q, r)|2 gG(k)gG(p)gG(q)gG(r)

2ωk2ωp2ωq2ωr
(2π )d+1 δ(ωk + ωp + ωq + ωr )δ(k + p + q + r)

× [( fk + 1)( fp + 1)( fq + 1)( fr + 1) − fk fp fq fr]. (H42d)

Above, p ↔ −p means that the same term has to be taken but with the change of sign for p and fp ↔ fp + 1 and λ(k, p, q, r)
is the momentum-dependent 4-coupling constant of the action (43):

λ(k, p, q, r) = (k · p)(q · r)

2m2gG(k − p)
+ perms. (H43)

Similarly, one can derive the three-vertex collision integral, which in two-loop order reads as

I3[ f ](k, t ) = I1↔2[ f ](k, t ) + I2↔1[ f ](k, t ) + I3↔0[ f ](k, t ), (H44)

with

I1↔2[ f ](k, t ) =
∫

p,q
|γ (k,−p,−q)|2 gG(k)gG(p)gG(q)

2ωk2ωp2ωq
(2π )d+1 δ(ωk − ωp − ωq)δ(k − p − q)

× [( fk + 1) fp fq − fk( fp + 1)( fq + 1)], (H45a)

I2↔1[ f ](k, t ) =
∫

p,q
|γ (k, p,−q)|2 gG(k)gG(p)gG(q)

2ωk2ωp2ωq
(2π )d+1 δ(ωk + ωp − ωq)δ(k + p − q)

× [( fk + 1)( fp + 1) fq − fk fp( fq + 1)] + (p → −p,−q → q), (H45b)

I3↔0[ f ](k, t ) =
∫

p,q
|γ (k, p, q)|2 gG(k)gG(p)gG(q)

2ωk2ωp2ωq
(2π )d+1 δ(ωk + ωp + ωq)δ(k + p + q)

× [( fk + 1)( fp + 1)( fq + 1) − fk fp fq]. (H45c)
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Here, |γ (k, p, q)|2 should be understood on shell, i.e.,

γ (k, p, q) = (k · p)ωq

mgG(q)
+ perms. (H46)

APPENDIX I: CANONICAL SCALING OF THE ACTION

Let us determine the scaling dimension of each term of the effective action (43). For instance, consider the quadratic part:

S(2)(s−1/βt ) =
∫ s−1/β t

tref ,C
dt ′
∫

dd k

(2π )d
θa(k, t ′)iD−1

a (k, t ′)θa(−k, t ′)

= s−1/β+d
∫ t

s1/β tref ,C
dt̃
∫

dd k′

(2π )d
θa(sk′, s−1/β t̃ )iD−1

a (sk′, s−1/β t̃ )θa(−sk′, s−1/β t̃ )

≈ s−1/β+d−α/β−γ+2z
∫ t

tref ,C
dt̃
∫

dd k

(2π )d
θa(k, t̃ )iD−1

a (k, t̃ )θa(−k, t̃ ) = sdS,2 S(2)(t ), (I1)

which yields exactly (125a). Here, in the last line we assumed
that tref is sent to the remote past, such that the Schwinger-
Keldysh integral is almost invariant under tref → s1/βtref , and
used α = dβ.

Repeating the same steps for interaction terms gives

S(3)(s−1/βt ) ≈ s−1/β+2d−3α/2β+z+2−γ S(3)(t ) = sdS,3 S(3)(t )
(I2)

and

S(4)(s−1/βt ) ≈ s−1/β+3d−2α/β+4−γ S(4)(t ) = sdS,4 S(4)(t ), (I3)

which results in (125b) and (125c), respectively. It should
be remarked that terms involving derivatives with respect to
time lead to ambiguities. Indeed, on one hand, they should be
rescaled with t → s−1/βt following the definition (123). On
the other hand, the on-shell scaling of the frequency implies
t → s−zt . Nevertheless, since in our case z = 1/β, this gives
the same result.

APPENDIX J: HYDRODYNAMIC DECOMPOSITION

In this Appendix, we provide the definition of the hydrody-
namic decomposition used to obtain the data shown in Fig. 8.
The three-component system is described, in a hydrodynamic
formulation [118], by the total density ρ, the spin vector fμ
and the nematic tensor nμν :

ρ =
∑

a

�†
a�a, (J1)

fμ = 1

ρ

∑
a,a′

�†
a(fμ)aa′�a′ , (J2)

nμν = 1

ρ

∑
a,a′

�†
a(nμν )aa′�a′ , (J3)

μ = x, y, z, with fμ being the spin-1 matrices in the funda-
mental representation, and the nematic or quadrupole tensor
representation nμν = (fμfν + fνfμ)/2. The above densities are
related, via continuity equations [118], to the mass current j
defining the superfluid velocity field v, as well as to the spin

and nematic currents j(s)
μ and j(n)

μν , respectively:

j = ρv = 1

2m i

∑
a

[�†
a(∇�a) − (∇�†

a)�a], (J4)

j(s)
μ = 1

2m i

∑
a,a′

(fμ)aa′ [�†
a(∇�a′ ) − (∇�†

a)�a′], (J5)

j(n)
μν = 1

2m i

∑
a,a′

(nμν )aa′[�†
a(∇�a′ ) − (∇�†

a)�a′]. (J6)

Note that the nematic tensor vanishes for a fully polarized
(ferromagnetic) gas but becomes important in the situations
considered in this work. The spin and nematic currents can be
expressed in terms of the hydrodynamic variables ρ, fμ, nμν ,
and v, as well as the gradients ∇ fμ and ∇nμν . Furthermore,
diagonalization of fμ and nμν shows that the six independent
variables are ρ, the total phase θ which defines the fluid
momentum mv = ∇θ , as well as three Euler angles and a
polarization angle [118].

For expressing the hydrodynamic energy it is useful to de-
fine the generalized velocities, corresponding to the quantum
pressure (q), the spin (s), the nematic (n), the incompressible
(i), and compressible (c) parts:

w(q) = m−1∇√
ρ, w(i,c) = √

ρ v(i,c),

w(s)
μ = (2m)−1√ρ ∇ fμ, w(n)

μν = (2m)−1
√

2ρ ∇nμν. (J7)

Here, v(i,c) are obtained by a Helmholtz decomposition of v =
v(i) + v(c), with the incompressible part having a vanishing
divergence ∇ · v(i) = 0, the compressible part a vanishing curl
∇ × v(c) = 0.

Using the hydrodynamic variables we can express the
energy as

E = Ekin + g

2

∫
r
ρ2, (J8)

where the kinetic part reads as

Ekin =
∫

r

{
1

2m

[
(∇√

ρ)2 + ρ

4
(∇ fμ)2 + ρ

2

(∇nμν

)2]

+ m

2
ρv2
}
. (J9)
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Hence, in Fourier space, the kinetic-energy spectrum is given
by the correlation functions of the generalized velocities

εkin(k) = ε(q)(k) + ε(c)(k) + ε(i)(k) + ε(s)(k) + ε(n)(k),
(J10)

averaged over the orientation of the momentum vector:

ε(δ)(k) = m

2

∫
d�k〈|w(δ)(k)|2〉 (δ = q, i, c), (J11)

ε(s)(k) = m

2

∫
d�k

〈
w(s)

μ (k) · w(s)
μ (k)

〉
, (J12)

ε(n)(k) = m

2

∫
d�k

〈
w(n)

μν (k) · w(n)
μν (k)

〉
, (J13)

where Einstein’s sum convention is implied. The respective
total energies are obtained as E (δ) = ∫ dd x

∫
dk kd−1ε(δ)(k).

The spectrum of the kinetic energy can then be used
to calculate corresponding occupation numbers using the

relation

n(δ)(k) = 2m k−2ε(δ)(k), (J14)

where δ = q, i, c, s, n. The total occupation number is then
approximately given by

ntot (k) ≈ 2m k−2εkin(k) (J15)

(see, e.g., [65] for a discussion of deviations).
We emphasize that the spin fμ and quadrupole operators

nμν form SU(2) subgroups of the special unitary group SU(3),
i.e., not only { fx, fy, fz} form an su(2) algebra of generators
of SU(2) but also, e.g., { fx, nyz, nzz − nyy} and {nxz, nyz, fz}
[119,120]. On the basis of the field representations (J2) and
(J3), one can furthermore show that for the case of identical
near-constant bosonic densities ρ (0)

a and comparatively large
phase fluctuations, the fluctuations (J12) and (J13) of the spin
and nematic operators are determined by combinations of the
relative phases between the Bose fields.
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