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Ground state of weakly repulsive soft-core bosons on a sphere
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We study a system of penetrable bosons embedded in a spherical surface. Under the assumption of weak
interaction between the particles, the ground state of the system is, to a good approximation, a pure condensate.
We employ thermodynamic arguments to investigate, within a variational ansatz for the single-particle state,
the crossover between distinct finite-size “phases” in the parameter space spanned by the sphere radius and the
chemical potential. In particular, for radii up to a few interaction ranges we examine the stability of the fluid
phase with respect to a number of crystal-like arrangements having the symmetry of a regular or semiregular
polyhedron. We find that, while quantum fluctuations keep the system fluid at low density, upon compression it
eventually becomes inhomogeneous, i.e., particles gather together in clusters. As the radius increases, the nature
of the high-density aggregate varies and we observe a sequence of transitions between different cluster phases
(“solids”), whose underlying rationale is to maximize the coordination number of clusters, while ensuring at
the same time the proper distance between each neighboring pair. We argue that, at least within our mean-field
description, every cluster phase is supersolid.
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I. INTRODUCTION

In the past few decades, thanks to the continued advance
in the preparation and manipulation of ultracold atomic gases,
the investigation of quantum correlation effects has reached
a level of sophistication which would have been simply
unimaginable before [1–3]. By confining atoms in optical
and magnetic traps also the properties of low-dimensional
quantum systems can be analyzed in detail, making it pos-
sible to test theoretical predictions and approximations (see,
e.g., [4]). Even the range and strength of interatomic forces
can be tuned to a certain extent [5] (e.g., by the tech-
nique of Rydberg dressing), which has ultimately allowed
one to realize atomic systems characterized by an effec-
tive isotropic repulsion saturating to a finite value for zero
separation [6,7].

Finite-strength interactions are frequently encountered in
the classical realm as models for polymer coils or dendrimers
dispersed in a good solvent (see, e.g., Refs. [8,9]). The phase
behavior of such fluids can be very rich, featuring in equi-
librium any sort of mesoscopic structures (like clusters, mi-
celles, and filaments—see [10] and references cited therein).
For purely repulsive particles, a distinctly universal behavior
emerges at low temperature [11], where, depending on the
shape of the potential, the high-density phase is either fluid or
cluster solid. The latter phase can be described as a crystalline
system with multiply occupied cells, each hosting on average
the same number of particles (see examples in Refs. [12–14]).
Cluster crystals are characterized by a marked single-particle
diffusion [15], which keeps the interstitial density at a nonzero
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value in equilibrium. It is clear that clustering, as a self-
assembly phenomenon, can only occur when the formation
of bunches of fully overlapping particles is energetically
preferred over diffuse partial overlap [9].

In recent years, various quantum models of softly re-
pulsive bosons have been considered, whose phase diagram
was worked out at zero temperature (T = 0) both in mean
field (MF) [16–20] and by Monte Carlo (MC) simulation
[21–24]. In these systems the fluid-to-solid transition is the
necessary outcome of the softening of rotonlike modes in the
fluid. The mechanism promoting quantum crystallization at
T = 0 is different from the freezing of hard-core fluids at
high T , which is typically an entropy-driven (rather than an
energy-driven) phase transition. Moreover, quantum cluster
crystals may be supersolid, a feature which lacks a classical
analog. Supersolidity has to do with an anomalous decrease
of rotational inertia [25–28], as if a fraction of the system
remains stationary when the crystal is set into slow rotation
around an axis.

In the present study we explore by MF theory the low-
temperature physics of penetrable bosons in a setting which
apparently has not been considered so far, i.e., that provided
by confinement to a spherical surface. The systems which
more closely resemble our model system are ultracold dilute
gases trapped in a thin spherical shell, which have been the
subject of a few experimental studies [29,30]. Other examples
of real systems bearing some similarity to our model are
multielectron bubbles in liquid helium [31], arrangements of
protein subunits on spherical viruses [32], and colloidal par-
ticles in colloidosomes [33]. In such systems the interparticle
forces depend on the Euclidean distance rather than on the
arc-length distance, which is the intrinsic metric for particles
embedded in the surface of a sphere. However, this difference
is immaterial as long as in our theory the pair potential is
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expressed in terms of the angular separation between the
particles (see Sec. II). Spherical boundary conditions have
often been used in numerical experiments [34–40] as a means
to discourage crystalline ordering at high density (as is well
known, triangular order is frustrated on a sphere). In practice,
the sphere curvature imposes a distinct excess of fivefold
disclinations over sevenfold ones, which considerably com-
plicates the search for optimal packings, even for small radii.
Very recently, Franzini et al. [41] have studied by density-
functional theory a system of classical particles interacting
through a generalized-exponential repulsion (GEM-4), find-
ing a rich catalog of cluster phases as a function of the sphere
radius R.

It is reasonable that, as the spherical surface gets more and
more filled with particles, it will be found more convenient
also for a quantum system of penetrable disks to clusterize,
thus becoming solidlike inhomogeneous; moreover, as for a
classical system, it is likely that numerous aggregates will
compete for stability as a function of R. The most symmet-
ric ones, i.e., those sharing the symmetries of a regular or
semiregular circumscribable polyhedron, are natural candi-
dates for the high-density phases. There is a limiting case,
where the theoretical analysis of the quantum system at T = 0
is greatly simplified, that is weak interparticle repulsion.
Then, MF theory becomes an effective method, as practically
demonstrated for a specific instance of soft-core bosons by the
“exact” phase diagram reported in [24]. As already made in
[19,20], we further simplify our treatment using an educated
guess of the condensate wave function, to be optimized by the
variational method. By taking advantage of a well-established
theoretical framework, we aim to gain insight into the self-
organization principles underlying structure selection in a
quantum many-body system characterized by a wealth of
possible ground states.

The outline of the paper is as follows. In Sec. II we
introduce the model and outline the variational MF theory
employed to study its ground-state behavior. To give a flavor
of the results obtained, in Sec. III we work out analytically a
simpler exercise, which is nonetheless capable of predicting
the onset of clusters at high density in a specific range of
R values. Afterwards, in Sec. IV we present the full phase
diagram of the system as a function of R and chemical
potential. In Sec. V we devote special attention to the issue
of supersolidity of the spherical cluster phases. We show
that, within our theory, all such phases are indeed supersolid.
Concluding remarks are postponed to Sec. VI.

II. MODEL AND THEORY

We investigate a system of N identical spinless bosons,
living on a sphere of radius R and interacting with each
other via a bounded potential v(s), function of the arc-length
distance s. A paradigmatic case of finite repulsion is the
penetrable-sphere model (PSM) potential, v(s) = εϑ (σ − s),
ϑ being the Heaviside step function (PSM bosons will be
our favorite case study later). It is convenient to introduce
another parametrization of the potential, written in terms of
the scalar product between the unit vectors r̂ and r̂′ identifying
the positions on the sphere of the interacting pair. Using

r̂ · r̂′ = cos(s/R), we define

u(x) = v(R arccos x) or v(s) = u

(
cos

s

R

)
. (2.1)

If the interaction potential were given in terms of the 3D
Euclidean distance r, the definition of u in (2.1) would be
modified into u(x) = v[2R

√
(1 − x)/2], but no change will

occur in the subsequent analysis.
It is not a priori obvious how to quantize a system of

particles living in a curved space. Canonical quantization
rules are inconsistent and a way out is to quantize angular
momentum directly—see this point thoroughly discussed in
[42]. In the case of a free particle on a sphere, this entails
taking the Hamiltonian (kinetic energy) to be L2/(2mR2) =
−h̄2/(2m)∇2, where m is the particle mass and ∇2 is the
Laplace-Beltrami operator on the sphere [see Eq. (2.4) below].
This same approach was followed by many authors [43–46].

In the MF (Hartree) approximation, particles are treated as
they were independent of each other and the N-boson ground
state is therefore a pure condensate:

�(�1, . . . , �N ) =
N∏

i=1

ψ (�i ), (2.2)

where �i = (θi, φi ) are the angular coordinates of the ith
particle, i.e., the spherical variables specifying its 3D position
ri = Rr̂i (in the following, � and r̂ are used interchangeably
as an argument of ψ). The best choice of the single-particle
wave function is that minimizing the expectation value of the
Hamiltonian in �, which corresponds to a normalized func-
tion obeying the (time-independent) Gross-Pitaevskii (GP)
equation [47–49] (see Appendix A):

− h̄2

2m
∇2ψ + (N − 1)

∫
d2�′ |ψ (�′)|2u(r̂ · r̂′)ψ (�)

= λψ (�), (2.3)

where

∇2 = 1

R2

{
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

}
(2.4)

is the spherical Laplacian and

λ = − h̄2

2m

∫
d2�ψ∗∇2ψ + (N − 1)

×
∫

d2� d2�′ |ψ (�)|2u(r̂ · r̂′)|ψ (�′)|2. (2.5)

The value of λ is consistent with ψ being a solution to
(2.3): indeed, multiplication of both sides of (2.3) by ψ∗ and
subsequent integration over angles immediately leads to (2.5)
under the assumption of unit norm for ψ . In Appendix A,
we discuss problems related with the numerical solution of
Eq. (2.4). We argue that a faster and physically more grounded
method, which has proved effective in our exploration of
the ground state of the planar system, is to minimize the
following MF energy functional (kinetic energy per particle
plus potential energy per particle) via the optimization of a
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parametric wave function:

E[ψ] = − h̄2

2m

∫
d2�ψ∗∇2ψ + N − 1

2

×
∫

d2� d2�′ |ψ (�)|2u(r̂ · r̂′)|ψ (�′)|2. (2.6)

For a short-range potential, the ground-state energy in the
planar limit R � σ is only controlled by the dimensionless
quantity ρσ 2ε/e0 [where e0 = h̄2/(mσ 2)], which we hereafter
refer to as the “density.” When R is finite the sphere radius
is an additional control parameter, i.e., the properties of the
system depend separately on R and ρ. In the following, we
take σ and e0 as units of length and energy, respectively.

We now provide a more explicit expression of E[ψ] that
applies for any normalized wave function written as an ex-
pansion in spherical harmonics:

ψ (�) =
∞∑

l=0

l∑
m=−l

clmY m
l (�) with

∑
lm

|clm|2 = 1 (2.7)

[if ψ (�) is real then cl,−m = (−1)mc∗
lm]. Computing the

kinetic energy is straightforward; since R2∇2Y m
l = −l (l +

1)Y m
l , we readily find

Ekin = h̄2

2mR2

∑
lm

l (l + 1)|clm|2. (2.8)

As to the potential energy Epot [second term in Eq. (2.6)], in
Appendix B we derive the following result:

Epot = N − 1

4

∞∑
l=0

(2l + 1)
∫ 1

−1
dx u(x)Pl (x)

×
l∑

m=−l

(−1)m
∑

l1m1,l2m2,l3m3,l4m4

(−1)m2+m4

×
√

(2l1 + 1)(2l2 + 1)(2l3 + 1)(2l4 + 1)

×
(

l l1 l2
0 0 0

)(
l l3 l4
0 0 0

)(
l l1 l2
m m1 −m2

)
×
(

l l3 l4
−m m3 −m4

)
cl1m1 c∗

l2m2
cl3m3 c∗

l4m4
, (2.9)

where Pl (x) are Legendre polynomials and the matrices are
Wigner 3- j symbols.

The total energy per particle is the sum of (2.8) and (2.9). In
practice, the l sum must be truncated, i.e., l � lmax, where lmax

is chosen in accordance with the spatial resolution adopted for
the description (see this point discussed, e.g., in Ref. [50]).
To check consistency, let us consider the homogeneous fluid,
corresponding to clm = δl0δm0 or ψ = Y 0

0 = 1/
√

4π . It then
follows from Eqs. (2.8) and (2.9), as well as directly from
Eq. (2.6), that

E = N − 1

4

∫ 1

−1
dx u(x) = N − 1

4

∫ 1

−1
dx v(R arccos x)

= N − 1

8π

∫
d2� v(Rθ ) → ρ

2
ṽ(0), (2.10)

where the last step follows in the planar limit, that is, for
N → ∞, R → +∞, and N/(4πR2) → ρ. As expected, the

limiting value of E is nothing but the specific energy of the
planar fluid [19].

III. CLUSTER FORMATION AT HIGH DENSITY:
PROOF OF CONCEPT

As argued in the Introduction, in a spherical quantum
system the most stable T = 0 configuration would not neces-
sarily be fluid. Depending on the radius R, other phases may
be expected to arise as ground states in a system of softly
repulsive particles at high density. In particular, we guess a
primary role for cluster-crystal-like arrangements having the
symmetry of a regular (i.e., Platonic) or semiregular (i.e.,
Archimedean or circumscribable Catalan) polyhedron. It is
easy to conjecture that the stable phase at high density would
crucially depend on the value of R, since the latter determines
the edge length � of the inscribed polyhedron and conse-
quently also the geodesic distance between two neighboring
clusters. Considering that for the PSM interaction the edge of
the triangular-crystal lattice is about 1.51σ at melting [19],
we expect that the structure of the high-density phase will be
found among those polyhedra having � � 1.51σ . For instance,
since the sphere circumscribing the regular icosahedron has a
radius of

R = �

4

√
10 + 2

√
5, (3.1)

an icosahedral cluster phase is most likely to occur for
R ≈ 1.4σ .

A real, one-parameter form of ψ adequate to represent the
pattern expected at large ρ on the sphere is a sum of Gaussians
centered at the vertices Rk (k = 1, . . . , n) of the inscribed
polyhedron:

ψ (r̂) = Cα

n∑
k=1

exp

{
−α

(
Rr̂ − Rk

�

)2
}

= Cα

n∑
k=1

exp

{
−2R2

�2
α(1 − r̂ · R̂k )

}
, (3.2)

where α is a variational parameter and Cα is a (real) normal-
ization constant (notice that R/� is a pure number, specific of
the given polyhedron). The fluid ground state (ψ = 1/

√
4π )

is recovered from (3.2) as a limiting case, i.e., for α = 0. In
a solidlike system, α > 0 represents the inverse square width
of the local-density peaks. We point out that a real ψ is not
a limitation whatsoever; indeed, we show in Appendix C that
the true single-particle wave function of minimum energy is,
as already known from three dimensions [51], a real function.

We now describe the method followed to draw the “melting
line” of a given cluster phase as a function of R for T = 0. To
this purpose we employ a thermodynamic framework, with
the idea that when a crossover (a rounded phase transition)
occurs at fixed R from one ground state to the other the
number of particles is very large (we shall see a posteriori that
this is always a safe assumption). In this respect, the chemical
potential μ is a more meaningful control parameter than the
pressure P since the surface area is fixed. In brief, we first
determine the energy per unit particle e as a function of ρ,
taking N = 4πR2ρ in Eq. (2.6). Calling α(ρ) the point of
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absolute minimum of E ([ψ (α)]; ρ) for the fixed ρ, we have
e(ρ) = E ([ψ (α(ρ))]; ρ). Once the energy has been computed,
the transition point μc(R) is where the fluid and the solid
have the same grand potential per unit area [i.e., where the
minimum of ρ(e(ρ) − μ) is the same for both phases]. In the
fluid phase, where Eq. (2.10) holds, the relation between μ

and ρ is thus found to be μ = [2 + (N − 1)−1]E (ρ) 
 2E (ρ).
In order to compute E[ψ], two different roads can be

followed: either we evaluate Eq. (2.6) numerically or we
attempt an estimate of the Fourier coefficient

clm =
∫

d2�Y m∗
l (�)ψ (�) (3.3)

for all l � lmax, and then use Eqs. (2.8) and (2.9). Indeed,
in the following we will pursue both routes; however, before
that we show the feasibility of our approach by providing a
fully analytic demonstration of clusterization in a system of
spherical bosons at T = 0.

For our proof we make use of a variational wave function
simpler than (3.2), but still endowed with the symmetries of
the high-density phase we aim to describe (we will focus
on the icosahedral cluster phase). In this regard, it is useful
to recall an important paper by Zheng and Doerschuk [52]
where they explain how to construct a basis in the subspace of
square-integrable � functions that are invariant under every
rotation of the icosahedral group (see related comments on
this subject at [53,54]). These basis functions, denoted T n

l (�)
and dubbed icosahedral harmonics, are real and orthonormal
and given by

T n
l (�) =

l∑
m=−l

bnlmY m
l (�). (3.4)

For fixed l there are Nl icosahedral harmonics T n
l (n =

0, . . . , Nl − 1) that are linear combinations of the Y m
l for m =

−l, . . . , l (hence Nl � 2l + 1). Zheng and Doerschuk have
derived recursive formulas for the coefficients bnlm, for arbi-
trary n, l, m, including the cases where Nl > 1 (which only
occurs for l � 30). In particular, the first three icosahedral
harmonics turn out to be

T 0
0 = Y 0

0 , T 0
6 =

√
7

5
Y −5

6 +
√

11

5
Y 0

6 −
√

7

5
Y 5

6 ,

T 0
10 =

√
187

25
√

3
Y −10

10 −
√

209

25
Y −5

10

+
√

247

25
√

3
Y 0

10 +
√

209

25
Y 5

10 +
√

187

25
√

3
Y 10

10 . (3.5)

Of particular interest to us is the function T 0
6 , which has

twelve maxima of the same height centered at the vertices of a
regular icosahedron (see Fig. 1). Hence our problem becomes
one of determining whether, at sufficiently high density, the
energy of

ψ = Cβ

(
T 0

0 + βT 0
6

) (
with Cβ = 1√

1 + β2

)
(3.6)

reaches its minimum for some β > 0. In this circumstance,
the fluid phase (represented by T 0

0 ) is doomed to transform
upon compression into an icosahedral cluster phase. The only

FIG. 1. Scatter plot of the surface S : r = T 0
0 + βT 0

6 (θ, φ), for
β = 0.1 (left) and 0.3 (right), which clearly reveals the icosahedral
symmetry. As β increases, clusters become more localized on the
sphere. These plots were obtained by picking 104 vectors (x, y, z) at
random over the unit sphere and multiplying each by the respective
value of T 0

0 + βT 0
6 . The surface S is the envelope of the free ends

of the vectors. The red (blue) points are those (x, y, z) where T 0
6 > 0

(T 0
6 < 0, respectively).

caveat is that β < βmax 
 0.7 in (3.6), if we want to exclude
the appearance of spurious maxima in ψ2.

While it is immediate to compute the kinetic energy per
particle [cf. Eq. (2.8)], equal to

Ekin = 21β2C2
β

h̄2

mR2
, (3.7)

it is much harder to determine Epot, given by the double
integral

N − 1

2
C4

β

∫
d2� d2�′[T 0

0 + βT 0
6 (r̂)

]2
u(r̂ · r̂′)

× [
T 0

0 + βT 0
6 (r̂′)

]2
. (3.8)

After expanding each square, Eq. (3.8) becomes the sum of
nine terms, not all distinct, most of which can be simply
evaluated by using the orthonormality property of spherical
harmonics:∫

d2� d2�′ (T 0
0

)2
u(r̂ · r̂′)

(
T 0

0

)2 = 1

2

∫ 1

−1
dx u(x),∫

d2� d2�′ 2βT 0
0 T 0

6 (r̂)u(r̂ · r̂′)
(
T 0

0

)2 = 0,∫
d2� d2�′ β2(T 0

6 (r̂)
)2

u(r̂ · r̂′)
(
T 0

0

)2 = β2

2

∫ 1

−1
dx u(x),∫

d2� d2�′ 2βT 0
0 T 0

6 (r̂)u(r̂ · r̂′)2βT 0
0 T 0

6 (r̂′)

= 2β2
∫ 1

−1
dx u(x)P6(x). (3.9)

More cumbersome is the calculation of

I1 =
∫

d2� d2�′ β2
(
T 0

6 (r̂)
)2

u(r̂ · r̂′)2βT 0
0 T 0

6 (r̂′) (3.10)

and

I2 =
∫

d2� d2�′ β2(T 0
6 (r̂)

)2
u(r̂ · r̂′)β2(T 0

6 (r̂′)
)2

. (3.11)
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In the former case, we are required to compute 3- j symbols of
the kind (

6 6 6
m m1 −m2

)
(3.12)

with m, m1, m2 = 0,±5. The only nonzero symbols are those
for which m + m1 − m2 = 0, which can occur in one of seven
ways. The end result is

I1 = 20
√

11×13

17×19
β3
∫ 1

−1
dx u(x)P6(x). (3.13)

As for I2, we directly start from Eq. (2.9) with ψ = βT 0
6 . We

now need to compute the following 3- j symbols:(
l 6 6
0 0 0

)
,

(
l 6 6
m m1 −m2

)
,

(
l 6 6

−m m3 −m4

)
.

(3.14)

The first symbol is nonzero exclusively for l even and not
larger than 12. For each allowed l , the second symbol in
Eq. (3.14) is nonzero in at most nine cases (three cases for
l = 0, 2, 4, seven for l = 6, 8, and nine for l = 10, 12):

m = m1 = m2 = 0,

m = 0, m1 = m2 = 5,

m = 0, m1 = m2 = −5,

m = 5, m1 = −5, m2 = 0,

m = 5, m1 = 0, m2 = 5,

m = −5, m1 = 5, m2 = 0,

m = −5, m1 = 0, m2 = −5,

m = 10, m1 = m2 = −5,

m = −10, m1 = m2 = 5, (3.15)

and similar considerations apply for the third 3- j symbol.
After a lengthy series of steps we are eventually led to

Epot = N − 1

2
C4

β

{
(1 + β2)2E0 + β4(E2 + E4 + E6

+ E8 + E10 + E12) +
(

2β2 + 40
√

11×13

17×19
β3

)
×
∫ 1

−1
dx u(x)P6(x)

}
, (3.16)

with

E0 = 1

2

∫ 1

−1
dx u(x), E2 = E4 = 0,

E6 = 23×52×11×13

172×192

∫ 1

−1
dx u(x)P6(x), E8 = 0,

E10 = 2×34×73×13

172×19×232

∫ 1

−1
dx u(x)P10(x),

E12 = 23×32×73×112

5×17×192×232

∫ 1

−1
dx u(x)P12(x). (3.17)

-0.1

 0

 0.1

 0  0.2  0.4  0.6

ε

ψ = Cβ (T0
0 + β T6

0)

R = 1.45σ
ρ = 14.5, 15, 15.5

Δ

β

FIG. 2. Excess energy (units of e0) of the PSM “solid” relative to
the fluid, plotted as a function of β for R = 1.45σ and three densities
ρ (from now on reported in reduced units σ−2e0/ε): from top to
bottom, ρ = 14.5 (black), 15 (blue), and 15.5 (red).

We underline that the individual integrals contributing to the
total energy have been successfully checked, for a few β

values, against MC integration (see Sec. IV).
For the PSM potential,

u(x)=
{
ε, R arccos x � σ

0, R arccos x > σ
=
{

0, −1 � x < cos(σ/R),
ε, cos(σ/R) � x � 1,

(3.18)

it holds that∫ 1

−1
dx u(x)Pl (x) = ε

∫ 1

cos(σ/R)
dx Pl (x). (3.19)

Using the property (valid for any l > 0)

(2l + 1)Pl (x) = d

dx
[Pl+1(x) − Pl−1(x)], (3.20)

we easily obtain∫ 1

−1
dx u(x)Pl (x) = ε

2l + 1

[
Pl−1

(
cos

σ

R

)
− Pl+1

(
cos

σ

R

)]
.

(3.21)

In other words, the PSM energy for ψ = Cβ (T 0
0 + βT 0

6 ) ad-
mits an explicit expression in closed form.

We show in Fig. 2 some data obtained from Eqs. (3.7),
(3.16), (3.17), and (3.21). The plotted quantity is the excess
energy �E = E[ψ (β )] − E f with E f = (N − 1)E0/2, namely
the energy of the solid relative to the fluid, which has been
computed for R = 1.45σ and three distinct values of ρ. As
ρ increases, the solid energy falls eventually below the fluid
energy, implying a transition from the fluid to the icosahedral
phase upon varying μ at fixed R (in this case, each cluster
hosts roughly 30 particles at melting). This transition has the
nature of a first-order phase change, accompanied by metasta-
bility of both phases beyond the transition point. It is worth
noting the resemblance of this phenomenon to the onset of
icosahedral ordering of disordered aggregates of disclinations
in a system of hard calottes on a sphere [35,36,38]. Even in
that case a geometric pattern emerges when tuning a control
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TABLE I. Ratio between the edge length � and the circumscribed radius R for the polyhedra depicted in Fig. 3. For the snub-cube case,

t = (1 + 3
√

19 − 3
√

33 + 3
√

19 + 3
√

33)/3 and β = 3
√

26 + 6
√

33. In the last two lines, the quoted �/R refers to the biscribed form of the
polyhedron and � is the short edge (the most numerous one).

Polyhedron �/R D = 2R2/�2

Tetrahedron 2
√

2/3 = 1.632 . . . 3/4

Cube 2
√

3/3 = 1.154 . . . 3/2

Octahedron
√

2 = 1.414 . . . 1

Dodecahedron 4/(
√

3 + √
15) = 0.713 . . . (9 + 3

√
5)/4 = 3.927 . . .

Icosahedron 4/
√

10 + 2
√

5 = 1.051 . . . (5 + √
5)/4 = 1.809 . . .

Cuboctahedron 1 2

Rombicuboct. 2/
√

5 + 2
√

2 = 0.714 . . . (5 + 2
√

2)/2 = 3.914 . . .

Snub cube
√

2(2 − 8/β + β )/3/
√

t2 + t−2 + 1 = 0.744 . . .

Tetrakis hex.
√

6(3 − √
3)/3 = 0.919 . . . (3 + √

3)/2 = 2.366 . . .

Pentakis dod.

√
30(15 −

√
15(5 + 2

√
5))/15 = 0.640 . . .

parameter (the density), although its mechanism is purely
entropic rather than energy promoted as in the present case.

IV. RESULTS

The main value of the simplified variational calculation
carried out in Sec. III is to make it evident that in a system
of weakly repulsive spherical bosons a sharp crossover occurs
at T = 0, as a function of μ and for R ≈ 1.4σ , from the fluid
to a cluster phase of icosahedral symmetry. We emphasize
that the choice of the icosahedron as supporting frame for
the clusters is just one possibility; in fact, as R increasingly
departs from 1.4σ , other polyhedra will be better suited than
the icosahedron to match the condition � � 1.51σ . In Table I
we report the value of X = �/R for ten different solids,
depicted in Fig. 3, which we have selected among tens of
regular or semiregular circumscribable polyhedra [55] as the
reference structures that likely underlie the cluster phases for

R up to ≈2.5σ ; each such geometry would become relevant
in an R interval centered about 1.51σ/X . Besides the five
regular (Platonic) solids, we focus our attention on three
Archimedean solids and two biscribed Catalan solids (we
recall that Archimedean solids have regular faces—not all of
the same type—meeting in identical vertices, while Catalan
solids are dual to Archimedean solids and not all vertices are
equivalent). In selecting the solids in Table I our criterion was
to rule out all semiregular polyhedra with too many vertices
(more than 32) or too large faces (which would correspond to
big surface “holes” devoid of particles). Clearly, we have no
argument to exclude that other structures will also come into
play (in fact, we have good reasons to think that some low-
symmetry structures are actually relevant; see more below),
but there is anyway no hope to identify all local minima in
what is likely to be a rugged free-energy landscape.

To draw the T = 0 phase diagram of the spherical PSM
system by the variational method, we need to evaluate the

FIG. 3. Ten circumscribable polyhedra considered in this work. Each of them provides the underlying skeleton of a possible T = 0 phase in
a system of spherical bosons (i.e., clusters are centered at the vertices of the polyhedron). First row: the five Platonic solids (from left to right:
tetrahedron, cube, octahedron, dodecahedron, and icosahedron). Second row: three Archimedean solids (from left to right: cuboctahedron,
rombicuboctahedron, and snub cube) and two Catalan solids (tetrakis hexahedron and pentakis dodecahedron).
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FIG. 4. PSM bosons on a sphere at T = 0: an example of the determination of the phase-transition point (this case refers to an
inhomogeneous phase having the symmetry of a snub cube, for R = 1.9σ ). Left: excess energy (units of e0) vs α for a number of reduced
densities in the range from 12 to 17 [each plotted point is the result of an average over 20 independent estimates of the energy given by
Eq. (4.1)]. In the inset, we show a magnification of the α interval from 3 to 7, made in order to highlight the magnitude of the error bars. Full
lines are spline interpolants. Right: the Maxwell-like construction (fluid, red crosses; solid, blue circles) allowing one to determine the exact
transition threshold.

energy per particle (2.6) with ψ given as in Eq. (3.2). A viable
method is to resort to MC integration. For any of the structures
in Table I, the specific energy E at fixed R is immediately
obtained for any ρ once the kinetic energy per particle Ekin

and the potential energy per pair, 2Epot/(N − 1), are given.
Using a standard algorithm to generate points r̂i distributed
at random over the unit sphere [56], we can estimate the two
above-cited energies by the following formulas:

Ekin 
 − h̄2

2m

∑
i ψi(∇2ψ )i∑

i ψ
2
i

,
2Epot

N − 1


∑

i, j ψ
2
i ui jψ

2
j∑

i, j ψ
2
i ψ2

j

,

(4.1)

with ui j = u(r̂i · r̂ j ), ψi = ∑n
k=1 exp {−Dα(1 − r̂i · R̂k )},

and

(∇2ψ )i = −Dα

R2

n∑
k=1

{2r̂i · R̂k − Dα[1 − (r̂i · R̂k )2]}

× exp{−Dα(1 − r̂i · R̂k )}. (4.2)

In the above expressions, n denotes the number of vertices of
the given polyhedron, while D is a shorthand for 2R2/�2. To
make the error on the kinetic-energy estimate comparable to
that on the potential energy, the total number Ntot of points i
in the first of Eqs. (4.1) has been taken equal to the number of
random pairs in the second (typically Ntot ≈ 1010).

Figure 4 gives an idea of the type of results obtained.
These data are relative to a pure condensate with snub-cube
symmetry and refer to R = 1.9σ . On the left panel of Fig. 4,
we have plotted the excess energy �E = E − E f as a function
of α for a few densities; we see that, for ρ � 14, a minimum
develops for a nonzero α, signaling the onset of an inhomoge-
neous phase at high density. On the right panel, the chemical
potential has been adjusted so that the grand potential of the
fluid (hence its thermodynamic pressure) equals that of the
cluster phase. This condition defines the snub-cube transition
point μc for the given R, whereas the abscissae of the two
equal minima are the coexistence densities, ρ f and ρs. For this

case, the average number of particles per cluster at melting is
4πR2ρs/24 = 30.38.

Before presenting the full phase diagram we introduce
an alternative method to draw the function �E (α) for fixed
values of R and ρ, which may also serve to check consistency
with MC data. This method is fully analytic and consists
in reconstructing the variational energy through the exact
calculation of a sufficiently large number of ψ and ψ2 modes
[cf. Eq. (A7)]. Once the latter quantities have been computed,
the energy will be determined as a function of α through the
formula [by far more compact than the sum of (2.8) and (2.9)]

E = h̄2

2mR2

∑
lm

l (l + 1)|clm|2 + N − 1

2

×
∑
lm

(
2π

∫ 1

−1
dx u(x)Pl (x)

)
|dlm|2. (4.3)

Let us rewrite the variational wave function (3.2) as

ψ (r̂; α) = Cα

n∑
k=1

exp{−Dα(1 − r̂ · R̂k )}

≡ Cα

n∑
k=1

h(r̂ · R̂k; α). (4.4)

Using the Funk-Hecke formula [57],∫
d2�Y m

l (r̂)A(r̂ · v̂) = AlY
m

l (v̂),

with Al =
∫

d2� A(cos θ )Pl (cos θ ), (4.5)

which is a remarkable integral identity holding for any suffi-
ciently regular function A of x ∈ [−1, 1], we first obtain clm

(up to the still unknown Cα constant) as

clm(α) = (−1)mCαhl (α)
n∑

k=1

Y −m
l (R̂k ),

with hl (α) = 2π

∫ 1

−1
dx h(x; α)Pl (x). (4.6)
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As for dlm, one observes that

ψ2(r̂) = C2
α

∑
k,k′

exp{−Dα(2 − r̂ · vk,k′ )}

= C2
α

∑
k,k′

{
δvk,k′ ,0e−2Dα + (

1 − δvk,k′ ,0
)
hk,k′ (r̂ · v̂k,k′ ; α)

}
,

(4.7)

with vk,k′ = R̂k + R̂k′ , vk,k′ = |vk,k′ |, and hk,k′ (r̂ · v̂k,k′ ; α) =
exp{−Dα[2 − vk,k′ (r̂ · v̂k,k′ )]}. In the double sum above, the
contribution from those pairs of vertices that are diametrically
opposite on the sphere has been taken into account sepa-
rately. Upon inserting the above expression into the second
of Eqs. (A7), we get

dlm(α) = C2
α

∑
k,k′

{
δvk,k′ ,0δl,0

√
4πe−2Dα + (

1 − δvk,k′ ,0
)
(−1)m

× hk,k′,l (α)Y −m
l (v̂k,k′ )

}
, (4.8)

with hk,k′,l (α) = 2π
∫ 1
−1 dx hk,k′ (x; α)Pl (x). Finally, we obtain

Cα by imposing ψ normalization:

C−2
α =

∑
k,k′

∫
d2�

{
δvk,k′ ,0e−2Dα + (

1 − δvk,k′ ,0
)
hk,k′ (r̂ · v̂k,k′ ; α)

}
= 2π e−2Dα

∑
k,k′

{
δvk,k′ ,02 + (

1 − δvk,k′ ,0
)

× eDαvk,k′ − e−Dαvk,k′

Dαvk,k′

}
. (4.9)

In the above equation, the integral of hk,k′ over the full solid
angle was evaluated in a coordinate system where v̂k,k′ is
aligned with the z axis (moreover, notice that C−2

0 = 4πn2).
Equations (4.6), (4.7), and (4.9) allow one to determine

clm and dlm exactly for all l and m, and then the energy E
from Eq. (4.3). Apparently, this route to E should always be
preferred to MC integration. In practice, a limitation comes
from the rate of convergence of the two series (A7), which is
slower the larger R and ρ, and this entails computing a lot of
Fourier coefficients (the calculation of Legendre polynomials
and spherical harmonics for large l would not be a problem,
as it can be carried out to any desired precision using the
recurrence relations obeyed by these functions).

For the sake of clarity, let us consider the icosahedral case.
For R = 1.4σ and ρ = 14, we have computed the Fourier
coefficients of ψ and ψ2 up to l = 16. Giving the icosahedron
an orientation such that two of its vertices lie on the z axis, the
only nonzero coefficients are those for l = 0, 6, 10, 12, 16 and
m = 0,±5,±10,±15, and are all real (a different orientation
would imply different coefficients, but the weights

∑
m |clm|2

and
∑

m |dlm|2 of each l sector will be invariant [59]). By
truncating both series in Eq. (4.3) at lmax = 6, 10, 12 [which,
we stress, is not equivalent to truncating the ψ series (2.7)
at l = lmax], one obtains the energy plots in Fig. 5. We see
that the MC data are already well reproduced with lmax = 12
(up to α ≈ 20), while a smaller lmax is insufficient to obtain
good results unless α is low (indeed, with the exception of
l = m = 0, |clm| and |dlm| are all increasing functions of α).
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ε
Δ

√α

MC
lmax = 6
lmax = 10
lmax = 12

-0.04

-0.02

 0

 0.02
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FIG. 5. PSM bosons on a sphere at T = 0: excess energy �E
(units of e0) of the icosahedral cluster phase, plotted as a function of
α for R = 1.4σ and ρ = 14 (units of σ−2e0/ε). The full lines were
obtained from Eq. (4.3) by including in the two series only terms up
to l = lmax. The data points are results from MC integration.

Let us finally present our variational MF results for the
ground-state diagram of spherical PSM bosons, which has
been constructed by only considering the possibility of inho-
mogeneous phases with the symmetries of the polyhedra listed
in Table I. Looking first at the fluid-solid transition lines in the
R-μ plane (Fig. 6), we see that each particular cluster phase
can only exist in a finite range of R values. In all cases, the
transition occurs for a μ value larger than on the infinite plane
(meaning that solidlike order is discouraged by the curvature
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FIG. 6. PSM bosons on a sphere at T = 0: fluid-solid transition
lines according to variational theory [notice that the same wave
function (3.2) was also used in the two “Catalan” cases, despite
the vertices of the latter polyhedra being of two different kinds].
Continuous freezing is marked by a dashed line, whereas full lines
indicate first-order freezing. The horizontal purple line marks two-
dimensional freezing [19]. The pink region is where the fluid is
unstable (see text).
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FIG. 7. PSM bosons on a sphere at T = 0: excess energy �E
(units of e0) of the cubic cluster phase, plotted as a function of α for
R = 1.05σ and a number of densities in the range enclosing the two-
step transition. The lines are “exact” results obtained from Eq. (4.3)
by including in both series all terms up to l = 16. The data points
are results from MC integration, relative to a reduced density of
ρ = 23.5 (notice the difference in energy scale between this picture
and Fig. 4).

of the sphere, as expected). We find a difference in behavior
between those cases (tetrahedron, cube, and dodecahedron)
where each cluster has only three other clusters around, and
the other phases with a “cluster coordination number” Z larger
than 3. While for the latter phases the transition is invariably
first order, it is of mixed type for Z = 3, i.e., continuous
for small radii and first-order otherwise, with both characters
coexisting in a narrow interval of radii. For an R in this
range, on increasing μ the fluid first freezes continuously;
then, a secondary minimum develops in �E (α), until the
system eventually undergoes a second, now discontinuous,
isostructural transition (see an example in Fig. 7 and another
one in Fig. 8). This scenario is only in part reminiscent of
the behavior in flat space, where the transition is always
continuous for open lattices, while being first order for the
compact ones [19].

In the same Fig. 6 we have highlighted in pink the region
of R-μ plane where the fluid is mechanically unstable. In
flat space the loss of fluid stability above a certain density
is heralded by the softening of rotonlike excitations, which
signals an instability towards the formation of a solidlike den-
sity wave. The same happens on a sphere, and we discuss at
length in Appendix D how this phenomenon precisely occurs
as a function of R. A remarkable finding is that, similarly as
on a plane [19], continuous freezing falls exactly at the upper
stability threshold of the fluid. For example, solidlike fluc-
tuations with l = 3 become costless right at the continuous
transition to a tetrahedral phase, whose lowest nonzero modes
beyond l = 0 are indeed l = 3 and m = 0,±3 (when one
vertex of the tetrahedron lies at the north pole of the sphere).
A further message from Fig. 6 is the existence of R intervals
where, on increasing the density, the fluid becomes unstable
before freezing. This is clearly impossible, and the reason
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FIG. 8. PSM bosons on a sphere at T = 0: we highlight here the
region of low R values, where the stable cluster phase has tetrahedral
symmetry (orange). Its melting line consists of a continuous portion
(dashed line) and a first-order portion (full line). There is a narrow
range of radii where freezing proceeds in two steps. The emergence
of tetrahedral ordering at high density is not exclusive of soft
particles, since it is also found in hard particles [58].

why this occurs is that we have actually missed identifying
all the relevant phases of the system—since, probably, the
underlying polyhedra have nonequivalent vertices, i.e., they
have low symmetry or no regularity at all (suggestions on
where to search may come from numerical studies of the
Thomson problem [60,61]).

The freezing and melting lines of spherical PSM bosons
at T = 0 are shown in Fig. 9. Here we can appreciate the
difference in “transition strength” between the various phases,
which is higher for the polyhedra having large faces (i.e.,
for the solids whose vertices are less efficiently spread over
the surface). For completeness, we report in Fig. 10 (left
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FIG. 9. PSM bosons on a sphere at T = 0: freezing and melting
lines according to variational theory. The colorful shadow regions
represent fluid-solid coexistence regions, while dashed lines indicate
continuous freezing. The horizontal purple stripe marks the region
of coexistence between the planar fluid and the triangular cluster
crystal [19].
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FIG. 10. PSM bosons on a sphere at T = 0. Left: α value at melting for the various solid phases, plotted as a function of the radius (the
full lines represent fourth-order polynomial interpolants through the data points). We stress that the imprecise determination of the location of
the energy minimum only barely affects the estimate of the minimum itself. Right: average number Ncl of particles per cluster at melting. The
purple straight line at 25.827 represents the value of Ncl for the triangular cluster crystal [19].

panel) the position, denoted αmin, of the negative minimum
in �E (α). We see that αmin typically increases with R and is
larger the less stable the cluster phase (but there are anyway
exceptions). Instead, in the right panel of Fig. 10 we show
the value at melting of the mean cluster size Ncl as a function
of R. We see that, in the R range where each cluster phase
is maximally stable, Ncl lies between 20 and 30 for most of
the phases, i.e., near the value (25.83) characteristic of the
triangular cluster crystal [19].

Finally, the full phase diagram of the system at T = 0 is
presented in Fig. 11. It includes as many as seven cluster
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FIG. 11. PSM bosons on a sphere at T = 0: phase diagram
according to variational theory. As R increases, the stable cluster
phase changes accordingly, successively taking the symmetry of a
tetrahedron (T), octahedron (O), cube (C), icosahedron (I), tetrakis
hexahedron (TH), snub cube (SC), and pentakis dodecahedron (PD).
Solid-solid lines were drawn on the basis of the few points (two or
three) which we have been able to locate on iso-R lines through a
comparison between grand potentials. Since in the pink regions the
fluid is unstable, there are ranges of R where the stable high-density
phase of the system is actually unknown.

phases in the R interval from roughly 0.5σ to 2.5σ . However,
as commented before, this list of thermodynamically stable
phases is far from exhaustive. Even in the quoted range of R,
we can safely say that not all ground states of the system have
been identified; on the other hand, the analysis made already
allows one to draw some conclusions. (a) Each cluster phase
spans a certain interval of R; if in a given range of radii there
are many phases competing for stability, the winner is the
one providing the most efficient occupation of the surface or,
equivalently, the highest cluster coordination number Z . (b)
As the sphere radius increases, the particles find it convenient
to reorganize, adjusting the number of clusters on the surface
so as to keep the distance between neighboring droplets near
the magic value of 1.51σ (for the PSM); in turn, this implies
an increase of Z with R towards the asymptotic value of 6.
(c) While the number of clusters is determined by R/σ , it
is nevertheless nearly independent of the density (indeed, the
solid-solid loci in Fig. 11 are almost vertical).

V. SUPERSOLIDITY OF THE SPHERICAL
CLUSTER PHASES

We conclude our analysis by showing that the cluster
phases identified in the previous section are all supersolid.
In the supersolid phase of matter, still elusive in 4He but
found in numerous lattice models [62–64] and, eventu-
ally, also observed in a quantum system with continuous
ground-state degeneracy [65], the periodic density modulation
typical of a solid coexists with the dissipationless flow of a
superfluid.

As proposed by Leggett [25], a supersolid can be char-
acterized by its response to uniform axial rotations: under
a slow rotation a fraction of the quantum solid may stand
still, with the result that its moment of inertia is smaller
than expected from classical mechanics. Leggett has called
superfluid fraction of a quantum solid the quantity

fs = I0 − I

I0
, (5.1)
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where I is the moment of inertia around the axis of rotation
and I0 its classical value. Supersolidity occurs when fs > 0.

When a system of N particles is subject to rotation, say,
around the z axis, the infinitesimal change in energy due
to rotation is ω dLz, where ω is the angular velocity and
Lz = O(N ) the z component of the total angular momentum.
For bosons in the product state (2.2), the average Lz per unit
particle is given by the symmetrized expression

〈�|Lz|�〉
N

= − ih̄

2
ẑ ·
∫

d2� r ∧ (ψ∗∇ψ − ψ∇ψ∗),

with r = Rr̂ (5.2)

(where we are assuming that the sphere is immersed in 3D
space). At T = 0 we require that the state ψ minimizes the
free-energy functional E[ψ] − ω〈�|Lz|�〉/N [66], which for
small ω is the specific energy in the absence of rotation minus
(I/N )ω2/2 [67]. In other words,

I

N
= − ∂2

∂ω2
minψ

{
E[ψ] − ω

〈�|Lz|�〉
N

}∣∣∣∣
ω=0

. (5.3)

When ω is nonzero the quantum state ψ acquires a
phase, �(�) = ωS(�) + O(ω2), whereas the square ampli-
tude changes from η0 (viz., the square amplitude for ω = 0)
to η = η0 + ωη1 + O(ω2). Inserting Eq. (C1) into (5.2), we
eventually obtain

〈�|Lz|�〉
N

= h̄ω

4π

∫
d2�η0∇S · (ẑ ∧ r) + O(ω2), (5.4)

leading in turn, up to terms of order ω3, to

E[ψ] − ω
〈�|Lz|�〉

N
= E0[η] + h̄2ω2

8πm

∫
d2�η0(∇S)2 − h̄ω2

4π

×
∫

d2�η0∇S · (ẑ ∧ r), (5.5)

with E0[η] being the energy functional for � = const. There-
fore,

I

N
= minS

{
h̄

2π

∫
d2�η0∇S · (ẑ ∧ r)

− h̄2

4πm

∫
d2�η0(∇S)2

}
. (5.6)

Upon considering that

I0

N
= 1

4π

∫
d2�η0mr2

⊥ = m

4π

∫
d2�η0(ẑ ∧ r)2, (5.7)

we finally obtain

fs = h̄2

m2

minS{
∫

d2�η0[∇S − (m/h̄)ẑ ∧ r]2}∫
d2�η0(ẑ ∧ r)2

. (5.8)

While the calculation of fs is difficult, finding a lower value is
easier:

fs �
η0,min

η0,max

h̄2

m2

minS{
∫

d2�[∇S − (m/h̄)ẑ ∧ r]2}∫
d2�(ẑ ∧ r)2

= η0,min

η0,max
,

(5.9)

where η0,min and η0,max are the minimum and maximum
values of η0 on the sphere. Hence a finite density contrast

η0,max/η0,min is the fingerprint of supersolidity. To obtain the
estimate in Eq. (5.9), we have considered that the minimum
of
∫

d2�[∇S − (m/h̄)ẑ ∧ r]2 is reached for ∇S = 0 [indeed,
the Euler-Lagrange equation for the functional in (5.9) is
∇2S = 0, because ∇ · (ẑ ∧ r) = 0, and the only regular S(�)
with ∇2S = 0 is proportional to Y 0

0 ; hence it is a constant].
Since η0 is positive definite for our variational solution, we
conclude that fs is strictly positive—in other words, in our
theory all cluster phases are supersolid for every μ. It cannot
be excluded that, for very large μ, a ψ function vanishing
in the interstitial region between the polyhedron vertices can
have a lower free energy than the Gaussian ansatz. Even in
this case, supersolidity will occur at least in the vicinity of the
freezing point.

VI. CONCLUSIONS

An efficient method to study weakly interacting bosonic
particles at zero temperature is mean-field theory, which
assumes a perfect condensate for the system state. As a
further simplification, the single-particle wave function can be
accurately modeled through some physically motivated ansatz
[19,20], which is then optimized by use of the variational
method. In the present study, we have employed variational
mean-field theory to investigate a (finite) system of penetrable
bosons confined to a spherical surface, essentially with the
aim to follow the evolution of ordering tendencies with the
radius R in a genuinely quantum system.

The ground-state diagram of the system is very rich, fea-
turing many distinct high-density “phases” as a function of
R, all characterized by the presence of clusters of overlapping
particles. The mechanism behind the onset of cluster phases
on a sphere is the same as in flat space, and is purely energetic
in character. We have found that many, but definitely not every
one, of these phases have clusters distributed at the vertices of
a regular or semiregular polyhedron inscribed in the sphere,
and the stable phase at a given R is the one ensuring the
maximum possible (cluster) coordination number that is con-
sistent with a distance between neighboring clusters of about
1.51σ (for PSM bosons [19]), i.e., roughly the same as in
the triangular cluster crystal. The existence of cluster phases
is intimately rooted in the characteristics of the interaction
between particles and can be anticipated from the nature of
the elementary excitations of the (super)fluid phase, which
are rotonlike for sufficiently large densities. When the roton
mode eventually softens, the fluid becomes unstable towards
a solidlike density modulation, and that marks the upper
boundary of the homogeneous phase. In practice, unless the
cluster coordination number is very small, the phase transition
occurs before reaching the instability threshold, and in this
case freezing is first order.

Finally, we have given an analytic argument showing that,
at least according to our variational analysis, all cluster phases
are supersolid, i.e., they exhibit a reduced moment of inertia
compared to its classical value. We ascribe this property to
the finite strength of interparticle forces, which, by allowing
particles to diffuse freely within the surface, can sustain a
superfluid component in the cluster phases.

Our results can find application for the behavior of ultra-
cold gases of bosonic atoms confined in spherically symmetric
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bubble traps [29,30], as will be made available in future
experiments carried out in a microgravity environment [68].
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APPENDIX A: GROSS-PITAEVSKII EQUATION
ON A SPHERE

In this Appendix we give a variational derivation of the GP
equation, different from the one provided in [69] and adapted
to the sphere case.

The starting point is the MF energy functional, written for
a general (i.e., normalizable but not necessarily of unit norm)
single-particle wave function ψ :

〈�|H |�〉
〈�|�〉 = 〈K〉 + 〈U 〉, (A1)

with

〈K〉 = −N
h̄2

2m

∫
d2�ψ∗∇2ψ∫

d2�ψ∗ψ
(A2)

and

〈U 〉 = N (N − 1)

2

∫
d2� d2�′ |ψ (�)|2u(r̂ · r̂′)|ψ (�′)|2

(
∫

d2�ψ∗ψ )2
.

(A3)

In Eqs. (A2) and (A3), the solid-angle element is d2� =
sin θ dθ dφ. According to the variational principle, the “best”
approximate ground state is such that the average energy
〈H〉 in (A1) is minimum. For the latter to occur, a necessary
condition is δ〈H〉 = 0. Upon observing that

δ〈K〉
δψ∗(�)

= −N
h̄2

2m

∇2ψ
∫

d2�′ ψ∗ψ − ψ
∫

d2�′ ψ∗∇2ψ

(
∫

d2�′ ψ∗ψ )2
,

δ〈U 〉
δψ∗(�)

= N (N − 1)
ψ (
∫

d2�′ ψ∗ψ )2
∫

d2�′ ψ∗uψ − ψ
∫

d2�′ ψ∗ψ
∫

d2�′ d2�′′ |ψ |2u|ψ |2
(
∫

d2�′ ψ∗ψ )4
, (A4)

we readily arrive at

− h̄2

2m
∇2ψ + (N − 1)ψ (�)

∫
d2�′ |ψ (�′)|2u(r̂ · r̂′)∫

d2�′ ψ∗ψ

= λψ (�), (A5)

with

λ = − h̄2

2m

∫
d2�ψ∗∇2ψ∫

d2�ψ∗ψ
+ (N − 1)

×
∫

d2� d2�′ |ψ (�)|2u(r̂ · r̂′)|ψ (�′)|2
(
∫

d2�ψ∗ψ )2
. (A6)

It is hardly necessary to observe that, when the radius R is
of order σ , N − 1 may not be quite the same as N . Now
observe that, if ψ obeys (A5) also cψ is a solution, for all
c �= 0. In particular, we can always choose c such that ψ

is normalized to 1. In this case, Eq. (A5) becomes the GP
equation in its standard form [see Eqs. (2.3) and (2.5)], with
λ = (〈K〉 + 2〈U 〉)/N .

The most natural way to solve the GP equation is to expand
the solution and its square modulus in a series of spherical
harmonics,

ψ (�) =
∑
lm

clmY m
l (�), |ψ (�)|2 =

∑
lm

dlmY m
l (�), (A7)

where the dlm coefficients can clearly be expressed in terms
of the clm themselves [see Eq. (A9) below]. Observe that the
dlm do not fulfill any particular sum rule (because, at variance
with ψ , the function |ψ |2 is not subject to any specific
normalization). Moreover, since |ψ (�)|2 is real, it is generally
dl,−m = (−1)md∗

lm. The rest of the derivation follows the one
provided in Appendix B for the MF energy functional, and we

finally arrive at

h̄2

2mR2
l (l + 1)clm + (N − 1)

∑
l ′m′

cl ′m′

×
∑
l3m3

(
2π

∫ 1

−1
dx u(x)Pl3 (x)

)
dl3m3

× (−1)m

(
l l ′ l3
0 0 0

)(
l l ′ l3

−m m′ m3

)
×
√

(2l + 1)(2l ′ + 1)(2l3 + 1)

4π
= λclm, (A8)

with

dl3m3 =
∑

l1,m1,l2,m2

(−1)m2+m3 cl1m1 c∗
l2m2

×
(

l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 −m2 −m3

)
×
√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π
. (A9)

Equation (A8) is a nonlinear set of equations, similar to that
reported in Eq. (2.6) of Ref. [19]. Therefore, it is tempting to
solve it self-consistently, assuming arbitrary initial values for
the clm and filtering out the minimum energy eigenvector of
unit norm at each iteration step. However, while this method
works well in the planar case it dramatically fails to converge
in the present case (unless the density is very small), and the
problem is not alleviated by the use of a mixing scheme. To
guarantee that iteration of (A8) becomes a contractive fixed
point iteration, we may think to replace spherical harmonics
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with a different basis of functions, possibly a different one
for any specific radius and polyhedral symmetry. However,
besides the difficulty of devising specific basis functions for
each case, the price to pay is losing the good properties of
spherical harmonics that allow simplifying the final form of
the GP equation. In view of this, a more viable procedure
is to resort to a variational ansatz for ψ , which also offers
the advantage of better elucidating the physics behind the
minimum-energy state.

APPENDIX B: PROOF OF EQ. (2.9)

Here we obtain an expression for the potential-energy term
in Eq. (2.6). We first observe that any bounded u with finite
support can be written as a Fourier integral:

u(x) =
∫ +∞

−∞

dk

2π
ũ(k)eikx, with ũ∗(k) = ũ(−k) (B1)

(notice that k is a dimensionless variable). Upon considering
that

Y m∗
l (r̂) = (−1)mY −m

l (r̂), Y m
l (−r̂) = (−1)lY m

l (r̂), (B2)

and using the expansion of a plane wave in spherical harmon-
ics, we get

u(r̂ · r̂′) =
∫ +∞

−∞

dk

2π
ũ(k)eikr̂·r̂′

=
∫ +∞

0

dk

2π
[̃u(−k)e−ikr̂·r̂′ + ũ(k)eikr̂·r̂′

]

= 2
∑
lm

il (−1)mY m
l (r̂)Y −m

l (r̂′)

×
∫ +∞

0
dk[(−1)l ũ(−k) + ũ(k)] jl (k), (B3)

with jl (k) being a spherical Bessel function. Alternatively,
and also more conveniently, u(x) can be written as a series
of Legendre polynomials:

u(x) =
∞∑

l=0

(
2l + 1

2

∫ 1

−1
dt u(t )Pl (t )

)
Pl (x). (B4)

By noting that

Pl (r̂ · r̂′) = 4π

2l + 1

l∑
m=−l

Y m
l (r̂)Y m∗

l (r̂′), (B5)

we promptly obtain

u(r̂ · r̂′) =
∑
lm

(−1)m

(
2π

∫ 1

−1
dx u(x)Pl (x)

)
Y m

l (r̂)Y −m
l (r̂′).

(B6)

In the following we prefer using (B6) in Eq. (2.6), rather than
(B3), while deferring a direct proof of

2il
∫ +∞

0
dk[(−1)l ũ(−k) + ũ(k)] jl (k) = 2π

∫ 1

−1
dx u(x)Pl (x)

(B7)

to below in this Appendix.

Next, we note that

|ψ (�)|2 =
∑

lm,l ′m′
c∗

l ′m′clmY m′∗
l ′ (�)Y m

l (�)

=
∑

lm,l ′m′
(−1)m′

c∗
l ′m′clmY −m′

l ′ (�)Y m
l (�). (B8)

Putting all things together:

Epot = N − 1

2

∫
d2� d2�′ ∑

l1m1,l2m2

(−1)m2 cl1m1 c∗
l2m2

Y m1
l1

(r̂)

×Y −m2
l2

(r̂)

×
∑
lm

(−1)m

(
2π

∫ 1

−1
dx u(x)Pl (x)

)
Y m

l (r̂)Y −m
l (r̂′)

×
∑

l3m3,l4m4

(−1)m4 cl3m3 c∗
l4m4

Y m3
l3

(r̂′)Y −m4
l4

(r̂′). (B9)

The integral of a product of three spherical harmonics (also
called Gaunt coefficient) has a known value:∫

d2�Y m1
l1

(�)Y m2
l2

(�)Y m3
l3

(�)

=
√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

×
(

l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
, (B10)

where the 2 × 3 tables are Wigner 3- j symbols [70]. As a
result, Eq. (B9) gets simplified, eventually transforming into
Eq. (2.9).

Finally, we provide a proof of Eq. (B7), which establishes
the equivalence between (B3) and (B6). We seek a different
expression of∫ +∞

0
dk[(−1)l ũ(−k) + ũ(k)] jl (k). (B11)

Taking advantage of the formula [71]

jl (k) = 1

2
(−i)l

∫ 1

−1
dt eikt Pl (t ), (B12)

which is valid for all l and k, we first obtain (for any x
satisfying −1 < x < 1)∫ +∞

−∞
dk eikx jl (k) = 1

2
(−i)l

∫ 1

−1
dt Pl (t )

∫ +∞

−∞
dk ei(x+t )k︸ ︷︷ ︸

2πδ(x+t )

= π (−i)lPl (−x) = π ilPl (x), (B13)

where in the last step we used the property Pl (−x) =
(−1)lPl (x). Similarly,∫ +∞

−∞
dk e−ikx jl (k) = π (−i)lPl (x). (B14)
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The case of x = ±1 needs a different treatment, since the delta
argument vanishes at one of the extrema of the t integration
interval. Indeed, one can prove that∫ +∞

−∞
dk e±ik jl (k) = π

2
(±i)l (B15)

[rather than π (±i)l , as it would follow from Eqs. (B13) and
(B14)].

Coming to the calculation of (B11), we have∫ +∞

0
dk[(−1)l ũ(−k) + ũ(k)] jl (k)

=
∫ 1

−1
dx u(x)

∫ +∞

0
dk jl (k)[(−1)l eikx + e−ikx]

= 1

2

∫ 1

−1
dx u(x)

∫ +∞

−∞
dk jl (k)[(−1)l eikx + e−ikx],

(B16)

where, in consideration of jl (−k) = (−1)l jl (k), the last step
holds for both even and odd l . The inner integral in (B16)
can be evaluated for any −1 < x < 1 using Eqs. (B13)
and (B14):

1

2

∫ +∞

−∞
dk jl (k)[(−1)l eikx + e−ikx]

= (−1)l
∫ +∞

−∞
dk jl (k)eikx = (−1)lπ ilPl (x). (B17)

Despite the case x = ±1 needing a separate treatment, the
value of the integrand at the x boundary in (B16) is irrelevant
for the value of the same integral. By plugging Eq. (B17) in
(B16), we readily arrive at the desired Eq. (B7).

APPENDIX C: THE CONDENSATE OF MINIMUM
ENERGY IS REAL

In this Appendix, we show that the true ground state of a
system of spherical bosons with specific energy given as in
Eq. (2.6) is necessarily represented by a real wave function.

Using the Madelung representation,

ψ = 1√
4π

√
η(�)ei�(�), (C1)

with η � 0 and a real � defined up to an arbitrary additive
constant, the potential-energy term in Eq. (2.6) immediately
reads (pulling out the homogeneous-system energy)

Epot = N − 1

2

∫
d2� d2�′ η(�)

4π
u(r̂ · r̂′)

η(�′)
4π

= N − 1

4

∫ 1

−1
dx u(x) + N − 1

32π2

×
∫

d2� d2�′[η(�) − 1]u(r̂ · r̂′)[η(�′) − 1]. (C2)

Aside from a constant factor, the kinetic-energy term is given
by∫

d2�ψ∗∇2ψ

= 1

R2

∫ 2π

0
dφ

∫ π

0
dθ

[
ψ∗ ∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ ψ∗

sin θ

∂2ψ

∂φ2

]
= − 1

R2

∫
d2�

(
∂ψ∗

∂θ

∂ψ

∂θ
+ 1

sin2 θ

∂ψ∗

∂φ

∂ψ

∂φ

)
, (C3)

where the last step follows after partial integration. Upon
inserting (C1) into (C3), and taking account of the expression

∇ f = 1

R

∂ f

∂θ
θ̂ + 1

R sin θ

∂ f

∂φ
φ̂ (C4)

of the gradient of a scalar function f (θ, φ), we obtain∫
d2�ψ∗∇2ψ

= − 1

4πR2

∫
d2�

{(
∂
√

η

∂θ

)2

+ 1

sin2 θ

(
∂
√

η

∂φ

)2

+ η

[(
∂�

∂θ

)2

+ 1

sin2 θ

(
∂�

∂φ

)2
]}

= − 1

4π

∫
d2�[(∇√

η)2 + η(∇�)2], (C5)

whence finally

Ekin = − h̄2

2m

∫
d2�ψ∗∇2ψ

= h̄2

32πm

∫
d2�

[
(∇η)2

η
+ 4η(∇�)2

]
. (C6)

Equation (C6) represents, mutatis mutandis (i.e., with 4π in
place of the volume), the same result holding in flat space.
Looking at Eqs. (C2) and (C6), it is clear that the minimum
(kinetic) energy is attained for a constant �. As a global phase
in the wave function cannot affect the results, we can always
choose � = 0. This implies that the MF ground state is real
and non-negative.

APPENDIX D: ELEMENTARY EXCITATIONS
OF THE FLUID

We hereafter investigate the collective excitations of the
system in the fluid phase, using a method similar to that em-
ployed in Ref. [19]. The starting point is the time-dependent
GP equation,

ih̄
∂ψ

∂t
(�, t ) = − h̄2

2m
∇2ψ (�, t ) + (N − 1)

×
∫

d2�′ |ψ (�′, t )|2u(r̂ · r̂′)ψ (�, t ), (D1)

describing the MF quantum dynamics of identical bosons
at T = 0. Multiplying Eq. (D1) by ψ∗ and subtracting the
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complex conjugate of the resulting equation, we arrive at the
following continuity equation:

∂

∂t
(ψ∗ψ ) + ih̄

2m
∇ · (ψ∇ψ∗ − ψ∗∇ψ ) = 0, (D2)

where we have considered that the divergence of a vector field
A = Aθ θ̂ + Aφφ̂ is

∇ · A = 1

R sin θ

[
∂

∂θ
(Aθ sin θ ) + ∂Aφ

∂φ

]
. (D3)

In (D2), the velocity field is clearly

v = ih̄

2m

ψ∇ψ∗ − ψ∗∇ψ

|ψ |2 = h̄

m
∇�, (D4)

where the last step follows after inserting the Madelung form
(C1).

Another equation connecting η and � is obtained by plug-
ging Eq. (C1) in the time-dependent GP equation, with the
result that

ih̄
1

2
√

η

∂η

∂t
− h̄

√
η
∂�

∂t

= − h̄2

2m

i√
η
∇η · ∇� − h̄2

2m
i
√

η∇2�

+ h̄2

8m

(∇η)2

η3/2
− h̄2

4m

∇2η√
η

+ h̄2

2m

√
η(∇�)2

+ N − 1

4π

∫
d2�′ η(�′, t )u(r̂ · r̂′)

√
η. (D5)

While the imaginary part of (D5) gives back the continuity
equation, the real part reads

−h̄
∂�

∂t
= − h̄2

2m

∇2√η√
η

+ h̄2

2m
(∇�)2 + N − 1

4π

×
∫

d2�′ η(�′, t )u(r̂ · r̂′). (D6)

Taking the gradient of (D6), we arrive at a Navier-Stokes–like
equation without viscosity term:

m
∂v
∂t

+ m(v · ∇)v = h̄2

2m
∇
(∇2√η√

η

)
− N − 1

4π

×∇
∫

d2�′ η(�′, t )u(r̂ · r̂′), (D7)

where it is intended that

(A · ∇)A = Aθ∇Aθ + Aφ∇Aφ. (D8)

We now derive an approximate equation valid for a ψ func-
tion departing only slightly from the homogeneous-system
solution, η = 1 and ∇� = 0. Such perturbed solutions are
the elementary excitations of the fluid phase. Inserting η =
1 + δη and ∇� = δu into the continuity equation (D2), and
simply ignoring every term that is not linear in δη or δu, we
first get

∂δη

∂t
+ h̄

m
∇ · δu = 0 ⇒ ∂2δη

∂t2
= − h̄

m
∇ ·

(
∂δu
∂t

)
. (D9)

Moreover, we have

m
∂v
∂t

= h̄
∂δu
∂t

,

m(v · ∇)v = m

2
∇(v2) = h̄2

2m
∇(δu2) = O(δu2),

h̄2

2m
∇
(∇2√η√

η

)
= h̄2

4m
∇(∇2δη),

−N − 1

4π
∇
∫

d2�′ η(�′, t )u(r̂ · r̂′) = −N − 1

4π
∇
∫

d2�′ δη(�′, t )u(r̂ · r̂′), (D10)

which eventually allows us to simplify Eq. (D7) as

h̄
∂δu
∂t

= h̄2

4m
∇(∇2δη) − N − 1

4π
∇
∫

d2�′ δη(�′, t )u(r̂ · r̂′).

(D11)

Inserting Eq. (D11) into the second of Eqs. (D9), we finally
arrive at

∂2δη

∂t2
= − h̄2

4m2
∇2(∇2δη) + N − 1

4πm

×∇2
∫

d2�′ δη(�′, t )u(r̂ · r̂′). (D12)

This equation admits solutions in the form δη =
ε Re{Y m

l (�)eiωl t }, where ε is a small dimensionless amplitude.
The dispersion relation of these waves can be obtained by

observing that

∂2δη

∂t2
= −ω2

l δη, ∇2δη = − l (l + 1)

R2
δη,

∇2(∇2δη) =
(

l (l + 1)

R2

)2

δη, ∇2
∫

d2�′ δη(�′, t )u(r̂ · r̂′)

= − l (l + 1)

R2
ulδη(�, t )(

with ul = 2π

∫ 1

−1
dx u(x)Pl (x)

)
. (D13)

In particular, we derived the last equation above from the
Funk-Hecke formula (4.5) for A = u. Substituting Eqs. (D13)
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FIG. 12. Profile of μinst (R), representing the upper stability
threshold of the fluid phase, for three distinct interactions (PSM,
GEM-8, and GEM-4). In preparing this figure, only l values from
2 to 12 were considered; for each l , a specific minimum arises in
μinst (R), as marked below the graph for the PSM case.

into (D12), we finally obtain

h̄2ω2
l = h̄2

2m

l (l + 1)

R2

(
h̄2

2m

l (l + 1)

R2
+ N − 1

2π
ul

)
, (D14)

which can be viewed as the spherical version of the Bogoli-
ubov spectrum.

As long as the right-hand side of (D14) is positive, the fluid
phase is stable and (by the same argument exposed in Sec. V)
superfluid; conversely, if ωl is purely imaginary, quantum
dynamics will drive the system arbitrarily far from η = 1.
It turns out that, for each fixed l , ω2

l turns from positive to
negative at a density of

ρl (R) = 1

4πR2

[
1 − π h̄2

mul

l (l + 1)

R2

]
. (D15)

Hence, when the density exceeds a certain value, the fluid
becomes destabilized. The upper threshold for fluid stability
in terms of chemical potential is

μinst (R) = min
l

{
4πR2ρl − 1/2

4π
u0

}
. (D16)

It turns out that μinst (R) shows cusps where the l value provid-
ing the minimum in (D16) jumps by one (see Fig. 12). Quite
remarkably, the oscillatory behavior of μinst (R) is similar
to that computed within density-functional theory for the λ

line of a classical fluid of spherical soft-core particles [41].
In Fig. 12 the μinst (R) locus is reported for three distinct
models of interaction, namely the PSM, GEM-8, and GEM-4
potentials. We see that the region of fluid stability extends
more and more the smoother is the generalized-exponential
interaction (same as found in flat space [19]). As R grows
to infinity, the instability line flattens out until it finally
equates the planar threshold (e.g., 46.2979 . . . for the PSM
potential [19]).
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