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Spin-energy correlation in degenerate weakly interacting Fermi gases
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Weakly interacting Fermi gases exhibit rich collective dynamics in spin-dependent potentials, arising from
correlations between spin degrees of freedom and conserved single-atom energies, offering broad prospects
for simulating many-body quantum systems by engineering energy-space “lattices,” with controlled energy
landscapes and site-to-site interactions. Using quantum-degenerate clouds of 6Li, confined in a spin-dependent
harmonic potential, we measure complex, time-dependent spin-density profiles, varying on length scales much
smaller than the cloud size. We show that a one-dimensional mean-field model, without additional simplifying
approximations, quantitatively predicts the observed fine structure. We measure the magnetic fields where the
scattering lengths vanish for three different hyperfine state mixtures to provide constraints on the collisional
(Feshbach) resonance parameters.
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I. INTRODUCTION

Weakly interacting two-component Fermi gases [1], with
tunable, nearly vanishing s-wave scattering lengths a, offer a
pristine platform for exploring the interplay between spin, mo-
tion, and statistics in many-body systems [2]. In such gases,
the collision rate ∝ |a|2 is negligible, so that single-atom
energies are conserved over the evolution time scale set by
the mean-field frequency ∝ |a| [3–6]. Since s-wave scattering
in Fermi gases is allowed only for antisymmetric spin states,
two-component clouds exhibit an effective exchange interac-
tion, enabling simulations of a variety of spin-lattice models
[2], where the conserved single-atom quantum numbers play
the role of the lattice sites [2,7]. Spin-motion coupling is
induced by spin-dependent trapping potentials, implemented
using magnetic field gradients [8–10] or magnetic field cur-
vature [1,5,6,11]. Global spreading of quantum correlations
in real space can occur due to the effective long-ranged
character of the spin couplings, which is a consequence of
the separation of time scales for the fast harmonic oscilla-
tion of atoms and slow macroscopic spin-density evolution
[2,12].

The evolution of the spin density in weakly interacting
Fermi gases has been described by mean-field models em-
ploying phase-space representation [3,4] and energy represen-
tation [5]. The initial implementation of the energy-dependent
collective spin-rotation model of Ref. [5] yielded only semi-
quantitative agreement with the observed spin-density profiles
and the time-dependent amplitude, which were measured at
high temperatures, suggesting that the model was incomplete.
Recently, Koller et al. [2] devised a description in terms of
Dicke collective spin states, exploiting conservation of the
total spin vector for the exchange interaction. This picture sug-
gests that the observed variation of the spin-wave amplitude
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with time arises from a thermal average of Dicke gaps [2], but
comparison with the measured spin-density profiles has been
only qualitative [13].

We report measurements of time-dependent spin-density
profiles for coherently prepared two-state Fermi gases of 6Li,
confined in a spin-dependent harmonic potential, providing a
precise quantitative test of the underlying energy-space spin-
lattice model and energy-dependent long-range couplings.
We employ quantum-degenerate samples to minimize en-
ergy shifts of the scattering length that become significant
at higher temperatures. This enables precise comparison of
predictions with measured spin-density profiles, which vary
from relatively smooth to exhibiting complex structure over
short length scales. We find that our collective spin-rotation
model [5], extended to degenerate samples and implemented
without additional simplifying approximations [14], quanti-
tatively predicts the observed spin-density profiles. At high
temperatures and small scattering lengths a < 1 bohr, we ob-
serve additional features in the spin-density profiles, which we
explain by including the energy dependence of the scattering
length in our model.

Using this model, we determine the zero crossings and
magnetic field tuning rates for the s-wave scattering lengths
of the three lowest hyperfine states of 6Li. Comparing data at
high and low temperatures determines the temperature shift of
the zero crossings. These measurements provide constraints
on the 6Li2 molecular potentials that determine the precise
shapes of the Feshbach resonances [15,16], which have been
widely used in studies of strongly interacting Fermi gases
[17,18]. At resonance, where the gas is unitary, the thermody-
namic and hydrodynamic properties are universal, depending
only on the density and temperature [19]. The most precise
measurements of the universal thermodynamic properties [20]
and of the universal hydrodynamic properties [21] rely on the
precise location of the 6Li broad Feshbach resonance near
832.2 G, which is constrained by the zero crossing [16].
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FIG. 1. Spin-energy correlation produces spin segregation in a degenerate Fermi gas with an s-wave scattering length of 5.2 bohrs. The
palettes are 50 × 950 μm2. Left to right: n1, n2, n1 − n2, and n1 + n2 in units of (n1 + n2)max at t = 0 (upper) and t = 800 ms (lower) after
coherent excitation of a |1〉-|2〉 superposition state. Note that n1 − n2 evolves in time while n1 + n2 remains constant, due to single-particle
energy conservation.

II. EXPERIMENT

Our experiments employ mixtures of the ground Zeeman-
hyperfine states of 6Li, which are denoted by |1〉 to |6〉, in
order of increasing energy [1]. We initially prepare a degener-
ate sample in state |2〉 [14]. The bias magnetic field is tuned
to B = 527 G, near the zero crossing of the |1〉-|2〉 scattering
length. A 2-ms radio-frequency π/2 pulse, which is resonant
for transitions from state |2〉 to state |1〉, then creates a |1〉-|2〉
superposition state. Similarly, |2〉-|3〉 or |1〉-|3〉 superposition
states are prepared close to the corresponding zero crossings
near 589 or 569 G [14]. The curvature of the bias magnetic
field, Bz(x), creates a significant spin-dependent harmonic
potential in the long x direction of the cigar-shaped cloud, with
negligible effect in the narrow transverse directions.

The subsequent evolution of the observed spin densi-
ties (Fig. 1) can be understood using a Bloch vector pic-
ture [5]. First, the short radio-frequency (rf) pulse creates
a collective spin vector along one axis in the x-y plane.
In a frame rotating about the z axis at the resonant hy-
perfine frequency, spin vectors for atoms in the nth axial
harmonic oscillator state precess about the z axis at the detun-
ing frequency, �(E ) = −n(E ) δωx. Here, δωx = ωx2 − ωx1 =
−2π × 14.9 × 10−3 Hz is the difference in the oscillation
frequencies of states |1〉 and |2〉, arising from magnetic field
curvature, and n(E ) � E/h̄ω̄x, with ω̄x = (ωx2 + ωx1)/2 =
2π × 23.0 Hz. For typical conditions, EF = 0.56 μK, the
detuning for the average x energy, Ē = EF /4, is �(Ē ) �
−2π × 2.0 Hz. After coherent excitation, �(E ) causes the
spin vectors for atoms of different energies to fan out in
the x-y plane. Second, forward s-wave scattering, which is
not Pauli blocked in degenerate samples, occurs between two
atoms with different energies and corresponding spin vectors,

producing a rotation about the total spin vector [6,22–24].
This creates a mean-field rotation of the collective spin with an
energy-dependent z component, which maps into a spatially
varying spin density in the harmonic trap, revealed using
absorption imaging of both hyperfine components, as shown
in Fig. 1. The evolution occurs on a time scale set by the mean-
field frequency, �MF � 2π × 1.0 Hz, as discussed below.

Figure 2 shows the transversely integrated spin densities
800 ms after coherent excitation, for a degenerate |1〉-|2〉
cloud with a = 3.04a0. Figure 3 shows the difference of
the transversely integrated spin densities n1(x, t ) − n2(x, t ) ≡
2Sz(x, t ) at selected times t after excitation, for scattering
lengths of larger magnitude, � ±5a0. For the larger scattering
lengths, the data are sensitive to the evolution time and exhibit
a complex structure, which we explain using a mean-field
model, outlined below [14].

A thermal average of the Heisenberg equations for the
collective spin vector S̃(E , t ) as a function of axial energy E
(in a one-dimensional approximation) yields [5,14]

∂t S̃(E ) = �(E )× S̃(E ) +
∫

dE ′g̃(E ′,E ) S̃(E ′)× S̃(E ), (1)

where we suppress t in S̃(E , t ) and S̃(E ′, t ). In Eq. (1),
�(E , t ) includes the energy-dependent precession rate about
the z axis and a general Rabi vector for rf excitation of the
initial superposition state, with

∫
dE S̃z(E , t = 0) = 1, prior

to the rf pulse. The integral term describes the rotation of the
spin vector for atoms of energy E arising from collisions with
atoms of energy E ′. Here, the coupling matrix g̃(E ′, E ) [see
Eq. (B29)] is proportional to the mean-field frequency and
plays the role of the site-to-site coupling in a lattice model.

For a degenerate gas, the mean-field frequency �MF =
9h̄ n3D a/(5 m), where n3D is the three-dimensional (3D) total

FIG. 2. Spin-density profiles for a degenerate (T/TF = 0.35) Fermi gas at t = 800 ms relative to coherent excitation. Data (blue dots)
versus prediction (red curves) showing quantitative agreement. Left to right: n1, n2, n1 − n2, and n1 + n2 in units of the peak total density. Each
solid curve is the mean-field model with a fixed scattering length of a = 3.04 bohrs (B = 528.147 G) and a fitted cloud size σFx ≡ σ = 329 μm,
obtained by fitting the total density n1 + n2 to a one-dimensional (1D) Thomas-Fermi profile [Eq. (B38)].
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FIG. 3. Spin-density profiles in a degenerate sample T/TF = 0.35 at selected times relative to coherent excitation. �n(0) = n1(0, t ) −
n2(0, t ) is given in units of n1(0) + n2(0). Solid curves: Mean-field model with the same scattering length for each time and a fitted cloud size
within a few percent of the measured average value, σ = 322.0(1.5) μm. Top three panels: B = 528.817 G, a = 5.17a0. Bottom three panels:
B = 525.478 G, a = −5.39a0. Note that the spin density inverts when the scattering length changes sign.

atom density and m is the atom mass. Although it is not
necessary to make a continuum approximation, in Eq. (1) we
have assumed that the harmonic oscillator states are closely
spaced compared to the Fermi energy, as is the case for our ex-
periments. Employing a Wentzel-Kramers-Brillouin (WKB)
approximation for the harmonic oscillator wave functions,
g̃(E ′, E ) is proportional to 1/

√
E − E ′, which determines the

effective long-range character of the spin couplings. Equation
(1) is solved numerically for S̃(E , t ), from which we obtain
the vector spin density as a function of axial position x,

S(x, t ) = N

2

ω̄x

π

∫ ∞

0
d px S̃

(
p2

x

2m
+ mω̄2

x

2
x2, t

)
. (2)

For |a| ∼ 5 bohrs, with the parameters for our experiments,
�MF � 2π × 1.0 Hz [14], while the collision rate [25] is
0.004 s−1, which is negligible. As N1(E ) + N2(E ) is con-
served [14], the total atom spatial density, determined by
analogy to Eq. (2), should be constant in time, as shown in
Fig. 1.

For the low-temperature, degenerate gas, we find that
Eq. (1) is in excellent quantitative agreement with the spin-
density profiles of Fig. 2 and captures very well the fine
features of the data shown in Fig. 3, as well as the time

dependence of the spin-density profiles shown in Fig. 13 for a
fixed scattering length [14].

We fit the mean-field model to the data of Fig. 3 in the
following way. First, we plot the dimensionless spin density
(n1 − n2)/(n1 + n2) at the center (x = 0) as a function of time
(Fig. 4) for each value of the magnetic field. Second, we fit
the model to the data of Fig. 4 to find the scattering length that
gives the best fits (red curves). The fits to the spatial density
profiles of are then obtained by fixing the scattering length
at each field to the value obtained from Fig. 4 and adjusting
the Thomas-Fermi radius by a few percent to fit the measured
profile at each time. The mean of the measured radii is found
to be 322.0(1.5) μm. Magnetic field stability is better than
5 mG, limited by measurement precision. The absolute value
of the field is calibrated using radio-frequency spectroscopy
of the hyperfine transitions.

Increasing the scattering length to a = −14.9a0, we mea-
sure the amplitude of the spin density at the cloud center for
a degenerate sample as a function of time relative to coherent
excitation (Fig. 5). Although the collision rate �0.04 s−1 is
still negligible, we observe a decay of the amplitude that is not
predicted. We believe that the decay arises from the variation
of the atom density over several runs, which are averaged
to determine each data point. The average of the predictions
(red curve) of Fig. 5 yields the observed decay, because the

FIG. 4. Central spin density versus evolution time for various magnetic fields near the zero crossing of the |1〉-|2〉 scattering length.
�n(0) = n1(0, t ) − n2(0, t ) is given in units of n1(0) + n2(0). Solid curves show the mean-field model with the scattering length a as a fit
parameter. The fitted values of a are plotted in Fig. 7.
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FIG. 5. Decay of the amplitude of the central spin density versus time for a = −14.9a0. The dashed curve shows the predicted amplitude
for the average density. The red curve shows the average of the predictions based on the measured atom numbers and cloud widths for each
shot.

sensitivity to the mean-field frequency, and hence to the atom-
density variation, increases with increasing time, resulting in
a decreasing amplitude for the average. The corresponding
spatial profiles are shown in Fig. 6, where predicted curves are
obtained for a fixed scattering length of −14.9a0 and fitting
the Fermi width, within a few percent of the mean.

III. SCATTERING LENGTH PARAMETERS

The small-a region, where the mean-field model precisely
fits the data, enables measurement of the tuning rate a′ (in
bohrs per gauss) of the scattering length near the zero crossing
field B0, where

a(B) = a′ (B − B0). (3)

Here, we assume that the energy shift is negligible for the
degenerate sample, in contrast to the hot sample discussed
below. Using the data in Fig. 4, the fitted |1〉-|2〉 scat-
tering length for each magnetic field is plotted in Fig. 7.
The corresponding plot for |2〉-|3〉 scattering is discussed in
Appendix A. The slopes of the linear fits to the data yield the
tuning rates a′ (Table I).

Next, we measure the magnetic field B0 at which the
scattering length vanishes by using the spin evolution as a

sensitive probe: The profiles of the individual spin compo-
nents remain unchanged at the zero crossing in the degenerate
regime. Figure 8 shows the change in size for each spin profile
between t = 0 and t = 800 ms, as a function of magnetic
field. In addition, we show the difference between the sizes
of the state 1 and state 2 profiles at t = 800 ms. Each method
gives a field value B0 for the zero crossing. We report the
mean in Table I. The corresponding uncertainties are esti-
mated as one-half of the difference between the maximum
and the minimum of B0. The zero crossing for a12, 527.18(2)
G, is smaller than the value 527.5(2) G obtained by the
same method at high temperature [1], and is consistent with
the calculated value 527.32(25), based on the most recent
6Li2 molecular potentials determined from 1D dimer spectra
[16]. The zero crossings for a13, 567.98(01) G, and for a23,
588.68(01), listed Table I, are in very good agreement with
the values 568.07 and 588.80 G estimated from the Feshbach
resonance data of Ref. [16], which differ only slightly from
Ref. [15].

Table I compares the tuning rates a′
12 = 3.14a0/G and

a′
23 = 4.52a0/G, which we obtain from the fitted scattering

length versus magnetic field in the present work, to estimates
based on the Feshbach resonance profiles a[B], which are

FIG. 6. Spin-density profiles versus time for a = −14.9a0 versus predictions (red curves) with the same scattering length for each time
and a fitted cloud size within a few percent of the measured average value, σ = 330.6 μm.
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FIG. 7. Fitted scattering length a versus measured magnetic field
for a |1〉-|2〉 mixture (a0 = 1 bohr). Error bars denote one standard
deviation, obtained for each χ 2 fit of Fig. 4.

obtained from the molecular potentials reported in Ref. [15]
and in Refs. [16,26]. Using the profiles of Ref. [15], we find
a′

12 = 4.12a0/G and a′
23 = 6.11a0/G. These slopes are 50%

larger than those estimated in the present work, but the ratios,
4.52/3.14 = 1.44 and 6.11/4.12 = 1.48, are in good agree-
ment. This suggests that the discrepancy may be explained
by an overall scale factor in our estimate of the transverse
averaged 3D density n3D [see Eq. (B20)], which determines
the scattering lengths from the mean-field frequencies �MF ∝
n3Da used to fit Fig. 4. However, using the Feshbach resonance
profiles of Refs. [16,26], we estimate the tuning rate a′

12 =
3.51a0/G, which is only 11% larger than tuning rate obtained
from our experiments, and a′

23 = 5.82a0/G, which is 29%
larger.

IV. ENERGY SHIFT

We also observe the energy-dependent shift in the zero
crossing, by preparing a |1〉-|2〉 superposition at a high tem-
perature of T = 45.7 μK. There, we measure a shift of 0.22 G
relative to the degenerate sample. This yields an energy tuning
rate of 4.7 mG/μK, confirming that the energy-dependent
shift is negligible for the degenerate samples, compared to the
precision of the magnetic field measurement.

To directly illustrate the energy dependence, we measure
the spin density at 45.7 μK for B = 527.466 G (Fig. 9). We
see that the high-temperature spin-density profile crosses the

FIG. 8. Measurement of the zero crossing field for a degenerate
6Li |1〉-|2〉 mixture. The plots show the change in cloud size between
t = 0 and t = 800 ms for state 1 (squares), state 2 (diamonds),
and the difference in the cloud sizes of the two spin states at t =
800 ms (circles). Solid lines are corresponding linear fits, crossing
zero (dashed line) when a = 0. Error bars denote the standard
deviation of the mean of five runs.

zero axis four times, in contrast to the low-temperature data
of Fig. 3, which only cross twice.

The modification of the spin-density profile at high temper-
ature is not likely to arise from the |1〉-|2〉 p-wave resonance
in 6Li, which is located near 186.2(6) G and has a width
of 0.5 G [27]. To understand this profile and the energy
shift, we include the energy dependence of the scattering
length and of the average magnetic field, by replacing a in
g̃(E ′, E ) of Eq. (B31) with a(E ′, E ) = a′[Beff (E ′, E ) − B0]
[14], with Beff (E ′, E ) the effective magnetic field. Then, for
small positive B − B0, atoms with small energies E , E ′ have
Beff − B0 > 0 and a positive scattering length, while atoms
with high energies E , E ′ have Beff − B0 < 0 and a negative
scattering length. These two contributions result in the extra
crossings. The solid red curve of Fig. 9 includes the average
transverse kinetic energy, which shifts the effective field from
the applied value of 0.28 G above the zero crossing to 0.08 G
above, where a = 0.25a0 for atoms with E = E ′ = 0.

In summary, we have shown that a mean-field collective
spin-rotation model, including the full energy-dependent cou-
pling matrix, quantitatively describes the spin-density evo-
lution in the collisionless regime, precisely testing the un-
derlying energy-space spin-lattice model. The measurements
provide an essential benchmark for future work on collective

TABLE I. Zero crossings B0 (G) and tuning rates a′ (a0/G) for the scattering lengths of the broad Feshbach resonances in 6Li.

States T (μK) B0 (G)a B0 (G)b B0 (G)c a′ (a0/G)a a′ (a0/G)b a′ (a0/G)c

1-2 0.2 527.18(2) 534.15 527.32(25) 3.14(8) 4.12 3.49
1-2 45.7 527.42(1)
2-3 0.2 588.68(1) 588.92 588.75 4.52 (23) 6.11 5.82
1-3 0.2 567.98(1) 568.13 568.02 13.87 13.29

aThis work.
bReference [15].
cReference [16].
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FIG. 9. High-temperature spin-density profile of a |1〉-|2〉 mix-
ture for t = 400 ms. T = 45.7 μK and B = 527.466 G, where
the zero-energy s-wave scattering length is 0.90 bohr. Here σG =
323 μm is the Gaussian 1/e radius of the total density profile.

spin evolution with designer energy landscapes in the weakly
interacting regime, and pave the way for studies of beyond
mean-field physics in weakly interacting gases, measurement
of spatially correlated spin fluctuations [2], and measurement
of correlated spin currents [28].
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APPENDIX A: EXPERIMENTAL METHODS

A cloud comprising a 50-50 mixture of the two lowest
hyperfine states, denoted |1〉 and |2〉, is evaporatively cooled
to degeneracy near the |1〉-|2〉 Feshbach resonance at 832.2 G.
The magnetic field is then ramped to the weakly interacting
regime near 1200 G, and the |1〉 spin component is eliminated
by means of a resonant optical pulse. To create a |1〉-|2〉
superposition state, the magnetic field is ramped to 527 G,
near the zero crossing of the scattering length. The atoms in
spin state |2〉 are then excited by a 2-ms radio-frequency π/2
pulse, which is resonant for transitions to state |1〉. Similarly,
a |2〉-|3〉 superposition state is prepared by employing an rf
transition from state |2〉 to state |3〉 close to the corresponding
zero crossing around 589 G. For the |1〉-|3〉 superposition
state, we prepare a single |2〉 spin component at 1200 G. The
magnetic field is then ramped down to the value of interest
around 568 G, near the zero crossing of the |1〉-|3〉 scattering
length. The atoms are excited by a 2-ms radio-frequency π/2
pulse, which is resonant with the transition from state |2〉

FIG. 10. Tuning rate of the scattering length a of a |2〉-|3〉 mix-
ture versus measured magnetic field (a0 = 1 bohr) Error bars denote
one standard deviation, obtained for each χ 2 fit to the time-dependent
central amplitude for the given B.

to state |1〉, creating a balanced |1〉-|2〉 superposition state.
Then a 4 ms radio-frequency π pulse is applied, which is
resonant with the transition from state |2〉 to state |3〉, to create
a balanced |1〉-|3〉 superposition state. The trap parameters
for our experiments are ω2

mag = (2π × 20.5 Hz)2 B(G)/834;
ω̄x = 2π × 23 Hz, ω⊥ = 2π × 625 Hz, for the degenerate
gas, and ω̄x = 2π × 174 Hz, ω⊥ = 2π × 5.77 kHz, for the
high-temperature gas.

After preparation, we obtain degenerate samples with a
typical total atom number of N = N↑ + N↓ � 7.0 × 104 and

FIG. 11. Measurement of the zero crossing field for a degenerate
6Li |2〉-|3〉 mixture. The plots show the change in cloud size between
t = 0 and t = 800 ms for state 3 (squares), state 2 (diamonds), and
the difference in the cloud sizes of the two spin states at t = 800
ms (circles). Solid lines are corresponding linear fits, crossing zero
(dashed line) when a = 0. Error bars denote the standard deviation
of the mean of five runs.
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FIG. 12. Measurement of the zero crossing field for a degenerate
6Li |1〉-|3〉 mixture. The plots show the change in cloud size between
t = 0 and t = 800 ms for state 3 (squares) and state 1 (diamonds).
Solid lines are corresponding linear fits, crossing zero (dashed line)
when a = 0. Error bars denote the standard deviation of the mean of
five runs.

an ideal gas Fermi temperature of kBTF = h̄(3Nω̄xω
2
⊥)1/3 =

kB × 0.56 μK for our trap frequencies. To determine the
temperature T , the measured one-dimensional total density
versus x is fit with a finite-temperature Thomas-Fermi profile
for a noninteracting gas, which is appropriate for our weakly
interacting gas. Using the calculated Thomas-Fermi radius
σT F = √

2 kBTF /(mω̄2
x ) = 270 μm, we find T = 0.35 TF .

In the main text, we reported measurements of the zero
crossing field of the scattering length for 6Li |1〉-|2〉, |2〉-|3〉,
and |1〉-|3〉 mixtures and the tuning rate of the scattering
length for |1〉-|2〉 and |2〉-|3〉 mixtures. Figure 10 shows the
data that were used to obtain the tuning rate for the |2〉-|3〉
mixture.

Figures 11 and 12 show the data that were used to obtain
the zero crossing fields for the |2〉-|3〉 and |1〉-|3〉 mixtures. In
Figs. 11 and 12, and for Fig. 8 of the main text, we take into
account cloud size variations arising from small changes in
the atom number. Each data point represents an average of five
experimental runs. For each run i, we extract the atom number
Ni and the axial cloud size σi for each spin component. The
cloud sizes scale as N1/6

i for zero-temperature Thomas-Fermi
profiles. Therefore, to correct for the varying atom number,
we calculate the reduced size σi/N1/6

i for each run and use
〈σi/N1/6

i 〉〈N1/6
i 〉 as the effective mean cloud size for each

field.

APPENDIX B: MEAN-FIELD MODEL

We employ a mean-field model in energy representation
to describe the spin-density profiles observed in our exper-
iments. The bias magnetic field tunes the s-wave scattering
length near the zero crossing, where the gas is very weakly
interacting and the collision rate is negligible. For this reason,

we begin with the single-particle Hamiltonian for a noninter-
acting Fermi gas with two spin states, a lower hyperfine state
denoted ↑ and an upper hyperfine state denoted ↓. For an atom
at rest, these states differ in energy by h̄ωHF , where ωHF is
the hyperfine resonance frequency. A spin-independent cigar-
shaped optical trap confines the atom cloud weakly along
the cigar axis, denoted x, and tightly in the perpendicular ρ

direction, so that ρ � |x|. Curvature in the bias magnetic field
produces a significant harmonic confining potential along the
x axis, while for the ρ direction, the magnetic contribution to
the confining potential is negligible compared to that of the
optical trap. The net optical and magnetic trapping potential
along x is then spin dependent, with harmonic oscillation
frequencies ωx↑ and ωx↓. The Hamiltonian for the motion
along the x axis (without the hyperfine energies) is

H0 =
∑

n

|n〉〈n|[(n + 1/2) h̄ωx↑|↑〉〈↑|

+ (n + 1/2) h̄ωx↓|↓〉〈↓|]. (B1)

For later use, we define the dimensionless single-particle spin
operators,

sz = |↑〉〈↑| − |↓〉〈↓|
2

,

sx = |↑〉〈↓| + |↓〉〈↑|
2

, (B2)

sy = |↑〉〈↓| − |↓〉〈↑|
2i

,

where [sx, sy] = sxsy − sysz = isz and cyclic permutations.
A radio-frequency transition does not change the harmonic

oscillator quantum number n. Hence, the resonance frequency
for a transition from the lower ↑ to the upper ↓ hyperfine state
of an oscillating atom in state |n〉 is ωres = ωHF + (n + 1

2 ) δωx

with δωx ≡ ωx↓ − ωx↑. Working in a frame rotating at the
hyperfine resonance frequency ωHF and defining the energy
E = (n + 1

2 ) h̄ω̄x, where the mean oscillation frequency ω̄x ≡
(ωx↑ + ωx↓)/2, we can rewrite Eq. (B1) as

H0 =
∑

E

|E〉〈E |
[

E (|↑〉〈↑| + |↓〉〈↓|)

+ h̄�(E )
|↑〉〈↑| − |↓〉〈↓|

2

]
, (B3)

where 〈E ′|E〉 = δE ′,E and the last term is proportional to sz,
with

�(E ) ≡ −δωx
E

h̄ω̄x
. (B4)

To treat the many-body problem for a very weakly inter-
acting gas, where the single-particle energies do not change
during the evolution time, we define the field operator in
energy representation:

ψ̂ ≡
∑

E ,σ=↑,↓
âσ (E ) |E〉|σ 〉. (B5)

With the anticommutation relations

{âσ (E ), â†
σ ′ (E ′)} = δσ,σ ′δE ,E ′ , (B6)
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we have {ψ̂, ψ̂†} = 1̂, the product of the energy and spin
identity operators. The many-body Hamiltonian for the
noninteracting atoms is then defined by Ĥ0 = (ψ̂†H0ψ̂ ),
where the parenthesis (· · · ) denotes inner products for the
single-particle energy and spin states. Then,

Ĥ0 =
∑

E ′
E ′[N̂↑(E ′) + N̂↓(E ′)]

+
∑

E ′
h̄�(E ′) Ŝz(E ′). (B7)

Here, the number operators are N̂↑(E ) = a†
↑(E )a↑(E ) and

N̂↓(E ) = a†
↓(E )a↓(E ) and the dimensionless many-body spin

operators are given (in the Schrödinger picture) by

Ŝz(E ) = (ψ̂†szψ̂ ) = N̂↑(E ) − N̂↓(E )

2
,

Ŝx(E ) = (ψ̂†sxψ̂ ) = â†
↑(E ) â↓(E ) + â†

↓(E ) â↑(E )

2
, (B8)

Ŝy(E ) = (ψ̂†syψ̂ ) = â†
↑(E ) â↓(E ) − â†

↓(E ) â↑(E )

2 i
.

The corresponding field operators in position representa-
tion are

ψ̂ (x) = (〈x|ψ̂ ) =
∑
E ,σ

âσ (E )φE (x)|σ 〉

≡
∑

σ

ψ̂σ (x)|σ 〉. (B9)

The Schrödinger picture operator of the z component of the
spin density is then

Ŝz(x) = (ψ̂†(x)szψ̂ (x))

= 1

2

∑
E ,E ′

φ∗
E ′ (x)φE (x)[â†

↑(E ′) â↑(E ) − â†
↓(E ′) â↓(E )].

(B10)

Note that the orthonormality of the φE (x) yields
∫

dxŜz(x) =∑
E Ŝz(E ) = Ŝz, the total z component of the spin operator.
For our mean-field treatment, we assume initially that there

is no coherence between E ′ �= E for a thermal average, i.e.,
〈â†

↑(E ′)â↑(E )〉 = 〈N̂↑(E )〉 δE ′,E . Then the z component of the
c-number spin density is given by

Sz(x) ≡ 〈Ŝz(x)〉 =
∑

E

|φE (x)|2〈Ŝz(E )〉. (B11)

Hence, we need only to determine Sz(E , t ) to predict the
measured Sz(x, t ).

Using the anticommutation relations of Eq. (B6), it is easy
to evaluate the elementary commutators,

[â†
σ ′

1
(E ′

1) âσ1 (E1), â†
σ ′ (E )] = â†

σ ′
1
(E ′

1) δE1,E δσ1,σ ′ ,

[â†
σ ′

1
(E ′

1) âσ1 (E1), âσ (E )] = −âσ1 (E1) δE1′,E δσ ′
1,σ

, (B12)

which are formally identical to the results obtained for bosons.
With Eq. (B12), it is straightforward to show that the spin
operators of Eq. (B8) satisfy the usual cyclic commutation

relations:

[Ŝi(E
′), Ŝ j (E )] = i εi jk Ŝk (E ) δE ′,E . (B13)

With Eq. (B7), the Heisenberg operator equations for the
collisionless spin evolution are then

∂Ŝ(E , t )

∂t
= i

h̄
[Ĥ0, Ŝ(E , t )] = �(E , t ) × Ŝ(E , t ), (B14)

where

�(E ) = êz�(E ) (B15)

and �(E ) is given by Eq. (B4). For sample preparation using
radio-frequency excitation, Eq. (B15) is readily generalized
to include a time-dependent Rabi frequency rotation rate
�R(t ) êy and an additional time-dependent detuning term
�(t ) êz, with � = ω(t ) − ωHF in the rotating frame.

Next, we consider collisional interactions, assuming s-
wave scattering between atoms of different spin, which is
dominant at low temperature. Short-range scattering is mod-
eled by a contact interaction between spin-up and spin-down
atoms with an s-wave scattering length aS ,

H ′(x1 − x2) = 4π h̄2aS

m
δ(x1 − x2) ≡ gδ(x1 − x2). (B16)

For the many-body system,

Ĥ ′ =
∫

d3x1d3x2

2
(ψ̂†(x2)ψ̂†(x1)H ′(x1−x2)ψ̂ (x1)ψ̂ (x2))

= g
∫

d3x ψ̂
†
↑(x)ψ̂†

↓(x)ψ̂↓(x)ψ̂↑(x), (B17)

where the factor 1/2 avoids double counting and ψ̂2
↑,↓(x) = 0.

For simplicity, we initially neglect the dependence of aS on
the relative kinetic energy of the colliding pair, which will be
included later.

For our experiments, where atoms are confined in a cigar-
shaped cloud, the x dimension is large compared to the radial
dimension ρ, so the bias field curvature is negligible along the
ρ direction, as noted above. Therefore, we treat the problem
as one dimensional by taking the field operators to be of the
form

ψ̂σ (x) = φ(ρ) ψ̂σ (x). (B18)

Carrying out the ρ integration in Eq. (B17), we determine the
effective one-dimensional interaction Hamiltonian,

Ĥ ′ = g̃
∫

dx ψ̂
†
↑(x)ψ̂†

↓(x)H ′ψ̂↓(x)ψ̂↑(x), (B19)

where g̃ ≡ g n̄⊥ and

n̄⊥ =
∫

2πρ dρ [n⊥(ρ)]2. (B20)

Here, we have let |φ(ρ)|2 → n⊥(ρ), where∫
2πρ dρ n⊥(ρ) = 1. Equation (B20) determines an effective

mean transverse density, n̄⊥, as a fraction per unit transverse
area. Using Eq. (B9), Eq. (B19) takes the form

Ĥ ′ = g̃
∑

E1,E2,E ′
1,E

′
2

∫
dx φ∗

E ′
1
(x)φ∗

E ′
2
(x)φE2 (x)φE1 (x)

× â†
↑(E ′

1)â†
↓(E ′

2)â↓(E2)â↑(E1). (B21)
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With the anticommutation relations, Eq. (B6), we can rewrite
the operator product of Eq. (B21) as

Ô′ ≡ â†
↑(E ′

1)â↑(E1)â†
↓(E ′

2)â↓(E2). (B22)

We simplify the interaction Hamiltonian by using a mean-
field approximation to evaluate Eq. (B22). To first order, we
obtain

Ô′ � 〈â†
↑(E ′

1) â↑(E1)〉 â†
↓(E ′

2) â↓(E2)

+〈 â†
↓(E ′

2) â↓(E2)〉 â†
↑(E ′

1) â↑(E1)

−〈 â†
↑(E ′

1) â↓(E2)〉 â†
↓(E ′

2) â↑(E1)

−〈 â†
↓(E ′

2) â↑(E1)〉 â†
↑(E ′

1) â↓(E2), (B23)

where 〈· · · 〉 denotes a thermal average, which vanishes unless
the energy arguments are the same. Further, we will require a
thermal average of the Heisenberg equations of motion, i.e.,
〈[Ô′, Ŝi(E )]〉. This will vanish unless the energy arguments in
the operator factors are the same. Hence, Eq. (B21) can be
rewritten as

Ĥ ′ = g̃
∑
Ẽ ,E ′

∫
dx |φE ′ (x)|2|φẼ (x)|2

×{〈â†
↑(E ′) â↑(E ′)〉 â†

↓(Ẽ ) â↓(Ẽ )

+〈â†
↓(E ′) â↓(E ′)〉 â†

↑(Ẽ ) â↑(Ẽ )

−〈 â†
↑(E ′) â↓(E ′)〉 â†

↓(Ẽ ) â↑(Ẽ )

−〈 â†
↓(E ′) â↑(E ′)〉 â†

↑(Ẽ ) â↓(Ẽ )}. (B24)

With the collective spin operators, Eq. (B8), we rewrite
Eq. (B24) as

Ĥ ′ = 2 g̃
∑
Ẽ ,E ′

∫
dx |φE ′ (x)|2|φẼ (x)|2

×
{

1

4
N (E ′) N̂ (Ẽ ) − S(E ′) · Ŝ(Ẽ )

}
, (B25)

where N̂ (Ẽ ) = N̂↑(Ẽ ) + N̂↓(Ẽ ) is the total number operator
and Ŝ(Ẽ ) is the total spin vector operator for atoms of energy
Ẽ . N (E ′) is a c-number scalar and S(E ′) is a c-number vector,
i.e., the corresponding thermal averaged Heisenberg operators
for energy E ′.

To evaluate of the collisional contribution to the
Heisenberg equations of motion, we require [Ĥ ′, Ŝ(E )].
Here, [N̂ (Ẽ ), Ŝ(E )] = 0, and using Eq. (B13), [S(E ′) ·
Ŝ(Ẽ ), Ŝ(E )] = −i S(E ′) × Ŝ(Ẽ ) δẼ ,E . With Eq. (B14), the

Heisenberg equation ˙̂S(E , t ) = i
h̄ [Ĥ0 + Ĥ ′, Ŝ(E , t )] for the

spin vector operator of energy E takes the simple form

∂Ŝ(E , t )

∂t
= �(E , t ) × Ŝ(E , t )

+
∑

E ′
g(E ′, E ) S(E ′, t ) × Ŝ(E , t ). (B26)

In Eq. (B26),

g(E ′, E ) = −2 g n̄⊥
h̄

I (E ′, E ), (B27)

where I (E ′, E ) ≡ ∫
dx |φE ′ (x)|2|φE (x)|2, n̄⊥ is given by

Eq. (B20), and g = 4π h̄2 aS/m.
In our experiments, where the energy E � h̄ω̄x, |φE (x)|2

can be evaluated in a WKB approximation,

|φE (x)|2 � �[a(E ) − |x|]
π

√
a2(E ) − x2

, (B28)

where a(E ) = √
2E/(mω̄2

x ) is the classical turning point and
� is a Heaviside function. Then, the x integral in Eq. (B27)
takes the form

I (E ′, E ) = 1

π2amin

∫ 1

−1

du√[
E

Emin
− u2

][
E ′

Emin
− u2

] ,

where we have taken x = u amin. Here, amin = √
2Emin/(mω̄2

x )
determines the overlap region, with Emin the minimum of
E , E ′. Using u = sin θ , and by considering separately the
cases Emin = E < E ′ and Emin = E ′ < E , we obtain

I (E ′, E ) = 1

π2

√
mω̄2

x

2|E − E ′|
∫ π/2

−π/2

dθ√
1 + Emin

|E−E ′ | cos2 θ
.

The integral is readily evaluated, yielding

g(E ′, E ) = −4 g n̄⊥
π2h̄

√
mω̄2

x

2|E − E ′|

× EllipticK

[
− Emin

|E − E ′|
]
, (B29)

where E ′ �= E , since the sum in the last term of Eq. (B26)
vanishes for E ′ = E ; i.e., we can take g(E ′ = E , E ) = 0 in
Eq. (B26).

Taking the thermal average of the evolution equations,
we replace the vector operators by the c-number vectors
S(E , t ) ≡ 〈Ŝ(E , t )〉. Since E � h̄ω̄x, we evaluate Eq. (B26) in
the continuum limit. We replace the sum

∑′
E ≡ ∑′

n by
∫

dE ′
h̄ω̄x

and define
S(E , t )

h̄ω̄x
≡ N

2
S̃(E , t ), (B30)

where N = N↑ + N↓ is the total number of atoms. Then,

∂S̃(E , t )

∂t
= �(E , t ) × S̃(E , t )

+
∫

dE ′ g̃(E ′, E ) S̃(E ′, t ) × S̃(E , t ),

(B31)

where g̃(E ′, E ) ≡ N
2 g(E ′, E ) has a dimension of s−1. Note

that the factor N/2 in Eq. (B30) is defined to be consistent
with the spin operators of Eq. (B8); i.e., with all atoms in the
ground ↑ hyperfine state, the total spin in the z direction is
N/2.

The integral term in Eq. (B31) conserves the total spin vec-
tor

∫
dE S̃(E , t ), since g̃(E , E ′) is symmetric under E ′ ↔ E

and the cross product is antisymmetric. In contrast, �(E ) is an
energy-dependent rotation rate that does not conserve the total
spin S̃(E , t ). However, without radio-frequency excitation,
�(E ) is along the z axis and the z component of the total spin
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∫
dE S̃z(E ) is conserved. Finally, since Eq. (B31) describes a

rotation of S̃(E , t ), |S̃(E , t )| ≡ S(E ) is conserved for each E .
We integrate Eq. (B31) subject to the initial condition that

all atoms are in the lower hyperfine (spin-up) state. A radio-
frequency pulse is then used to prepare a collective spin vector
with components in the x-y plane. With Eq. (B30), the thermal
averaged z component of the initial collective spin operator,
Eq. (B8), requires

S̃z(E , t = 0) = S(E ) = P(E ), (B32)

where P(E , T ) is the fraction of atoms with axial energy E at
temperature T and

∫ ∞
0 dE P(E ) = 1 in the continuum limit.

In the high-temperature limit,

P(E ) = 1

Z
e− E

kBT , (B33)

with the partition function Z = ∫ ∞
0 dEe− E

kBT = kBT . In the
low-temperature limit, T → 0, we use the occupation number
for a Fermi distribution in three dimensions and sum over
the energies in the two perpendicular directions to obtain the
normalized axial (x) energy distribution,

P(E ) = 3

EF

(
1 − E

EF

)2

�

(
1 − E

EF

)
, (B34)

where for N↑ = N , EF = (6N )1/3h̄ω̄, with ω̄ ≡ (ω2
⊥ω̄x )1/3.

The measured axial spin-density profiles are given by the
continuum limit of Eq. (B11),

S(x, t ) = N

2

∫
dE |φE (x)|2 S̃(E , t ), (B35)

where we neglect coherence between states of different energy
and

∫
dx S(x, t ) = N

2

∫
dE S̃(E , t ). Evaluation of Eq. (B35) is

simplified by rewriting the WKB wave functions of Eq. (B28)
in the form

|φE (x)|2 = ω̄x

π

∫ ∞

0
d px δ

(
E − p2

x

2m
− mω̄2

x

2
x2

)
(B36)

so that the spin density is

S(x, t ) = N

2

ω̄x

π

∫ ∞

0
d px S̃

(
p2

x

2m
+ mω̄2

x

2
x2, t

)
. (B37)

The initial spatial densities for the spin components are
similarly determined. For the degenerate gas, we approxi-
mate the energy distribution by the zero-temperature limit,
Eq. (B34), as discussed above. The corresponding spatial
density for each spin component, just after preparation, is
then a normalized zero-temperature Thomas-Fermi profile.
Analogous to Eq. (B35), using Eq. (B28) [or Eq. (B36)], it
is easy to show that the initial density profiles for each state
are of the one-dimensional Thomas-Fermi form,

n↑,↓(x, 0) = N↑,↓
∫

dE |φE (x)|2 P(E )

= N↑,↓
16

5π σFx

(
1 − x2

σ 2
Fx

)5/2

�

(
1 − x2

σ 2
Fx

)
,

(B38)

where σFx = √
2EF /(mω̄2

x ) is the Fermi radius and N↑ =
N↓ = N/2 for a balanced mixture. As the energy distribution

for the atoms does not change in time, the spatial profile
for the total density n(x) is time independent, i.e., n↑(x, t ) +
n↓(x, t ) = n↑(x, 0) + n↓(x, 0) = n(x), as shown in Fig. 1 of
the main paper. For the nondegenerate gas, the Maxwell-
Boltzmann energy distribution of Eq. (B33) yields the corre-
sponding Gaussian spatial profile.

1. Small-angle approximation

We can make contact with the first-order, large-Dicke-gap
approximation of Koller et al. [2] by considering the evolution
equations for small-amplitude spin waves, expressed in terms
of angles. As the magnitude of |S̃(E , t )| ≡ S(E ) is conserved
for each E , where

∫
dE S(E ) = 1, we can write the spin

components in terms of two angles, a polar angle θE and an
azimuthal angle, ϕE :

S̃x(E , t ) = S(E ) sin θE (t ) cos ϕE (t ),

S̃y(E , t ) = S(E ) sin θE (t ) sin ϕE (t ), (B39)

S̃z(E , t ) = S(E ) cos θE (t ).

Using Eq. (B31), it is straightforward to obtain the evolution
equations for the angles. For times after the radio-frequency
preparation pulse,

θ̇E =
∫

dE ′ g(E , E ′) S(E ′) sin θE ′ sin(ϕE ′ − ϕE ), (B40)

ϕ̇E = γ E +
∫

dE ′
1 g(E , E ′

1) S(E ′
1)

× [ cos θE ′
1
− cot θE sin θE ′

1
cos(ϕE − ϕE ′

1
)],

(B41)

where the energy-dependent rotation rate about the z
axis, Eq. (B4), is �(E ) = −δωx/(h̄ω̄x ) E ≡ γ E . Here,
we take the initial conditions to be S̃x(E , t = 0) = S(E )
and S̃z(E , t = 0) = S̃y(E , t = 0) = 0, just after the radio-

frequency pulse. From Eq. (B40), we see that
∫

dE ˙̃Sz(E , t ) =
− ∫

dE S(E ) sin θE θ̇E = 0, since sin(ϕE ′ − ϕE ) is odd in
E ′, E and

∫
dE S̃z(E , t ) is conserved as it should be.

The angle equations take a simple approximate form for
small-amplitude spin waves, where θE = π/2 + δθE with
δθE � 1. Then,

S̃z(E , t ) � −S(E ) δθE (t ) (B42)

and the spatial profile, Eq. (B35), is given by

Sz(x, t ) = −N

2

∫
dE |φE (x)|2 S(E ) δθE (t ), (B43)

where |φE (x)|2 is easily evaluated using the WKB approxima-
tion.

For γ E � g(E , E ′), with sin θE ′ � 1 and ϕE ′ − ϕE �
γ (E ′ − E )t , Eq. (B40) immediately yields

δθE (t ) �
∫

dE ′ g(E , E ′) S(E ′)

× 1 − cos[γ (E ′ − E )t]

γ (E ′ − E )
. (B44)

To make contact with the first-order, large-Dicke-gap ap-
proximation of Koller et al. [2], we consider the opposite
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limit, g(E , E ′) � γ E . Here, we make the simplifying as-
sumption that g(E , E ′) � �̄g is energy independent. Then we
can approximate ϕE − ϕE ′ � 1, over the relevant time scale
t � 1/�̄g, and Eqs. (B40) and (B41) take the simple forms

δθ̇E = �̄g

∫
dE ′ S(E ′) (ϕE ′ − ϕE ),

δϕ̇E = γ E + �̄g

∫
dE ′

1 S(E ′
1)

(
δθE − δθE ′

1

)
. (B45)

Differentiating the first equation with respect to t yields

δθ̈E = �̄g

∫
dE ′ S(E ′) (ϕ̇E ′ − ϕ̇E ). (B46)

From the second equation,

ϕ̇E ′ − ϕ̇E = γ (E ′ − E ) + �̄g(δθE ′ − δθE ), (B47)

where we have used
∫

dE ′
1 S(E ′

1) = 1. After substituting
Eq. (B47) into Eq. (B46), we take

∫
dE ′ S(E ′) δθE ′ = 0. Here,

we assume for simplicity that the initial spin is in the x-y
plane, so that the conserved total S̃z vanishes. Then,

δθ̈E + �̄2
g δθE = �̄gγ (Ē − E ), (B48)

where Ē ≡ ∫
dE ′ S(E ′) E ′. For the initial conditions,

δθE (0) = 0 and δθ̇E (0) = 0,

δθE (t ) = γ (Ē − E )

�̄g
[1 − cos(�̄gt )]. (B49)

With Eq. (B43), we see that Eq. (B49) is equivalent to Eq. (3)
of Koller et al. [2], which was obtained by first-order pertur-
bation theory in the Dicke spin state basis.

2. Numerical implementation

To determine S̃(E , t ) from Eq. (B31), we divide the energy
range into discrete intervals �E , taking E = (n − 1)�E ,
with n an integer, 1 � n � nmax. Typically, nmax = 500. This
method determines the spin components i = x, y, z as col-
umn vectors in discrete energy space, S̃ discr

i (n, t ), where n
labels the row (rather than the harmonic oscillator state).
We take S̃(E , t ) = S̃ discr (n, t )/�E in Eq. (B31). With the
replacement

∫
dE ′/�E = ∫

dn′ → ∑
n′ , the discrete energy

evolution equations are

∂S̃ discr (n, t )

∂t
= �(n, t ) × S̃ discr (n, t )

+
∑

n′
g̃(n′, n) S̃ discr (n′, t ) × S̃ discr (n, t ),

(B50)

where

g̃(n′, n) = �̃√|n − n′| EllipticK

[
−nmin − 1

|n − n′|
]
. (B51)

Here, nmin is the minimum of n and n′ and

�̃ = −N

2

4 g n̄⊥
π2h̄

√
mω̄2

x

2�E
, (B52)

with g = 4π h̄2 aS/m.

We define �E differently for the high- and low-
temperature limits. In the low-temperature limit, we take
�E = s EF . Since 0 � E � EF , we have s = 1/(nmax − 1).
In the high-temperature limit, we choose �E = s kBT and
take s so that exp[−s (nmax − 1)] is negligible. For both cases,
it is convenient to let �E = s 1

2 mω̄2
xσ

2
x . Then, for T = 0,

σx = √
2EF /(mω̄2

x ) ≡ σFx is the Fermi radius, which is mea-
sured in the experiments. For the high-temperature limit, σx =√

2kBT/(mω̄2
x ) is the measured Gaussian (Boltzmann factor)

1/e radius. With �E = s 1
2 mω̄2

xσ
2
x , Eq. (B52) yields

�̃ = − 1√
s

4 h

π2

aS

m

n̄⊥N

σx
≡ − 1√

s
�MF , (B53)

where we have defined the mean-field frequency �MF , h =
2π h̄, and n̄⊥ given by Eq. (B20). In the low-temperature
limit, with n⊥(ρ) = 3(1 − ρ2/σ 2

F⊥)/(πσ 2
F⊥), we obtain

n̄⊥ = 9
5πσ 2

F⊥
. In the high-temperature limit, with n⊥(ρ) =

exp[−ρ2/σ 2
⊥]/(πσ 2

⊥), we obtain n̄⊥ = 1
2πσ 2

⊥
. Then,

�MF = 9

20π

2h aS

m
nF0, T = 0,

�MF = 1

π3/2

2h aS

m
n0, high T . (B54)

Here nF0 = 8 N/(π2σ 2
F⊥σFx ) is the 3D central density for a

T = 0 Thomas-Fermi profile with σF⊥ =
√

2EF /(mω2
⊥) and

n0 = N/(π3/2σ 2
⊥σx ) is the 3D central density in the Boltzmann

limit, where σ⊥ =
√

2kBT/(mω2
⊥).

With our choices of �E , the initial conditions are analo-
gous to Eq. (B32),

S̃ discr
z (n, t = 0) = P(n), (B55)

where for the high-temperature limit, P(n) = exp[−s(n −
1)]/Z , and for the T = 0 limit, P(n) = 3s [1 − s(n − 1)]2/Z ,
with Z = ∑nmax

n=1 P(n).
Now we evaluate the first term on the right-hand side

of Eq. (B50), which is the energy-dependent frequency
�(n, t ) = êz �z(n) + �Rabi(t ). As discussed above, �z(n)
arises from the bias magnetic field curvature. For a gen-
eral radio-frequency excitation with a time-dependent de-
tuning �(t ) and Rabi frequency �R(t ), �Rabi(t ) = êz �(t ) +
êy�R(t ). Using E = (n − 1)s EF for the T = 0 limit and E =
(n − 1)s kBT in the high-temperature limit, we have

�z(n) ≡ �z (n − 1), (B56)

where �z = −δωx s EF /(h̄ω̄x ) at T = 0 and �z =
−δωx s kBT/(h̄ω̄x ) in the high-temperature limit.

Next, we evaluate the resonance frequency difference,
δωx = ωx↓ − ωx↑, which arises from the curvature of the bias
magnetic field in the axial x direction, �Bz = x2 B′′

z (0)/2. The
harmonic oscillation frequencies for the upper hyperfine state
(↓) and lower hyperfine state (↑) are determined by the sum
of optical and magnetic spring constants,

ω2
x↓,↑ = ω2

opt + ω2
mag↓,↑ = ω2

opt + 1

m

∂2Bz

∂2x

∂E↓,↑
∂B

, (B57)

where ωopt arises from the optical trap and ωmag from the bias
field curvature.
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For our experiments in 6Li, the hyperfine energies E↓,↑ are
dominated by the Zeeman shift of the (spin-down) electron
for each of the lowest three hyperfine states, while the much
smaller difference E↓ − E↑ arises from the difference between
the nuclear parts of the magnetic moment and the difference in
the hyperfine mixing. Then, with ω2

mag ≡ (ω2
mag↓ + ω2

mag↑)/2
and ω̄2

x ≡ ω2
opt + ω2

mag, we have

ωx↓,↑ =
√

ω2
opt + ω2

mag ± ω2
mag↓ − ω2

mag↑
2

� ω̄x

(
1 ± ω2

mag↓ − ω2
mag↑

4 ω̄2
x

)
(B58)

and

δωx

ω̄x
= ωx↓ − ωx↑

ω̄x
= ω2

mag

ω̄2
x

ω2
mag↓ − ω2

mag↑
2 ω2

mag

.

Then,

δωx = ω2
mag

ω̄x

(
∂E↓
∂B − ∂E↑

∂B
∂E↓
∂B + ∂E↑

∂B

)
� ω2

mag

ω̄x

h̄ω′
↓↑

gJμB
, (B59)

where ω′
↓↑ is the tuning rate of the transition, with ↓ the upper

hyperfine state. Here, we have assumed that the denominator
of Eq. (B59) is approximately twice the Zeeman tuning rate of
a spin-down electron, 2 × gJμB/2 = −2π × 2.8 MHz/G, as
is the case for our experiments near the zero crossings of 6Li.
For our experiments, ω2

mag = (2π × 20.5 Hz)2 B(G)/834. For
the degenerate gas, ω̄x = 2π × 23 Hz, ω⊥ = 2π × 625 Hz;
for the high-temperature gas, ω̄x = 2π × 174 Hz, ω⊥ = 2π ×
5.77 kHz.

For a mixture of two hyperfine states, as noted above, ↓
denotes the upper hyperfine state, and ↑ denotes the lower
hyperfine state. The hyperfine energies for the three lowest
states of 6Li, denoted 1,2,3 in order of increasing energy, yield
the tuning rates which appear in the numerator of Eq. (B59):
ω′

21[527 G] = 2π × 3.61 kHz/G and ω′
32[589 G] = −2π ×

12.3 kHz/G, ω′
31[568 G] = −2π × 10.3 kHz/G. With ω̄x =

2π × 23 Hz, we obtain δωx = −2π × 14.9 mHz for a 1-2
mixture near 527 G, δωx = +2π × 56.7 mHz for a 2-3 mix-
ture near 589 G, and δωx = +2π × 45.8 mHz for a 1-3 mix-
ture near 568 G.

Numerical evaluation of Eq. (B50) yields the tables {n −
1, S̃ discr

i (n, t )} for 1 � n � nmax. Note that n − 1 is used as
the independent variable so that E = (n − 1)�E = 0 for n =
1. The energy-dependent S̃ discr (n, t ) is then converted to an
interpolator function of (n − 1) = E/�E and Eq. (B37) is
used to find the spin density S(x, t ).

3. Energy-dependent scattering length

For experiments in the nondegenerate regime at higher
temperatures, we find that the energy dependence of the
scattering length cannot be neglected. This energy dependence
strongly modifies the spin-density profiles for small positive
scattering lengths, as shown in Fig. 9 of the main text, and
produces a shift of the zero crossing field. We include this
dependence in g(E ′, E ) of Eq. (B27) by replacing the energy-
independent s-wave scattering length aS with an energy-

dependent scattering length a(E ′, E ). The s-wave scattering
length is given by the energy-dependent scattering amplitude
f (k),

a[B, k] = f

(
−2μBB + h̄2k2

2μ

)
, (B60)

where h̄ k is the relative momentum and μ = m/2 is the re-
duced mass. The applied bias magnetic field Bz ≡ B tunes the
energy of a colliding pair in the triplet channel downward, at a
rate −2μBB, with μB the Bohr magneton. For our experiments
in the degenerate regime, where the relative kinetic energy
term in Eq. (B60) is negligible, we assume that the scattering
length varies linearly with applied magnetic field near the zero
crossing field B0,

a(B) = a′ (B − B0), (B61)

where the tuning rate of the scattering length a′ is given in the
main text in units of a0/G, where a0 is the Bohr radius.

Including the relative kinetic energy Krel in Eq. (B60) is
equivalent to replacing the magnetic field B by an effective
magnetic field,

Beff = 〈Bz〉 − 〈Krel〉
2μB

. (B62)

Here, we include an additional average of the spatially varying
bias field Bz over the position of the center of mass (c.m.) of a
colliding atom pair.

We begin by evaluating 〈Bz〉. The bias field is cylindrically
symmetric about the z axis, and oriented perpendicular to
the long x axis of the trapped cloud, so that Bz = Bz0[1 +
b(z2 − (x2 + y2)/2)], where Bz0 is the bias field at the cloud
center and b Bz0 is the field curvature. For the cigar-shaped
clouds utilized in the experiments, the variation of Bz in the
z and y directions is negligible compared to that in the x
direction, so that Bz(x) = Bz0[1 − b x2/2]. We determine b Bz0

from the measured spring constant of the resulting harmonic
confining potential, −μBBz(x), where for 6Li, the magnetic
moment, +μB, of the three lowest hyperfine states at high
B field is dominated by the electron spin-down contribution,
ms = −1/2. With μBbBz0 ≡ mω2

mag, where ωmag is given in
Sec. B 2, the bias field, averaged over the center-of-mass
position, is then 〈Bz〉 = Bz0 − mω2

mag 〈X 2
c.m.〉/(2μB). Using the

virial theorem for a harmonic trap, which holds for weakly
interacting atoms, we obtain 2m ω̄2

x 〈X 2
c.m.〉 = 〈Ex

c.m.〉, where
2m is the total mass. Hence,

Beff = Bz0 − ω2
mag

ω̄2
x

〈Ex
c.m.〉

4μB
− 〈Kx

rel〉
2μB

− 〈K⊥
rel〉

2μB
. (B63)

Here, we have separated the relative kinetic energy term of
Eq. (B62) into axial and transverse parts.

Next, we evaluate the relative kinetic energy contributions.
For the axial x direction, we select the energy of the two col-
liding atoms E and E ′ in g(E , E ′), Eq. (B27). Hence, the total
energy is E + E ′ = Ex

c.m. + Ex
rel. For harmonic confinement,

the kinetic and potential energies are quadratic degrees of
freedom, which requires Ex

c.m. = (E + E ′)/2 for any product
state φE (x1) φE ′ (x2). We also have Ex

rel = (E + E ′)/2, where
Ex

rel = Kx
rel + μ ω̄2

x x2
rel/2 for harmonic confinement. To eval-

uate 〈Kx
rel〉, we note that for a collision to occur, the relative
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FIG. 13. Spin-density profiles (blue dots) for a degenerate sample T/TF = 0.35 versus evolution time relative to coherent excitation. Each
data profile is the average of five runs, taken in random time order. Each solid red curve is the mean-field model with a fixed scattering length
of a = 5.23 bohrs (B = 528.844 G) and a fitted cloud size within a few percent of the average value σ = 329 μm.

position xrel of the two atoms must vanish for a contact in-
teraction. Hence, Kx

rel = Ex
rel = (E + E ′)/2. For the transverse

directions, we have defined a mean fractional spatial density
n̄⊥, by Eq. (B20). Assuming that the corresponding relative
momentum average for the two transverse directions is deter-
mined by a Boltzmann distribution, 〈K⊥

rel〉 � kBT . Using these
results in Eq. (B63), we obtain, finally,

Beff = Bz0 − 〈K⊥
rel〉

2μB
−

(
1 + ω2

mag

2ω̄2
x

)
E + E ′

4μB
, (B64)

where we leave 〈K⊥
rel〉 as an adjustable parameter, of order

kBT . Replacing aS with a(E ′, E ) = a′(Beff − B0) in g(E ′, E )
of Eq. (B27) and in the results for g̃(n′, n) that follow from it,
we obtain a reasonable fit to the high-temperature spin-density
profile of Fig. 6 in the main paper with 〈K⊥

rel〉 = 0.59 kBT . For
T = 45.7 μK, this corresponds to a shift of −0.2 G in Beff ,
consistent with the upward shift of the applied field for which
a12 = 0, as reported in Table I of the main paper. For the
low-temperature data, where the energy scale is <1 μK, the
corresponding energy shift is negligible.

4. Measured spatial profiles versus predictions

To compare the data for degenerate samples to the zero-
temperature theoretical model discussed above, we assume

that the measured initial densities n↑(x), n↓(x) and the con-
served total density are zero-temperature Thomas-Fermi pro-
files [see Eq. (B38)], with an effective zero-temperature Fermi
radius σ , which we use as a fit parameter. From the profile
of the total density, we find σ = 329 μm, corresponding to
an effective Fermi temperature of mω̄2

xσ
2/2 = 0.82 μK and a

transverse radius (ω̄x/ω⊥) σ . For the high-temperature sam-
ple, the total atom number is ∼4.5 × 105, and the measured
Gaussian 1/e radius is σx = √

2kBT/(mω̄2
x ) = 325 μm, which

determines T = 45.7 μK.
Figure 2 of the main text demonstrates the excellent quanti-

tative agreement between the predicted and measured density
profiles of each hyperfine state for a degenerate sample, in
units of the conserved average central density (n1 + n2), for
a scattering length of a12 = 3.04a0. Figure 3 of the main
text shows the transversely integrated spin densities n1(x, t ) −
n2(x, t ) ≡ 2Sz(x, t ) with a12 = 5.17a0 and a12 = −5.39a0 at
selected times t after excitation. The data are quite sensitive to
the evolution time and exhibit a complex structure, which are
very well fit by the collective spin-rotation model. Figure 13
shows additional measurements and predictions for the time
evolution of (n1 − n2) between t = 0 and 800 ms, relative to
coherent excitation, for a fixed scattering length of a = 5.23a0

at B = 528.844 G, which corresponds to the evolution of the
central spin density shown in Fig. 4. Here, (n1 − n2) is given
in units of the total central density n1(0) + n2(0).
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