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In this paper we study the thermal equilibration of small bipartite Bose-Hubbard systems, both quantum
mechanically and in mean-field approximation. In particular we consider small systems composed of a single-
mode “thermometer” coupled to a three-mode “bath,” with no additional environment acting on the four-mode
system, and test the hypothesis that the thermometer will thermalize if and only if the bath is chaotic. We find that
chaos in the bath alone is neither necessary nor sufficient for equilibration in these isolated four-mode systems.
The two subsystems can thermalize if the combined system is chaotic even when neither subsystem is chaotic
in isolation, and under full quantum dynamics there is a minimum coupling strength between the thermometer
and the bath below which the system does not thermalize even if the bath itself is chaotic. We show that the
quantum coupling threshold scales like 1/N (where N is the total particle number), so that the classical results
are obtained in the limit N → ∞.
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I. INTRODUCTION

When two macroscopic systems are coupled the generic
behavior is that they exchange energy (and possibly also
particles) until an equilibrium state is reached, i.e., they
thermalize. There has been much interest in observing and
understanding the microscopic onset of thermalization and in
defining the characteristic properties that qualify a system as
being a bath [1–13]. Recently it has been demonstrated that
even three degrees of freedom can serve as a bath, provided
that they are chaotic, and a fourth degree of freedom can
thermalize if it is coupled to this bath [2]. Therefore, this
system provides a minimal model to study thermalization.
By defining thermalization in terms of the behavior of a
“thermometer” degree of freedom which is explicitly mod-
eled, one effectively implements the philosophical approach
to thermalization in isolated systems that is represented in
the eigenstate thermalization hypothesis (ETH) [14,15], while
pragmatically avoiding philosophical issues and thinking in
terms of concrete experiments that are in principle feasible.
In this paper we study a very similar class of systems to the
one used in [2], but focus on the role of the strength of the
coupling between the system and the bath.

The classical and macroscopic expectation is that the cou-
pling strength does not influence whether the system thermal-
izes or not; it merely governs the time scale on which thermal
equilibrium is approached. In particular one expects thermal-
ization classically even for arbitrarily weak coupling after
sufficiently long evolution. In thermodynamics and statistical
mechanics, indeed, it is common to assume that a system has
thermalized over a long time with such weak coupling to a
bath that bath and coupling can both be ignored. Ever since
the original Fermi-Pasta-Ulam calculations it has been known
that even large systems can fail to ergodize if their dynamics
is integrable [16], but under chaotic dynamics classical orbits
disperse over the energy shell on the Lyapounov time scale,
and so one expects that the long-term effect of the bath on

any other system to which it is coupled will depend only on
energy. This normally implies thermalization.

The effect of a quantum bath on a quantum system can be
described exactly in the path-integral formalism by means of
the Feynman-Vernon influence functional [17]. The influence
functional is a functional of any two paths of the system’s
path-integral variables, namely the scalar product of the two
final bath quantum states that will be reached if the system
follows the two different paths. A quantum chaotic bath
reaches sharply different final states if it is perturbed in ways
that are even slightly different [18]. One might therefore
expect that even a small aquantum bath that was chaotic
would have an influence functional that fell rapidly to zero for
any two paths that were not very similar, and thus resemble
the influence functional of an infinite oscillator bath with a
finite temperature. And indeed it has been shown in [2] that
a three-mode Bose-Hubbard “trimer” can thermalize a fourth
Bose-Hubbard “monomer” if the trimer dynamics are chaotic.
It is on the other hand easy to show that the monomer can
clearly fail to thermalize in some cases where the trimer is not
chaotic; energy simply beats back and forth between the two
subsystems with no long-term trend toward a steady thermal
distribution. There is thus both reason and evidence to suggest
that dynamical chaos might be the necessary and sufficient
condition for even a small system to behave as a bath, and ther-
malize another system coupled to it, over a long enough time.

Here we will find explicit counterexamples to both the
necessity and the sufficiency of bath chaos under quantum
dynamics, and show that the coupling between a thermometer
subsystem and its bath also plays a decisive role, not only in
setting the time scale for equilibration, but also in determining
whether equilibration ever happens at all. We will show that
although thermalization is indeed inhibited by the three-mode
bath itself being integrable or only partially chaotic (mixed
phase space), a sufficiently strong coupling can still allow
thermalization by making the composite system chaotic even
though its component parts would not be chaotic in isolation.
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Thus there exists a threshold coupling strength for thermal-
ization in all cases, whatever the bath’s own dynamics may
be. This sufficient coupling threshold for thermalization is
generally higher, for a given Hamiltonian, if the system is
quantum.

Furthermore we will show by explicit example that the
quantum coupling threshold can remain greater than zero
even when the uncoupled bath would be fully chaotic. In the
classical limit we will in contrast find only results consistent
with the assumption that the coupling strength threshold for
thermalization is zero if the bath is chaotic. We will also
show, through quantum calculations for our four-mode Bose-
Hubbard system with a wide range of particle numbers N , that
the quantum threshold falls to zero in the classical (infinite
particle number) limit as 1/N .

The rest of the paper is organized as follows. In Sec. II
we present our model class of systems and discuss when
the system is chaotic or quasi-integrable. In Sec. III we
demonstrate that the system can thermalize depending on the
system bath coupling strength and we introduce our definition
of the coupling threshold. Section IV briefly explores the
dependence of the coupling threshold on system parameters,
both quantum mechanically for fixed N and also classically,
to confirm that the phenomenon of coupling threshold for
thermalization is generic. Section V then examines the depen-
dence of the quantum coupling threshold on the total particle
number in the system and demonstrates how the classical limit
is approached. We conclude with a brief discussion of our
results in Sec. VI.

II. SETUP

Our system consists of a Bose-Hubbard monomer (labeled
with index 1 in the following) weakly coupled to a trimer (in-
dices 2–4) and is described by the following second-quantized
Hamiltonian:

Ĥ = Ĥ0 + Ĥ1

= −�

2
(â†

2â3 + â†
3â4 + â†

4â2 + H.c.) + U

2

4∑
i=1

â†2
i â2

i

− ω

2
(â†

1â2 + â†
1â3 + â†

1â4 + H.c.), (1)

where � is the intertrimer coupling strength (we choose our
units so that � = 1), U > 0 is the repulsive on-site interaction
and ω is the monomer-trimer coupling. The Hamiltonian of
the uncoupled system H0 = H (ω = 0) satisfies

H0 |x, νx〉 = Ex,νx |x, νx〉 , (2)

where the eigenstates |x, νx〉 = |x〉M |x, νx〉T are product sates
of the monomer (M) and trimer (T) eigenstates and

x =
∑4

i=2 â†
i âi

N
(3)

is the relative trimer population with the total particle number
N = ∑4

i=1 â†
i âi. In the following we will also use the scaled

energy ε = [E − min(E )]/[max(E ) − min(E )] ∈ [0, 1] to be
able to compare the results for different particle numbers.
Note that for given x the monomer state is completely deter-
mined but the trimer can have multiple eigenstates labeled by

νx. Therefore, x directly gives the energy of the monomer, and
so x and its probability distribution P(x) will be the quantities
of interest; quantum mechanically x is of course quantized
in units of 1/N , while classically it is a continuous variable
ranging from 0 to 1. At least for weak coupling ω we must
note that the requirements for the ETH are not fulfilled in our
systems: energy eigenstates that are close in energy can have
greatly differing expectation values of our observable x.

Because of the highly symmetric coupling in our system
the Hamiltonian commutes with rotations of the three trimer
sites by 2kπ/3 (k = 0, 1, 2). The k = 0 subspace splits further
due to parity, so the Hilbert space is divided into four symme-
try subspaces in total (symmetry group D3), between which
no transitions can occur [19]. In the following we choose the
antisymmetric k = 0 subspace which is the smallest one. The
restriction to one symmetry subspace is also crucial for the
validity of the level spacing analysis below [20]. All the states
in this subspace are of the form

1√
6

(|n1, n2, n3, n4〉 + |n1, n4, n2, n3〉 + |n1, n3, n4, n2〉

− |n1, n3, n2, n4〉 − |n1, n4, n3, n2〉 − |n1, n2, n4, n3〉).

(4)

Below we will choose an eigenstate of the uncoupled
system |x, νx〉 as initial state and then turn on the monomer-
trimer coupling. Depending on U , N , x, and Eνx this state can
be in a chaotic or quasi-integrable region, characterized by
the level spacing statistics after a procedure called unfolding
[18,21–27]

P(s) =
{

π
2 s e− π

4 s2
chaotic (Wigner surmise),

e−s quasi-integrable,
(5)

where si = (Ex,i+1 − Ex,i )/s̄(Ex, νx ) and s̄(Ex,νx ) is the mean
spacing at energy Ex,νx . A convenient parameter that does not
need unfolding and that characterizes the degree of chaos is
the ratio of adjacent level spacings [28,29]

ri = min{si+1, si}
max{si+1, si} =

{
0.53 chaotic,
0.39 quasi-integrable. (6)

In Fig. 1 we show an example of a “chaos map” for UN/� =
10 that displays r.

III. THERMALIZATION

As mentioned above, we choose an eigenstate of the un-
coupled system as initial state. When the coupling is turned
on, this is not an eigenstate of H any more and the evolution
of the system state |ψ (t )〉 is nontrivial, but the eigenstates |m〉
of the coupled system can be expanded in the complete set
|x, νx〉

|m〉 =
∑
x,νx

ax,νx |x, νx〉 . (7)

Since we start with a pure state and the evolution is unitary,
the system will stay in a pure state for all times. However,
if we are not interested in the bath (which is usually the
case in thermodynamics) we can trace over the bath degree
of freedom and consider the reduced density matrix of the
monomer, which is in general that of a mixed state. To
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FIG. 1. Chaos map that shows the value of r averaged over small
energy windows for the possible initial states for UN/� = 10. Red
dots show the initial states used in Fig. 2.

quantify the degree of thermalization of the monomer after
it has been coupled to the trimer, we compare the reduced
density matrix of the monomer

ρM = TrT ρ

=
∑
x,νx

|x〉M 〈x|M ax,νx a
∗
x,νx

=
∑

x

|x〉M 〈x|M P(x) (8)

to a thermal density matrix. This thermal density matrix is
not simply the canonical ensemble, since a microcanonical de-
scription is clearly more appropriate for a system coupled to a
small reservoir. We therefore take the relevant thermal density
matrix to be the reduced density matrix of the monomer under

the assumption that the combined uncoupled system consist-
ing of monomer and trimer is in a microcanonical state of en-
ergy E and width 	E =

√
〈x, νx|H2|x, νx〉 − 〈x, νx|H |x, νx〉2.

This thermal density matrix is thus determined by the density
of states g(E ) of the trimer.

Statistical mechanics tells us that even in thermal equilib-
rium there are temporal fluctuations in the density matrix.
This means that we should compare to the above thermal
density matrix the reduced density matrix ρ̄M of the monomer
averaged over a suitable time interval. Then we can quantify
their difference by the two-norm

	ρM =
√√√√N+1∑

i, j=1

(
ρ̄M

i, j − ρth
i, j

)2

=
√√√√N+1∑

i=1

(
ρ̄M

i,i − ρth
i,i

)2
. (9)

Note that the reduced density matrix of the monomer is
diagonal [see Eq. (8)]. We can also compare the von Neu-
mann entropy S = −kB

∑
i ρi,i log(ρi,i ) to the entropy of the

microcanonical thermal density matrix that we defined above.
Our goal is to see how thermalization depends on the

degree of chaos in the trimer as well as on the coupling
strength ω. To investigate this, we choose as two different
“degrees of chaos” the system parameters corresponding to
two representative points marked in Fig. 1, and then take
the corresponding eigenstates of the uncoupled system, with
N = 70 particles, as our initial states. We evolve these two
alternative initial states under H1 numerically, using exact
diagonalization, for different values of coupling strength ω.
Since the energy of the monomer is fully determined by x,
in Fig. 2 we plot the probabilities P(x) = ∑

νx
| 〈x, νx|ψ (t )〉 |2

for two different ω values for each of our two “degrees
of chaos.” We also show the corresponding von Neumann
entropy in each case. In panel (a) of Fig. 2, where the
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FIG. 2. Evolution of the probability of trimer population x (upper panels) and the entropy (lower panels) for N = 70, UN/� = 10, and
initial x = 0.6. The red horizontal line in the lower panels indicates the microcanonical thermal entropy. (a) ε = 0.3, ω/� = 0.1; (b) ε = 0.3,
ω/� = 0.01; (c) ε = 0.4, ω/� = 0.1; (d) ε = 0.4, ω/� = 0.4.
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initial state is in a chaotic region and the coupling is weak
but not extremely weak, the probability distribution spreads
in x over time until it reaches a nearly constant distribution.
The entropy rises from zero (initial pure state) to a constant
value just below the microcanonical expectation: we have
thermalization, albeit at slightly lower entropy than would
be predicted by microcanonical statistical mechanics. Panel
(b) shows the evolution for the same initial state, but with
ten times weaker coupling to the trimer bath. In this case
the system does not thermalize and only a few different x
values have appreciable probability. Accordingly the entropy
stays well below the microcanonical value. For the alternative
initial state that is slightly higher in energy (c) for the same
initial x, and thus lies outside the chaotic region, the same
coupling as in (a) does not suffice to make the P(x, t ) profile
settle down to a constant distribution P(x); instead P(x, t )
oscillates in t . The entropy stays well below the thermal value
and oscillates, too. Thus our results in cases (a) and (c) are
in accordance with the expectation that chaos is sufficient
and necessary for thermalization of the thermometer by the
bath [2,30]. However, when the monomer-trimer coupling for
the same initial state as in (c) is increased in (d), the P(x, t )
distribution settles down much as it did in (a), even though

the bath alone is not chaotic. The entropy oscillates much
less in (d) than in (c), and settles to the thermal value quite
precisely.

It is clear that in (d) the rather strong coupling is not just a
small perturbation, so that the chaos map Fig. 1 for the uncou-
pled bath is no longer representative of the coupled bath. The
two examples (b) and (d) do both show the same general fact,
however, that the strength of the coupling between system and
bath can play a decisive role in the question of thermalization.
We therefore introduce the threshold coupling strength ωT for
thermalization, defined as the minimal ω for which 	ρM < c
for some critical value c. Below we choose c = 0.1 but our
results do not strongly depend on the precise value of c.

It is well known that Bose-Hubbard systems like ours often
show close quantum classical correspondence [31]. Motivated
by this fact we now ask whether the decisive effects of ω

seen in Fig. 2 are strictly quantum effects, or whether they
are also present in a classical system. To do that we examine
the mean-field version of Eq. (1) obtained by replacing âi

(â†
i ) with complex numbers

√
ni exp(iϕi) [

√
ni exp(−iϕi )]. To

avoid ambiguities related to the fact that complex numbers,
unlike operators, commute, this has to be done after sym-
metrization of the Hamiltonian [31], leading to

Hm f = −�[
√

n2n3 cos(ϕ3 − ϕ2) + √
n3n4 cos(ϕ3 − ϕ4) + √

n2n4 cos(ϕ2 − ϕ4)]

+ U

2

4∑
i=1

(
n2

i − 2ni
) + 3

2
U − ω[

√
n1n2 cos(ϕ2 − ϕ1) + √

n1n3 cos(ϕ3 − ϕ1) + √
n1n4 cos(ϕ4 − ϕ1)], (10)

with Ncl = ∑4
i=1 ni = N + 2.

Since the initial state in the quantum system is only char-
acterized by x and ε, we choose classical initial states to
correspond to the above quantum initial states, by taking 1000
random samplings of classical microcanonical ensembles with
the same initial x and E as the quantum eigenvalues. The
final continuous x values of each classical simulation are then
binned into the same discrete 1/N steps as the quantum x
eigenvalues, so that classical versions of 	ρM and S can be
calculated to compare directly with the quantum-mechanical
quantities. The results are presented in Fig. 3. It can be seen
that the classical results are qualitatively similar to the quan-
tum results for panels (a), (c), and (d). Examined more closely,
however, the final values of 	ρM are different classically;
it turns out that the classical 	ρM is always larger than the
corresponding quantum value. In other words, the threshold
for thermalization, ωT , is higher in the quantum case than in
the classical case. This difference of detail in (a), (c), and (d)
becomes dramatic in panel (b).

In Fig. 3(b) the classical system thermalizes even for very
small coupling (ω/� = 0.01). In fact the classical expecta-
tion is that the system will thermalize for arbitrarily weak
coupling, hence ωT = 0, with the time to reach to thermal
equilibrium simply becoming longer for decreasing ω. The
quantum system shown in Fig. 2(b), in contrast, never even
reaches a steady state, and the quantum entropy stays well
below the thermal value, indicating that ωT /� > 0.01.

The similar examples in Figs. 2(d) and 3(d) show that
the existence of a finite coupling threshold sufficient for
thermalization is not always a quantum effect. It is also
present in classical systems whenever the phase space of
the isolated bath and thermometer is not completely chaotic,
but sufficiently strong coupling makes the combined system
fully chaotic. The contrasting examples in Figs. 2(b) and 3(b)
show, however, that there is also a purely quantum coupling
threshold, below which thermalization is inhibited even when
the reservoir subsystem to which the thermometer subsystem
is coupled is completely chaotic. In the next section we will
show that the quantum threshold effect we have seen in these
two individual examples persists robustly for a range of values
of the system parameters.

IV. DEPENDENCE OF ωT ON U AND ε

Even for a fixed particle number N the parameter space
in our model is three-dimensional (U , x, ε). It is beyond
the scope of any one paper to explore this entire parameter
space numerically, and as yet we unfortunately lack a general
analytical theory which could quantitatively predict ωT for
any given Ĥ . By computing ωT numerically for some ranges
of parameters, however, we can confirm that the coupling
threshold for thermalization exists generically and depends on
system parameters in sensible ways.
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FIG. 3. Classical evolution of P(x) and S for the same parameters as in Fig. 2 and corresponding initial conditions. Panels (e) and (f) show
Poincaré sections corresponding to the initial states in (a)/(b) and (c)/(d). (a) ε = 0.3, ω/� = 0.1; (b) ε = 0.3, ω/� = 0.01; (c) ε = 0.4,
ω/� = 0.1; (d) ε = 0.4, ω/� = 0.4; (e) ε = 0.3; (f) ε = 0.4.

In this section we therefore show the dependence of ωT

along the ε and U axis of the parameter space for N =
70. To find ωT we start with a very small monomer-trimer
coupling and increase it until 	ρM < c = 0.1. See Fig. 4 for
an example.
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FIG. 4. Example showing how the thermalization threshold ωT is
determined: we simulate the evolution for different values of ω and
fit or interpolate the results around 	ρM = 0.1 to estimate the value
of ωT . The parameters in this example are N = 90, UN/� = 10, ε =
0.25, and x = 0.6.

Figure 5 shows the resulting dependence of ωT on the
initial energy ε for fixed UN/� = 10 and x = 0.6, and then
the dependence of ωT on UN/� for fixed ε = 0.25 and x =
0.6. Both functions are obtained for both the quantum and
classical systems. We find that the coupling threshold for ther-
malization also exists in the classical system, as long as the
uncoupled system is not completely chaotic: see the classical
Poincaré sections in Fig. 5. In this case full thermalization is
not expected for weak coupling, but a stronger coupling can
break up the remaining KAM tori so that thermalization can
take place after all. We observe in general, however, that the
quantum coupling threshold is always higher than its classical
counterpart; even in the case where the uncoupled system
is fully chaotic (see classical Poincaré sections in Fig. 5)
there exists a finite quantum coupling threshold, whereas the
classical coupling threshold vanishes as expected.

This nonzero quantum coupling threshold is the main result
of our paper. Since the classical threshold is zero for chaotic
bath subsystems, and since for N → ∞ the quantum and
classical simulations should agree (classical limit), in the next
section we will study how this classical limit of ωT → 0 is
approached for large N .

V. APPROACHING THE CLASSICAL LIMIT OF ωT = 0
FOR CHAOS

In advance of any numerical results there are at least
three different theoretical predictions that can be made for
the approach to zero threshold at large N . One is that ωT
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FIG. 5. Dependence of ωT on ε for N = 70, UN/� = 10, and x = 0.6 (a) and on UN/� for N = 70, ε = 0.25, and x = 0.6 (b). The
blue curves show the quantum results, whereas the red curves show the corresponding classical results. The smallest coupling we tested in
the classical simulations was ω/� = 0.01. In cases where even this small coupling lead to thermalization, ωT /� = 0.01 is only an upper
bound (marked by open circles). Panels (c)–(f)/(g)–(j) show Poincaré sections corresponding to representative points in (a)/(b). (c) ε = 0.1;
(d) ε = 0.2; (e) ε = 0.3; (f) ε = 0.4; (g) UN/� = 5; (h) UN/� = 10; (i) UN/� = 15; (j) UN/� = 20.

should scale asymptotically as 1/N , another is that it should
scale much more slowly as 1/ log N , while the third predicts
much faster 1/N2 scaling. Numerical evidence in one case
of our model decisively rules out 1/ log N and 1/N2, and
supports 1/N , but before presenting this evidence we will
briefly present the rival theoretical arguments.

A. Path-integral argument for 1/N scaling

The 1/N prediction uses the saddle-point approximation
to the Bose-Hubbard path integral to argue that all quantum
corrections scale with 1/N in the limit of large N , and so
the discrepancy between the nonzero quantum ωT and the
classically chaotic threshold of zero must also scale with 1/N .
The argument is based on the coherent-state path integral for
the transition amplitude between arbitrary initial and final
coherent states,

〈
ᾱF

n

∣∣Û (t )
∣∣αI

n

〉 =
∫

D4nD4ϕ e
i
h̄ S[nm,ϕm], (11)

with the Bose-Hubbard action

S =
∫ t

0
dt ′

[
4∑

m=1

nm(t ′)ϕ̇m(t ′) − Hm f

]
. (12)

For evolving states with N conserved bosons the path integral
will be dominated by trajectories with all nm of order N .
Rescaling our integration variables nm(t ) → Nñm(t ) and t →
t̃/�, we find for fixed UN/� that S = NS̃, where S̃ is a di-
mensionless functional of dimensionless functional variables
that are typically of order unity.

For large N the path integral may be evaluated approxi-
mately using the method of steepest descents. The system-
atic higher-order corrections to the approximation yield a
semiclassical perturbation series in 1/N , analogous to the
expansion in powers of h̄ in single-particle quantum mechan-
ics or the expansion in Feynman diagram loops in quan-
tum electrodynamics. The zeroth-order term is the saddle-
point approximation, given by the classical (i.e., mean-field)
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equations of motion. One therefore expects quantum correc-
tions to classical dynamics to scale with 1/N in general in
Bose-Hubbard systems. A prediction drawn from this would
be that the quantum correction of nonzero ωT in particular
should also scale with 1/N .

B. Quantum break time argument for 1/ log N scaling

While generically quantum corrections may be of order
1/h̄ for a given classical action scale, and thus 1/N for fixed
UN/� in Bose-Hubbard systems, it has long been known that
dynamical instabilities, including the exponential divergence
of classical trajectories on the Lyapunov time scale in chaos,
may present exceptions [32,33]. If one compares individual
classical trajectories with quantum expectation values for
evolving states that are initially narrow wave packets, one
typically finds that the quantum and classical values remain
close to each other only up to some “quantum break time” τQ

which in the classically unstable cases scales only as log N ,
not N [34–36]. One might therefore suspect that quantum
chaotic baths could fail to thermalize thermometers the way
classical chaotic baths do, if the quantum break time is shorter
than the classical thermalization time. This suggests that ωT

should scale with 1/ log N for the small chaotic quantum
bath.

C. Perturbative argument for 1/N2 scaling

An alternative prediction for the scaling of ωT with N
for small quantum chaotic baths is reached by asking why
a chaotic quantum bath might fail to thermalize a quantum
thermometer for infinitesimal ω, when N is finite. If ω is very
small then one should be able to apply quantum mechanical
perturbation theory in ω. If ω grows but still remains small,
then perturbation theory should still imply that the effects of
bath-thermometer coupling are small, and thus do not go as far
as thermalization, unless perturbation theory somehow breaks
down.

Such breakdown occurs when the matrix elements of the
perturbation Hamiltonian become comparable in size to the
differences between unperturbed energy eigenvalues. In our
case the matrix elements of the bath-thermometer coupling
term are of order ωN , if occupation numbers are all of order
N . For fixed UN/� the energy-level spacing in the isolated
monomer is of order N0, but for the isolated bath we can
reckon a total energy range between ground state and highest
excited state proportional to N for fixed UN/�, while the
dimension of the Hilbert space of order N bosons distributed
among three modes is of order N2, giving an average energy-
level spacing 	E of order 1/N . We demonstrate this scaling
for an example in Fig. 6 (dashed blue). Instead of this global
mean level spacing one might expect the local mean level
spacing (local in energy) to be more relevant, simply because
the perturbation term is finite and can therefore only couple
unperturbed states of the combined bath-thermometer system
within some energy window around the initial energy. In our
example we find that this local spacing also scales like 1/N ;
see Fig. 6 (solid red).

With perturbation matrix elements scaling with N , then,
one expects perturbation theory to break down for large N for
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0.27/N+131.82/N 2

0.06/N+44.48/N 2

FIG. 6. Dependence of the global and local mean level spac-
ing on the particle number N for UN/� = 10. The global mean
spacing (blue) is the level spacing averaged over all eigenstates
of the uncoupled Hamiltonian. For the local level spacing (red)
we average only over eigenstates with 0.2 < ε < 0.3, i.e., states
that are local in energy. Both curves are well described by fits of
the form a/N + b/N2, demonstrating the 1/N scaling behavior for
large N .

ω of order 1/N2. If the breakdown of perturbation theory in
ω coincides with the onset of thermalization, then ωT should
scale with 1/N2 at large N as well.

D. Numerical example

We thus have at least three very different predictions for
how we approach the classical limit of ωT = 0 for chaos. As
we will discuss in our final section below, none of the three is
immune to criticism, but all of them seem potentially relevant,
so it is not clear which if any of them should be correct. We
therefore turn to numerical calculation for a typical chaotic
example in our class of systems. We choose an initial state
that is in the chaotic region and simulate the evolution for
different particle numbers. The results showing 	ρM for
UN/� = 10, x = 0.6, and ε = 0.25 are presented in Fig. 7
(same parameters as for the level spacings in Fig. 6). We
find that 	ρM depends only on the product ωN and is well
described by 	ρM = a/(ωN/� + b), with fit parameters a
and b. This means that the coupling threshold ωT scales like
1/N in this example. Specifically it is well fit in this example
by ωT /� = 1/N (a/c − b).

VI. DISCUSSION

Our finding that even an integrable bath can thermalize
with sufficient coupling strength is less surprising than it
might initially seem. Once our trimer and monomer sub-
systems are strongly enough coupled, together they repre-
sent a typical four-mode Bose-Hubbard system, and this
combined system can easily be chaotic even if its trimer
and monomer components in isolation are not. Equilibration
in such a chaotic system is expected. Once the combined
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FIG. 7. Dependence of 	ρM on N for UN/� = 10, ε = 0.25 and x = 0.6 (left). Plotting 	ρM against ωN/� (right) shows that it depends
only on the product ωN/�. The data is well approximated by the curve a/(ωN/� + b), where a and b are fit parameters.

dynamics is so radically different from the separate dynamics
of both subsystems, however, the very division into trimer
and monomer subsystems becomes arbitrary, and one might
as well admit that one is simply studying a generic four-site
system on which the division into subsystems is not a useful
perspective to take. Since our intent in this paper has been
to study thermalization between distinct subsystems, the main
conclusion we draw from thermalization of strongly coupled
integrable subsystems is just to note that this paradigm itself
is not always applicable.

We emphasize more our other result—that quantum baths
may not thermalize thermometers even when they are chaotic,
if the coupling is not strong enough. While we have only
explored a limited class of Bose-Hubbard systems in this
paper, there is no obvious reason why these should represent
a pathological special case of small quantum chaotic baths
coupled to thermometer degrees of freedom. We therefore
propose that our major result is generic—that thermalization
between small quantum subsystems requires a threshold cou-
pling strength greater than zero.

The most basic reason why quantum mechanics must
inhibit thermalization was indicated in the perturbative ar-
gument in Sec. V above. In any finite quantum bath, even
if it is chaotic, the typical spacing between energy levels
will be finite; under time-independent quantum perturbation
theory couplings weaker than unperturbed energy gaps have
only small effects; and so even over long times the effect of
coupling together bath and thermometer will be a small effect,
and not a large effect like equilibration, if the coupling is small
compared to the finite local level spacing.

While this effect of finite level spacing is clearly very
general for quantum chaotic baths, the scaling of coupling
threshold with particle number (or analogous classical cor-
respondence parameter) that it implies may depend on the
particular bath system. In our minimal chaotic case of a Bose-
Hubbard trimer, the limit on ωT due to finite level spacing
scales with 1/N2. With more modes, the argument in our
Sec. V would imply scaling with higher negative powers of
N . What does seem likely to be generic about the scaling of
this effect of finite level spacing, in fact, is that it will be faster
than 1/N .

On the other hand, the basic reason why quantum chaotic
baths with large N do tend to thermalize thermometers is that
the classical limit is approached as 1/N → 0, as one can de-
duce from the saddle-point expansion of the path integral, and
classical chaotic baths thermalize with zero threshold (over
long enough thermalization times). The argument for slower
1/ log N scaling from the logarithmic quantum break time
for individual trajectories can probably be dismissed based
on the insights of Trimborn, Witthaut, and Korsch [37], who
showed that if one compares the quantum expectation values
to those of classical ensembles in unstable Bose-Hubbard
systems, instead of to individual classical trajectories, the
1/ log N scaling is replaced with the usual 1/N quantum-
classical correspondence.

Our understanding of bath-thermometer thermalization in
the mesoscopic limit is thus good enough to identify upper
and lower bounds on coupling strength. For coupling strength
greater than O(N−1), the quantum chaotic bath must thermal-
ize the thermometer, because we are in the classical regime.
For coupling strength less than O(N−2) (in our trimer case,
or some higher negative power in other cases), the quantum
chaotic bath cannot thermalize the thermometer, because we
are in the perturbative regime.

Precisely how the coupling strength threshold for thermal-
ization should scale in general with N , within the upper and
lower bounds that we now understand, is not clear. Numerical
evidence in our trimer-monomer models is clear, that the
thermalization threshold scales with the upper bound of 1/N
that we expect from classicality, and not with the 1/N2 that
we expect from finite-level spacing. This seems to indicate the
existence of a crossover range of coupling strengths for which
the thermometer-bath interaction is neither perturbative nor
fully thermalizing. Precisely what occurs in this regime must
be a subject for future study.
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