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Chains of coupled two-level atoms behave as one-dimensional quantum spin systems, exhibiting free magnons
and magnon bound states. While these excitations are well studied for closed systems, little consideration has
been given to how they are altered by the presence of an environment. This will be especially important in
systems that exhibit nonlocal dissipation, e.g., systems in which the magnons decay due to optical emission. In
this paper, we consider free magnon excitations and two-magnon bound states in an XXZ chain with nonlocal
dissipation. We prove that while the energy of the bound state can lie outside the two-magnon continuum of
energies, the decay rate of the bound state has to always lie within the two-magnon continuum of decay rates.
We then derive analytically the bound-state solutions for a system where both the XY interaction and nonlocal
dissipation are nearest neighbor or next-nearest neighbor, finding that the inclusion of nonlocal dissipation allows
more freedom in engineering the energy and decay rate dispersions for the bound states. Finally, we numerically
study a model of an experimental setup that should allow the realization of dissipative bound states by using
Rydberg-dressed atoms coupled to a photonic crystal waveguide. We demonstrate that this model can exhibit
many key features of our simpler models.
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I. INTRODUCTION

One very interesting direction of recent research on ultra-
cold atomic or molecular gases involves the study of the col-
lective quantum dynamics of internal excitations of the atoms
(or molecules) positioned in ordered arrays. Such systems
behave as strongly coupled two-level quantum systems (i.e.,
spin-1/2 systems), and can explore fundamental issues in the
quantum dynamics of many-body systems subject to strong
interparticle interactions [1–3].

A famous example of a strong-interaction phenomenon in
quantum spin systems is provided by magnon bound states,
first proposed by Bethe [4] more than 80 years ago. In that
work, it was shown that magnon bound states could form
in one-dimensional (1D) spin-1/2 Heisenberg chains with
nearest-neighbor (NN) interactions, lowering their energy
compared to free magnons in the system. Subsequent work
then extended this result to higher dimensions, anisotropic
spin chains, and arbitrary spin including solitons [5–8] and
spin chains with long-range interactions [9–12]. Furthermore,
magnon bound states have been studied in systems with
frustration [13] and topological structure [14,15] and in Flo-
quet systems [16,17]. They have also recently been observed
experimentally [3] and shown to have an important role in
magnetization switching [18] and transport [19,20] and to
have interesting effects on entanglement entropy [21].

One key aspect in all of these studies is that the system is
closed and so the question of bound-state decay rates is not
considered. However, if the system is coupled to an external
environment, then the excitations will eventually decay and
so it is natural to ask how long-lived these excitations can
be. For a system with local dissipation, the decay rate of both
free excitations and bound states will be given by m times the
local decay rate [22] where m is the number of excitations.

However, for systems involving radiative decay, the dissi-
pation typically becomes nonlocal, where a range of decay
rates to the environment exist, which are either super-radiant
(greater than the local decay rate) or subradiant (smaller than
the local decay rate). In these scenarios, the relative decay
rates of the free excitations and bound states become unclear.
For example, is it possible for the decay rate of the bound
states to be smaller than that of the free magnons?

In this paper, we address the question of bound-state decay
rates in systems with nonlocal dissipation. We look at three
models with a nearest-neighbor Ising interaction, which is
crucial for the bound states to form, and different forms of XY
interaction and nonlocal dissipation. The first two models are
where the XY interaction and nonlocal dissipation are nearest
neighbor or next-nearest neighbor (NNN) for which we can
obtain analytical results. The final model is an experimen-
tally achievable setting in which to observe our results with
Rydberg dressed atoms coupled to a photonic crystal waveg-
uide (PCW).

The layout of the paper is as follows. In Sec. II, we derive
the general equations needed to obtain the energies and decay
rates of the free excitations and bound states. In Sec. III,
we show that in general the decay rate of the bound state
lies within the two-magnon decay rate continuum. Then in
Sec. IV, we obtain the energies and decay rates for the three
models. In Sec. V we discuss our results and experimental
implementation before drawing conclusions in Sec. VI.

II. MODEL

We consider a macroscopic number, N , of two-level sys-
tems fixed in position on a 1D optical lattice with spacing,
a, and periodic boundary conditions. The atoms interact with
an electromagnetic field which acts as an environment for the
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system. We assume the Markovian and Born approximations,
which are valid provided the coupling between the system and
environment is weak. These allow us to describe the system
using a master equation approach. We will later discuss the
validity of this approximation in relation to our results. The
resultant master equation is given by

d ρ̂(t )

dt
= i

h̄
[ρ̂(t ), Ĥ ] +

N∑
i,l

�il

2
(2σ̂−

i ρ̂(t )σ̂+
l −{σ̂+

l σ̂−
i , ρ̂(t )}),

(1)

where the square brackets represent a commutator and curly
brackets represent the anticommutator. The spin operators are
defined as σ̂ z

i = |ei〉〈ei| − |gi〉〈gi|, σ̂−
i = |gi〉〈ei| and σ̂+

i =
|ei〉〈gi|, where |ei〉 and |gi〉 are the excited and ground states
of the atom, respectively. We require that the eigenvalues of
the matrix �il are all greater than or equal to zero in order for
Eq. (1) to describe decay of the excited state, driven by the
operators σ̂−

i . Then the steady-state density matrix is given
by ρ̂ss = |0〉〈0| where |0〉 = ∏N

i |gi〉. The Hamiltonian is
given by

Ĥ = h̄�

N∑
i

σ̂ z
i +

N∑
i �=l

h̄Vil σ̂
+
i σ̂−

l + h̄Jz

2

N∑
i

σ̂ z
i σ̂ z

i+1. (2)

Note that we will assume translational invariance for our
system, such that Vil and �il depend only on the relative
coordinate, ri − rl , where ri is the coordinate of site labeled
i. Also, for the rest of the paper, we will work in units of
h̄ = 1. The Hamiltonian in Eq. (2) conserves the number of
excitations in the system while the dissipator allows the exci-
tations to decay. We can therefore talk about the dynamics of
few-magnon excitations. To compute the energies and decay
rates of one- and two-magnon excitations in our system, we
employ a Green’s-function method.

We first start with the single-magnon Green’s
function, defined as G(i, j; t ) = Tr[σ̂−

i (t)σ̂+
j (0)ρ̂(0)]�(t) =

〈0|σ̂−
i (t)σ̂+

j (0)|0〉�(t), where �(t ) is the Heaviside step
function. We choose the initial condition, ρ̂(0), to be the pure
state |0〉〈0|. The single-magnon Green’s function obeys the
following equation:

dG(i, j; t )

dt
− δi jδ(t )

= −i�G(i, j; t ) − �

2
G(i, j; t ) + 4iJzG(i, j; t )

− i
N∑

p�= j

(
Vpj − i

�p j

2

)
G(i, p; t ), (3)

where � = �ii is the onsite decay, which is the same for each
site due to the translational invariance of the system. Fourier
transforming Eq. (3) gives the spectrum of the single-magnon
states from the poles of

G(k, ω) = lim
ε→0

i[ω − E (k) + iε]−1, (4)

where

E (k) = −4Jz + � − i�

2
+

N∑
l=1

(2Vl0 − i�l0) cos(kl ) (5)

is the single-magnon dispersion, with the real part correspond-
ing to the energy and the magnitude of the imaginary part
corresponding to the decay rate.

For two magnons, we consider the Green’s func-
tion G(i, j, l, m; t ) = Tr[σ̂−

i (t)σ̂−
j (t)σ̂+

l σ̂+
m ρ̂(0)]�(t), which

obeys the following equation:

dG(i, j, l, m; t )

dt
− (1 − δi j )δ(t )(δilδ jm + δimδ jl )

= (−2i� + 8iJz − � − 4iJzδm,l+1)G(i, j, l, m; t )

− i
N∑

p�=l

Jpl G(i, j, p, m; t ) − i
N∑

p�=m

JpmG(i, j, p, l; t )

+ 2iδlm

N∑
p�=m

JpmG(i, j, p, m; t ), (6)

where Jpl = Vpl − i�pl/2. This equation can be rewritten
as a matrix equation and partially Fourier transformed with
G(r, r′, Q, 
) = ∑

R−R′ e−i(R−R′ )Q
∫ ∞
−∞ G(i, j, l, m; t )ei
t dt ,

where we have defined the relative coordinates r = ri − r j

and r′ = rl − rm and also the center-of-mass coordinates
R = (ri + r j )/2 and R′ = (rl + rm)/2, to give (see
Appendix A)

G(r, r′, Q,
) = �(r, r′, Q,
)h(r)

−
N∑
r′′

K (r, r′′, Q,
)G(r′′, r′, Q,
), (7)

where

K (r, r′; Q,
) = 2i

N

∑
q∈BZ

cos(qr′)

 − S(q, Q)

[
4iJz cos(q)

− 2i

(
V (r) − i

�(r)

2

)
cos(Qr/2)

]
,

�(r, r′; Q,
) = −2i

N

∑
q∈BZ

cos(qr′) cos(qr)


 − S(q, Q)
. (8)

The momenta q and Q in Eqs. (7) and (8) are the difference
and sum of momenta, defined by q = (k1 − k2)/2 and Q =
k1 + k2, where k1 and k2 are the momenta of the individual
magnons. The momenta q are summed over the Brillouin zone
(BZ). The function in the denominator of Eq. (8), S(q, Q), is
the dispersion of two free magnons, given by

S(q, Q) = E (Q/2 + q) + E (Q/2 − q)

= −8Jz + 2� − i� +
N∑

j=1

(4Vj0 − 2i� j0)

× cos( jQa/2) cos( jqa), (9)

which determines the poles of �(r, r′, Q,
), while the two-
magnon bound states are given by solutions to the determinant
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equation

det[δrr′′ + K (r, r′′, Q,
)] = 0. (10)

Because of the nearest-neighbor Ising coupling, this determi-
nant equation can be simplified to (see Appendix B)⎛

⎝1 − 1

N

∑
q∈BZ

8Jz cos2(qa)


 − S(q, Q)

⎞
⎠

⎛
⎝1 + 1

N

∑
q′∈BZ

S(q′, Q) + χ


 − S(q′, Q)

⎞
⎠

+ 8Jz

N2

∑
q,q′∈BZ

cos(qa) cos(q′a)(S(q′, Q) + χ )

[
 − S(q, Q)][
 − S(q′, Q)]
= 0, (11)

where χ = 8Jz − 2� + i�. In the limit N → ∞, we can
rewrite Eq. (11) as

(
 + χ )

[
I0(
, Q)

8Jz
− I0(
, Q)I2(
, Q) + I1(
, Q)2

]
= 0,

(12)

where

Im(
, Q) =
∫ π

−π

cosm(q)


 − S(q, Q)

dq

2π
. (13)

In Sec. IV, we shall find the energies and decay rates of
the bound states by solving Eq. (12) [or Eq. (11) where
appropriate] for three specific forms of the XY interaction
and nonlocal dissipation: a nearest-neighbor model, a next-
nearest-neighbor model, and a photonic crystal waveguide
model. Note that 
 = −χ = −8Jz + 2� − i� is always a
solution to Eq. (12). However, this solution always lies within
the two-magnon energy continuum. In general, we will dis-
miss any solutions that lie inside the two-magnon energy
continuum where the bound state is no longer well defined
because it can scatter into the continuum states and become a
resonance. While it is possible to have bound states that exist
in the scattering continuum [23], these usually occur when the
system has certain symmetries that protect the state, which we
are not aware of existing in our models.

III. GENERAL DECAY RATES OF BOUND STATES

We first show that in general, for any model with nonlocal
dissipation of the form given in the master equation, Eq. (1),
the decay rate of the bound state always lies within the
maximal and minimal decay rates of two free magnons, which
we refer to as the two-magnon decay rate continuum. This
means the bound state cannot decay more quickly or slowly
than its constituent parts. To show this, we consider Eq. (1)
rewritten in diagonal form:

d ρ̂(t )

dt
= i[ρ̂(t ), Ĥ ] +

∑
k

(2Ĵ−
k ρ̂(t )Ĵ+

k − {Ĵ+
k Ĵ−

k , ρ̂(t )}).

(14)

Here, Ĵk is a decay operator for mode k, given by Ĵ−
k =√

γk
∑N

i ck
i σ̂

−
i , where ck

i is the ith component of the kth
eigenvector of �il/2 and γk is the corresponding eigenvalue.
For a periodic or large enough system, the eigenvector com-
ponents are given by ck

i = eikri/
√

N . To determine the decay
rate of the bound state, we focus on the initial dynamics of

the |Q〉〈Q| component of the density matrix, by computing
the time evolution of ρQ(t ) = 〈Q|ρ̂(t )|Q〉, where ρQ(0) = 1
such that ρ̂(0) = |Q〉〈Q|. The wave function |Q〉 is the wave
function of a bound state with momentum Q, given by

|Q〉 =
N∑
i j

αQ fQ(|ri − r j |)eiQ(ri+r j )/2σ̂+
i σ̂+

j |0〉, (15)

where fQ(r) is some localized function that determines the
spatial decay of the bound state, with r = |ri − r j |, and αQ is a
normalization constant given by αQ = 1/(2N

∑
r �=0 | fQ(r)|2).

Note that we have assumed that the bound state is uniquely
determined by its momentum. Indeed, in future sections, we
only find one bound-state solution to Eq. (12) [and Eq. (11)]
for each momentum value Q. In general, it is possible for more
than one bound-state solution to exist for a given Q value,
which results in an additional label on fQ(r) in Eq. (15) to
distinguish between the different bound states that have the
same momentum. However, our results in this section will still
hold even if this is the case.

The equation of motion for the bound-state component at
short initial times is given by

dρQ(t )

dt
≈ −

∑
k

8γk|αQF (Q/2 − k)|2ρQ(t ), (16)

where

F (Q/2 − k) =
∑
r �=0

fQ(r)eir(Q/2−k) (17)

is the Fourier transform of the localized function. At later
times, there can be the population of coherences between the
bound state and scattering states, which we have neglected.
We can see that the bound-state density matrix has a decay
rate of 4γ̃Q, where γ̃Q ≡ ∑

k 2γk|αQF (Q/2 − k)|2, which is
the weighted sum of all single-magnon decay rates. Note that
γ̃Q is equivalent to the decay rate we will obtain from our
Green’s-function method.

For local dissipation where γk = γ ≡ �/2, the sum over k
in γ̃Q can be completed to give∑

k

2|αQF (Q/2 − k)|2 = 1, (18)

and so the decay rate of the bound-state wave function (which
is half the decay rate of the pure density matrix) is 2γ as
expected. For nonlocal dissipation, in order to have a bound-
state decay rate that exists below the two-magnon decay rate
continuum, we would need

γ̃Q =
∑

k

2γk|αQF (Q/2 − k)|2 < γmin, (19)

where γmin is the smallest decay rate for a single magnon.
However, using Eq. (18), we can rewrite this condition as∑

k

2(γk − γmin)|αQF (Q/2 − k)|2 < 0. (20)

Both |αQF (Q/2 − k)|2 and γk − γmin are always positive,
which means this condition can never be fulfilled. The lowest
decay rate that could possibly be achieved for the bound state
is the lowest decay rate that can be achieved for two free
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magnons, although this may not always obey the bound-state
equation. The same argument applies for showing that the
bound state cannot have a decay rate above the two-magnon
decay rate continuum, such that∑

k

2(γk − γmax)|αQF (Q/2 − k)|2 > 0, (21)

where γmax is the largest decay rate in the system. Again
|αQF (Q/2 − k)|2 > 0, but γk − γmax < 0, so this condition
cannot be satisfied and the bound-state decay rate must always
lie within the two-magnon decay rate continuum.

IV. RESULTS

A. Nearest-neighbor model

Having shown in general that the decay rate of the bound
state always lies within the two-magnon decay rate contin-
uum, we now look at three specific models for dissipative
bound states. The first model we consider is one in which
all the interactions and the nonlocal dissipation are NN. The
energies and decay rates of the one- and two-free-magnon
states are given by

Re[E (k)] = −4Jz + � + 2V12 cos(ka),

|Im[E (k)]| = �

2
+ �12 cos(ka),

Re[S(q, Q)] = −8Jz + 2� + 4V12 cos(Qa/2) cos(qa),

|Im[S(q, Q)]| = � + 2�12 cos(Qa/2) cos(qa). (22)

Solving Eq. (12) gives the following bound-state solution (see
Appendix C):


(Q) = −4Jz + 2� − i� + (2V12 − i�12)2

4Jz
cos2(Qa/2),

(23)

which can be written in terms of the energy and decay rate as

Re[
(Q)] = −4Jz + 2� + 4V 2
12 − �2

12

4Jz
cos2(Qa/2),

|Im[
(Q)]| = � + V12�12

Jz
cos2(Qa/2). (24)

These expressions first appeared in [24], although we
analyze them in more detail here. For the expressions in
Eqs. (24), there are limits to the parameters we can choose
for the solutions to satisfy the bound-state equation, Eq. (12).
However, provided we choose V12 and �12 such that the
energy term in Eq. (24) lies below the two-magnon energy
continuum, then we find the bound-state equation is always
satisfied. We also have to impose �/2 � |�12| in order for the
dissipator to always give decay.

Comparing the bound-state solution, Eqs. (24), to the free
magnon dispersions in Eqs. (22), we see the energy and decay
rate of the bound state depend on a mixture of the interaction
and dissipation. The presence of nonlocal dissipation creates
a negative shift in energy compared to the XY interaction,
which means that the bound-state energy is shifted further
from the two-magnon energy continuum than in a closed
system. This is important as the effects of nonlocal dissipation

will not only cause the bound state to decay but will alter
its dynamics traveling through the lattice. This means that
even if the bound state has a very small decay rate it is not
sufficient to ignore environmental effects. Furthermore, due
to nonlocal dissipation, there is more freedom to engineer the
bound-state energy and decay than in a closed system. For
example, the bound-state energy band can be made entirely
flat by choosing V12 = �12/2. Also, by choosing V12 = 0 such
that there is no XY interaction, the bound state experiences
only local dissipation, with a decay rate of �, whereas the one
and two free magnons still experience nonlocal dissipation.
Finally, looking at Eqs. (24) in the limit where V12, �12 �Jz,
we can see the effects of the XY interaction and nonlo-
cal dissipation become negligible, with the energy of the
bound state tending to −4Jz and the decay rate tending to
�, which would be expected for an Ising model with local
dissipation.

The relative signs of the XY interaction, nonlocal dis-
sipation, and Ising interaction allow the bound-state decay
rate to be tuned such that it is either entirely subradiant or
super-radiant, with the most super- or subradiant decay at
Qa = 0 and a decay rate of � at the band edge, Qa = ±π .
To find how subradiant or super-radiant it is possible to make
the bound state, we extremize the decay rate of the bound
state with respect to the parameters V12 and �12 for a fixed
value of Jz, while still obeying the constraint that the bound-
state energy must lie below the two-magnon energy contin-
uum. We also maintain a fixed decay rate � (otherwise there
is always a trivial minimal decay rate with � = �12 = 0).
We find the extremal values are given by �12 = ±2Jz and
V12 = ±Jz (where the signs can be chosen independently).
The corresponding energies and decay rates are given by

Re[
(Q)] = −4Jz + 2�,
(25)

|Im[
(Q)]| = � ∓ 2Jz cos2(Qa/2),

where the negative sign gives the maximal (minimal) decay
rate and the positive sign gives the minimal (maximal) decay
rate for Jz < 0 (Jz > 0). The largest values for �12 and V12

occur when the bound state makes contact with the energy
continuum at Qa = 0. In Fig. 1, we show the minimal decay
rate solution for Jz < 0 and � = 2|�12|. The bound-state
solution is shown by the red band, while the other bands
represent the free magnon states, which form a continuum
in the thermodynamic limit. Note that the shading used on
the free magnon bands gives a correspondence between the
energy of the band and its associated decay rate e.g., the light
bands at low energy in the top plot of Fig. 1 have a decay
rate given by the light bands in the lower plot of Fig. 1. This
convention will be used throughout the paper.

The bound-state decay rate lies in the two-magnon decay
rate continuum as expected and is smaller than half the free
magnon decay rates at Qa = π and 2/3 of the continuum
at Qa = 0, with the lowest-energy bands of the two-magnon
continuum having the smallest decay rates. For the maximal
decay rate solution, the results are similar to Fig. 1, but the
decay rates reverse, with the lowest-energy bands having the
highest decay rates and the bound-state solution having a
larger decay rate than most of the two-magnon decay rate
continuum.
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FIG. 1. Energy (top) and decay rate (bottom) of the bound state
for a NN system for Jz < 0 and � = 2|�12|. The bound-state solution
is shown by the red curve while the blue-gray curves represent the
two-free-magnon solutions. The shading of the free magnon curves
gives a correspondence between the energy of the band in the top plot
and the decay rate of the band in the bottom plot. The parameters
used are �12/|Jz| = −2 and V12/|Jz| = −1, which give the smallest
possible decay rate for the bound state while keeping the energy
separate from the continuum.

B. Next-nearest-neighbor model

The NN model studied in the previous section demon-
strated many features of dissipative bound states, but also
missed some qualitative features of bound states with longer-
range hopping. We therefore consider a model where the XY
interaction and nonlocal dissipation are both NNN, finding
that the inclusion of additional site interactions produces
important differences in the properties of the bound state
compared to a NN model. The one- and two-free-magnon
energies and decay rates are given by

Re[E (k)] = −4Jz + � + 2V12 cos(ka) + 2V13 cos(2ka),

|Im[E (k)]| = �

2
+ �12 cos(ka) + �13 cos(2ka),

Re[S(q, Q)] = −8Jz + 2� + 4V12 cos(Qa/2) cos(qa)

+ 4V13 cos(Qa) cos(2qa),

|Im[S(q, Q)]| = � + 2�12 cos(Qa/2) cos(qa)

+ 2�13 cos(Qa) cos(2qa). (26)

The bound-state solution is given by (see Appendix D)


(Q) = −8Jz + 2� − i� + 4J13 cos(Qa) + J2
12 cos2(Qa/2)

Jz

+ J2
12 cos2(Qa/2)J13 cos(Qa)

2J2
z

+ 8J2
z

2Jz + J13 cos(Qa)
,

(27)

where J12 = V12 − i�12/2 and J13 = V13 − i�13/2. Writing in
terms of the energy and decay rate gives

Re[
(Q)] = −8Jz + 2� + 4V 2
12 − �2

12

4Jz
cos2(Qa/2) + V13

(
4V 2

12 − �2
12

) − 2�13�12V12

8J2
z

cos(Qa) cos2(Qa/2) + 4V13 cos(Qa)

+ 16J2
z [4Jz + 2V13 cos(Qa)]

[4Jz + 2V13 cos(Qa)]2 + [�13 cos(Qa)]2
,

|Im[
(Q)]| = � + V12�12

Jz
cos2(Qa/2) + 2�13 cos(Qa) + �13

(
4V 2

12 − �2
12

) + 8V13�12V12

16J2
z

cos(Qa) cos2(Qa/2)

− 16J2
z �13 cos(Qa)

[4Jz + 2V13 cos(Qa)]2 + [�13 cos(Qa)]2
. (28)

As for the NN model, there is a constraint on the values of
the dissipative couplings to ensure the magnons always decay,
which is �/2 � |�12 + �13|. Likewise, we have to choose
parameters that satisfy the bound-state condition Eq. (12),
finding again that provided the energy of the bound state lies
below the continuum then Eq. (12) is satisfied. Our NNN
bound-state solution is the same as that found in [12] but with
a complex XY interaction. This is also true of our NN result
in Eq. (24), which can be obtained by taking the bound-state
result in [5] with a complex XY interaction.

The inclusion of an additional site in the XY interac-
tion and nonlocal dissipation results in a more complex

bound-state solution than in the NN model. Looking at the
terms in Eqs. (28) in more detail, we see that the NN solution
in Eqs. (24) can be recovered by letting V13, �13 = 0, and
that now we have additional terms due to two-site hopping
processes and a term that mixes the NN and NNN parameters.
Because of the new magnon hopping terms, the decay rate
of the bound state is no longer fixed to be � at Qa = ±π

as was the case for NN interactions, and the smallest and
largest decay rates do not have to occur at Qa = 0 anymore.
Therefore the inclusion of NNN interactions allows more
freedom in choosing at what momenta Q the bound state
can have its highest or smallest decay rate. However, we
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can now no longer engineer an entirely flat energy band
due to the presence of both cos(Qa/2) and cos(Qa) terms
(unless trivially the NNN couplings are set to zero). Look-
ing at the limit of V13, �13,V12, �12 � Jz, we find Eqs. (28)
simplify to

Re[
(Q)] ≈ −4Jz + 2� + 2V13 cos(Qa),

|Im[
(Q)]| ≈ � + �13 cos(Qa). (29)

We find that there is now always a contribution to the decay
rate from the NNN interactions, which means even tightly
confined bound states still experience the effects of nonlocal
dissipation, which was not the case for the NN model. We
can also see that the smallest decay rate will occur at Qa = 0
(Qa = ±π ) and the largest decay rate will occur at Qa = ±π

(Qa = 0) for �13 < 0 (�13 > 0).
We now extremize the NNN bound-state decay rate for a

fixed � with respect to the parameters V12, V13, �12, and �13

to find the smallest and largest decay rates the bound state can
have while its energy remains separate from the two-magnon
energy continuum. Due to the complexity of Eqs. (28), we
solve this numerically, finding that the solution with minimal
(maximal) decay rate occurs when V12 = ±1.135Jz, V13 =
−0.293Jz, �12 = ±1.926Jz, and �13 = 0.578Jz, and the max-
imal (minimal) solution occurs when V12 = ∓1.135Jz, V13 =
−0.293Jz, �12 = ±1.926Jz, and �13 = −0.578Jz for Jz < 0
(Jz > 0), where in both cases we are free to choose the positive
or negative sign. The largest values of all parameters occur
when the bound-state energy makes contact with the two-
magnon energy continuum at Qa = 0, as was the case for
the NN interactions. In Fig. 2, we show the minimal solution
with Jz < 0 and � = 2|(�12 + �13)|. Again, we find the decay
rate of the bound state lies within the two-magnon decay rate
continuum, with the bound state having a smaller decay rate
than 30% of the continuum at Qa = π and up to 70% of
the continuum at Qa = 0. We should note there is a second
minimal (maximal) decay rate solution with parameters V12 =
�12 = 0, �13 = +0.402Jz, and V13 = −0.827Jz and maximal
(minimal) solution for V12 = �12 = 0, �13 = −0.402Jz, and
V13 = −0.827Jz for Jz < 0 (Jz > 0). However, we have not
shown this solution as it is more unphysical due to the absence
of the NN terms.

C. Photonic crystal waveguide model

We now study one final model which should be an experi-
mentally realizable setup to study dissipative bound states. We
consider Rydberg dressed two-level atoms that are coupled
to a PCW. Systems of two-level atoms where one state is a
Rydberg state or Rydberg dressed are already well studied as
realizable quantum simulators [25–29]. Likewise, PCWs are
also gaining attention as a method for quantum simulation and
quantum information processing due to the high tunability of
the interactions between coupled quantum emitters [30–34].
For atoms coupled to a PCW, photons emitted from the atoms
can propagate to other atoms along the chain, which mediates
an effective XY interaction and nonlocal dissipation. For a
single mode in a dissipative PCW, the XY interaction and
nonlocal dissipation are given by [35] Vi j = Im[Ai j] and �i j =
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FIG. 2. Energy (top) and decay rate (bottom) of the bound state
for a NNN system with � = 2|(�12 + �13)| and Jz < 0. The bound-
state solution is shown by the red curve while the blue-gray curves
represent the two-free-magnon solutions. The shading of the free
magnon curves gives a correspondence between the energy of the
band in the top plot and the decay rate of the band in the bottom
plot. The parameters used are V12/|Jz| = 1.135, V13/|Jz| = 0.293,
�12/|Jz| = 1.926, and �13/|Jz| = −0.578, which give the smallest
possible decay rate for the bound state while keeping the energy
separate from the continuum.

2Re[Ai j], where Ai j is of the form

Ai j = JxyeiK|ri j |

2
√

1 − [δ/(2J ) + iγc/(4J )]2
. (30)

The parameter Jxy is the coupling of the atoms to the PCW,
J is an energy scale determining the PCW bandwidth, and
KWGa = π − arccos [δ/(2J ) + iγc/(4J )] = kWGa + iκWGa is
the PCW wave vector. The PCW wave vector depends on
the detuning, δ = (ωeg − ωWG), of the atomic transition fre-
quency, ωeg, from the photon mode frequency, ωWG, and also
the loss rate of photons from the PCW, γc. If |δ/J| < 2,
then the photon lies within the bandwidth and can propa-
gate along the PCW with a group velocity given by v =
|
√

4J2 − (δ + iγc/2)2|. However, if |δ/J| > 2, then the pho-
ton cannot propagate and instead exponentially decays along
the PCW. In order for bound states to form, we also need
an Ising interaction. This can be engineered by dressing [29]
either the excited state |e〉 or ground state |g〉 of an atom with
a Rydberg state |r〉, giving a new state |ẽ〉 = |e〉 + β|r〉 where
β = 
d/2�d , set by the drive 
d and detuning �d that couple
|e〉 to |r〉. The atoms then interact with an Ising interaction of
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the form

Ui j = U0

1 + (|ri − r j |/Rc)6
, (31)

where U0 = h̄
4
d/8�3

d and Rc is some cutoff length to the
interaction. For small Rc, this is a good approximation to a NN
Ising interaction. The sign and magnitude of U0 can be fixed

by the laser detuning and it is also possible to add additional
XY interactions between the atoms, which gives more freedom
in tuning Vi j separately from �i j .

For the PCW system, the one- and two-free-magnon ener-
gies and decay rates are given by

Re[E (k)] = −4Jz + � + f (k) + f (−k),

|Im[E (k)]| = �

2
+ g(k) + g(−k),

(32)
Re[S(q, Q)] = −8Jz + 2� + f (Q/2 + q) + f (Q/2 − q) + f (−Q/2 + q) + f (−Q/2 − q),

|Im[S(q, Q)]| = � + g(Q/2 + q) + g(Q/2 − q) + g(−Q/2 + q) + g(−Q/2 − q),

where � = V11/2 + δ/2 + δadd, with δadd being an additional detuning to those from the waveguide, and

f (k) =
(

� sin[(kWG + k)a] + V11{cos[(kWG + k)a] − e−κWGa}
eκWGa + e−κWGa − 2 cos[(kWG + k)a]

)
,

g(k) =
(

�{cos[(kWG + k)a] − e−κWGa} − V11 sin[(kWG + k)a]

eκWGa + e−κWGa − 2 cos[(kWG + k)a]

)
. (33)

For the rest of this section, we will choose the additional
detuning, δadd, such that � = 0, and so we can ignore the
contributions to energy from the onsite term, V11, and detuning
from the waveguide mode δ. We will also work with Jz < 0.

In Fig. 3, we plot the energy and decay rate of the single-
magnon dispersion for γc/J = 2, δ/J = 0 and Jxy/|Jz| = 3.
If |δ/J| < 2 and γc/J is small, then about the points k =
±kWG the decay rate is well modeled by two Lorentzians
with a width of 4 sinh(κWGa/2) and maximum value of
�/[4 tanh(κWGa/2)]. Similarly, the energy of the magnon
is well described by the derivative of a Lorentzian with
width 4 sinh(κWGa/2) and maximal (minimal) values given by
±�/[8 sinh(κWGa/2)]. As γc/J decreases (and so κWG → 0),
the energies of the magnons and decay rates about k = ±kWG

diverge within the photonic bandwidth (|δ/J| < 2). However,
outside the bandwidth (|δ/J| > 2), the energy of the magnon

FIG. 3. Energy and decay rate of a single magnon for the PCW
system with γc/J = 2, δ/J = 0, and Jxy/|Jz| = 3. The energy is
shown by the red (solid) line and the decay rate is shown by the
purple (dashed) line. The largest decay rates occur when k = ±kWG,
shown by the gray dashed lines.

is bounded and its decay rate drops to zero as γc → 0, leaving
the system effectively closed. The single-magnon dispersions
can be thought of as the hybridization of a photon propa-
gating through the waveguide with a dispersion ωk = ωWG −
2J cos(k), where k is the momentum, and a single atom with
energy ωeg.

We now look at the bound-state solutions in the PCW and
discuss their properties. The bound-state condition, Eq. (12),
is too complex to be solved analytically, so we instead tackle
the problem numerically for finite-sized systems by solving
Eq. (11). In Fig. 4, we plot some typical solutions of Eq. (11)
for a system size of N = 99, with γc/J = 2, with Jxy/|Jz| = 3,
and for δ/J = (−3,−1.5, 0, 1.5, 3). We see that bound-state
decay rate lies within the two-magnon decay rate continuum
as expected, and is smaller than the decay rate of the lowest-
energy bands of the continuum for δ/J < −2, but larger than
the decay rate of the lowest-energy bands of the continuum
for δ/J > 2. For intermediate detunings, whether the bound-
state decay rate is smaller or larger than the decay rate of the
lowest-energy bands of the free-magnon continuum depends
on the momentum of the bound state. As for the NNN model,
we find the minimal and maximal decay rate of the bound
state is no longer constrained to occur at Qa = 0 and that the
decay rate at Qa = π is not given by � as a consequence of
the long-range interactions. If κWG is large enough, then the
bound-state solutions are well modeled by the NNN analytics
due to the exponential decay of the PCW interaction. This can
be seen by the close agreement between the NNN and PCW
bound-state solutions when δ/J = ±3, which gives the largest
κWG. For intermediate detunings, the agreement is not as good,
but can be made increasingly better for larger γc/J .

In Fig. 5, we plot the momentum for which the bound state
has the smallest decay rate as a function of δ/J and γc/J .
We find that there is a transition between the bound state
having the smallest decay rate at Qa = 0 when |δ/J| < 1.4 to
Qa = π when |δ/J| > 1.4. This transition can be explained
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FIG. 4. Examples of the two-magnon bound states that can form in the PCW model for a system size of N = 99 with parameters γc/J = 2,
Jxy/|Jz| = 3, and δ/J = (−3, −1.5, 0, 1.5, 3). The top panels show the energy of the bound state and the lower panels show the decay rate. The
red line represents the bound-state solution and the shaded region represents the continuum of two-magnon states. We find that the bound-state
energy lies below the two-magnon energy continuum and the decay rate of the bound state always lies within the two-magnon decay rate
continuum. When δ/J < −2, the bound-state decay rate is always lower than that of the lowest-energy bands while if δ/J > 2 then the decay
rate of the bound state is larger than the lowest-energy bands. Note that for δ/J = 0 the decay rates of the lowest-energy bands are obscured by
the highest-energy bands as they share the same decay rate. We also show the NNN bound-state result from Eqs. (28) with the dashed orange
line. We see the NNN result agrees well with the waveguide results when κWGa is large.

by looking at the weak XY limit of the NNN bound-state
solutions given by Eqs. (29). In the weak limit, we find that
the momentum where the decay rate of the bound state is
smallest transitions from Qa = 0 to π when �13 changes sign.
We show when �13 = 0 in Fig. 5 by the red dashed lines,
and find it agrees well with the transition in the PCW, with
�13 < 0 when |δ/J| > 1.4. The transition moves to larger
values of |δ/J| as γc/J increases, and also becomes sharper as
the NNN solution becomes a better approximation to the PCW
results. Finally, we discuss how the bound-state formation
depends on δ/J and γc/J . Figure 6 shows where the bound
state rejoins the two-magnon energy continuum as a function
of δ/J and γc/J . We find there is a region inside the bandwidth
that extends along the γc/J axis where the bound state joins
the continuum and that, as Jxy/|Jz| increases, this region also
increases in size. The reason the bound state starts to rejoin
the continuum for small γc/J inside the bandwidth is due to
the diverging strength of the single-magnon energy around
k = ±kWG. For increasingly large systems, more momentum
modes around these points are allowed and so the energy
range of the two-magnon continuum grows until the bound
state is absorbed. However, outside the bandwidth and in the
small γc/J limit, the bound-state energy can remain separate
from the two-magnon energy continuum for any value of
Jxy/|Jz|, provided δ/J is large enough. This is because the two-
magnon energy continuum is now bounded as γc/J → 0 and
so bound states can remain separate from the continuum. As
mentioned in our discussion of the single-magnon dispersion,
the imaginary part of the PCW interaction, Eq. (30), becomes
negligible in this limit, and so the system becomes closed,
with the decay rate of the bound state dropping to zero. When
γc/J becomes large, or when |δ/J| � 2, the XY interaction
becomes increasingly shorter ranged due to the exponential
decay, until eventually it is negligible compared to the Ising
interaction. In this limit, the bound state is well separated
from the two-magnon energy continuum with the bound-state
energy tending to −4Jz and the decay rate tending to �.

Our analysis of a PCW has shown how many features of
dissipative bound states can be obtained for a single photonic
mode and how, for large κWGa, the PCW is well described
by the NNN analytics. For a single mode, it is not possible
to obtain the NN results, no matter how large κWGa is. To
see why this is the case, we look at the NNN bound-state
solution in Eq. (27). We can see that, for an exponentially
decaying function, J13 ∼ J2

12/Jz, which means that there is
always a NNN contribution to the bound-state solution that is
of the order of the NN parts. Therefore, the NNN contribution
cannot be ignored. However, it could be possible to engineer
more exotic XY interactions by combining many modes or
coupling to more than one waveguide. This could also be
done in parallel with different Rydberg dressing schemes or
allowing other interactions, such as dipole interactions, to
occur between atoms.

V. DISCUSSION

We have shown that two-magnon bound states can gen-
erally form in dissipative spin chains with XY and Ising
interactions. We find the inclusion of nonlocal dissipation not
only gives the bound state a momentum-dependent decay rate
but also alters the bound-state energy compared to a closed
system or system with local dissipation. Nonlocal dissipation
also allows for a greater degree of freedom in engineering the
energy and decay rate of the bound state. We have shown
that the decay rate of the bound state cannot be smaller or
larger than its constituent free magnons. Nevertheless, it is
still possible to achieve bound states that have a decay rate
much lower than a large proportion of the two-magnon decay
rate continuum.

We now discuss the experimental setup of the PCW model
in more detail. The PCW can be realized with an alligator
waveguide [32,33], with high tunability over the allowed
modes and loss processes. By choosing an appropriate Ryd-
berg dressing scheme for either the ground or excited state
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FIG. 5. (a) Momentum at which the smallest decay rate of the
bound state occurs for a system size of N = 99 with Jxy/|Jz| = 1.5.
We see there is a clear transition between the smallest decay rate
occurring at Qa = π when |δ/J| � 1.4 and Qa = 0 for |δ/J| � 1.4.
The red dashed lines show when �13 changes sign, which explains
the transition as described in the main text. The black region shows
where the bound-state solution starts to merge with the two-magnon
continuum. (b) Magnitude of the smallest decay rate. We see that
when the crossover in momentum occurs at �13 = 0 the decay rate
increases, but it decreases again as �13 becomes larger.

of the two-level transition coupled to the PCW, it should
be possible to engineer suitable Ising-like interactions with
NN or even beyond NN range. We note that the waveguide
can modify the interaction between the Rydberg atoms [36].
Typically, the effect of the waveguide will make the Rydberg
interactions shorter ranged than in free space, which means
the nearest-neighbor Ising interaction will still hold. However,
even if the Ising interaction has a spatial extent beyond
NN, we expect many of our results will be qualitatively
the same.

When studying the bound states, one has to be care-
ful not to violate the Markovian approximation. For the
Markovian approximation to be valid, it is required that the
time for a photon to travel down a PCW, (N − 1)a/v, where
v = |

√
4J2 − (δ + iγc/2)2 | is the PCW group velocity, is

0.5 1.0 1.5 2.0 2.5 3.0
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FIG. 6. Diagram of when the bound state can form for the PCW
model for a system size of N = 99 with Jxy/|Jz| = 1.5 (dashed line)
and Jxy/|Jz| = 3 (solid line). Between the δ axis and the bound-
state line, the bound-state energy starts to join the two-magnon
energy continuum for some or all momenta, Q. Outside this region,
the bound-state energy lies separate from the two-magnon energy
continuum for all momenta Q. We see that the bound state cannot
remain separate from the two-magnon energy continuum at low γc/J
near the band edge or inside the bandwidth, but can remain separate
from the two-magnon energy continuum everywhere else.

much smaller than the time for the atoms to decay, 1/� =
1/(2Re[Aii]) [35]. Substituting in Aii from Eq. (30) gives the
condition

Re[
√

1 − (δ/(2J ) + iγc/(4J ))2]

Jxy
� (N − 1)a

|
√

4J2−(δ + iγc/2)2| ,

(34)

which is satisfied provided the coupling of the atoms to the
waveguide, Jxy, is weak and also that the detuning is away
from the band edge at δ = ±2J when γc/J is small. The ex-
pression Eq. (34) also shows that the system needs to be finite
to not violate the Markovian approximation. However, we
have checked and found that there are bound-state solutions
with similar properties to those in the main text for finite-
size systems with open boundary conditions. Therefore, it
should be possible to observe many of our bound-state results
for large enough finite-sized systems with open boundary
conditions or periodic boundary conditions.

Finally, measurement of the bound-state decay rate and
energy should be possible by observing the emission when the
bound state decays. Following the steps outlined in [24], the
emission properties of the bound state are given by the corre-

lator g(t, r) = 〈Ê (−)
(t, r)Ê

(+)
(t, r)〉 which can be calculated

from the electric field, Ê
(−)

(t, r). For decay of a pure bound
state, ρ̂(0) = |Q〉〈Q|, the correlator g(t, r) is given by

g(t, r)

|ηW (r)|2 =
∑

k

4|αQF (Q/2 − k)|2
[
δQ−k,�

Q
k sin(β )/ce−4γ̃Qtr

+ γk+Q

γ̃Q − γk
δk,�k

0 sin(β )/c(e−2γktr − e−4γ̃Qtr )

]
, (35)
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where tr ≡ t − r/c, �k
0 = Re[E (k)], �

Q
k = Re[
(Q)] −

Re[E (k)], η = ω2
eg/(4πε0c), and W (r) = d/r − r(d · r)/r3 is

the far-field dipole emission profile. Note we have neglected
any coherences between the bound state and scattering states
which may occur at later times. There are two contributions
to the emission of the bound state: one from the decay of the
bound state to a single magnon with momentum k, and one
from the decay of a single magnon to the ground state. The
delta functions determine the emission angle β for each of
these decay processes in terms of the momentum and energy
of the bound state and single magnons, where β is defined
from the perpendicular axis to the spin chain. The total
emission is then a sum over all these processes. The quantity
|αQF (Q/2 − k)|2 that determined the decay rate of the bound
state also plays a crucial role in the angular dependence of
the emission, which was noted in [24]. By examining the
spatial and temporal emission of the bound state, it should be
possible to determine its energy and decay rate for a given
momentum Q.

In future work, it would be interesting to extend our results
to m-magnon bound states and to see how the decay rates
of different magnon sectors compare to one another. Given
our proof that the two-magnon bound-state decay rate must
lie within the continuum of decay rates, it seems likely that
this would also be true for m-magnon states, and possibly
also true for magnon states with larger spin and in systems
of higher dimension. It would also be interesting to study
different forms of dissipators and find systems where the
bound state can have a decay rate that lies outside the two-
magnon continuum.

VI. CONCLUSIONS

We have studied the energies and decay rates of one and
two free magnons and two-magnon bound states in an XXZ
model with nonlocal dissipation. We have proved that in
general the decay rate of the bound state must lie within the
decay rate continuum of two free magnons. We have then
examined three examples of dissipative bound states in more
detail, first looking at two forms of the XY interaction and
nonlocal dissipation analytically: a nearest-neighbor model
and a next-nearest-neighbor model. We have found that the
inclusion of nonlocal dissipation leads to momentum depen-
dent decay rates and changes in the energy of the bound state
compared to a closed system or a system with local dissipa-
tion. The nonlocal dissipation also allows a higher degree of
tunability in the energies and decay rates of the bound states.
Finally, in our third example, we have numerically studied an
experimentally realizable model to observe dissipative bound
states using Rydberg dressed atoms coupled to a photonic
crystal waveguide, which demonstrates many key features of
our simpler models and can also be used to obtain our next-
nearest-neighbor results within certain parameter regimes.
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APPENDIX A: DERIVING THE BOUND-STATE
DETERMINANT EQUATION

Below, we outline the steps to obtain the bound-state
equation in Eq. (11). For an open quantum system, provided
the Liouvillian operator is time independent, any Heisenberg
operator will obey the adjoint master equation, given by [37]

dÂ(t )

dt
= i[Ĥ, Â(t )] +

N∑
i,l

�il

2
(2σ̂+

l Â(t )σ̂−
i − {σ̂+

l σ̂−
i , Â(t )}).

(A1)

Therefore, the Green’s function Tr(Â(t)B̂(0)ρ̂(0)) =
〈0|Â(t)B̂|0〉, with the initial condition ρ̂(0) = |0〉〈0|, will
obey

〈0|dÂ(t )

dt
B̂|0〉 = i〈0|Â(t )[B̂, Ĥ ]|0〉

−
N∑
i,l

�il

2
〈0|Â(t )σ̂+

l σ̂−
i B̂|0〉. (A2)

For the two-magnon Green’s function, G(i, j, l, m; t ) =
〈0|σ̂−

i (t )σ̂−
j (t )σ̂+

l σ̂+
m |0〉�(t ), where �(t ) is the Heaviside

step function. This gives

dG(i, j, l, m; t )

dt
− (1 − δi j )δ(t )(δilδ jm + δimδ jl )

=
⎛
⎝−2i� + 4i

N∑
a �=m

Uam + 4i
N∑

a �=l

Ual − �

⎞
⎠G(i, j, l, m; t )

− i
N∑

p�=l

JplG(i, j, p, m; t ) − i
N∑

p�=m

JpmG(i, j, p, l; t )

+ 2iδlm

N∑
p�=m

JpmG(i, j, p, m; t ) − 8iUlmG(i, j, l, m; t ),

(A3)

where Jpl = Vpl − i�pl/2. In order to solve Eq. (A3), it will
be useful to view it as a matrix equation [38] given by (L +
δL)G = μh, where the matrices are defined as

L(l, m, p, v; t − t ′) = iδ(t − t ′)δvmJpl + iδ(t − t ′)δvl Jpm + δ(t − t ′)δplδvm

⎛
⎝ d

dt ′ + 2i� − 4i
N∑

a �=m

Uam − 4i
N∑

a �=l

Ual + �

⎞
⎠,

δL(l, m, p, v; t − t ′) = −iδ(t − t ′)δpmδlmJvl − iδ(t − t ′)δvlδlmJpl + 8iδ(t − t ′)δplδvmUpv,

063615-10



DECAY RATES AND ENERGIES OF FREE MAGNONS AND … PHYSICAL REVIEW A 99, 063615 (2019)

h(i, j, p, v) = δipδ jv (1 − δi j ), μ(l, m, p, v; t − t ′) = δ(t − t ′)(δplδvm + δpmδvl ). (A4)

To solve Eq. (A3), we now follow the same steps taken by Wortis [5] by introducing the function �(i, j, l, m; t ) =
G(i, l; t )G( j, m; t ) + G(i, m; t )G( j, l; t ), where G( j, l; t ) is the single-magnon Green’s function. We find that �(i, j, l, m; t )
obeys Eq. (A3) without the last two terms or the 1 − δi j term. Viewed in terms of matrices, this means L� = μ and so we
can write L = μ�−1. This allows Eq. (A3) to be rewritten as

�(i, j, a, b; t )h(i, j) − G(i, j, a, b; t ) =
∫ ∞

−∞

N∑
pv

N∑
lm

�(l, m, a, b; t )δL(l, m, p, v; t − t ′)G(i, j, p, v; t ′)

=
∫ ∞

−∞

N∑
pv

K (a, b, p, v; t − t ′)G(i, j, p, v; t ′), (A5)

where in the last line we have defined

K (a, b, p, v; t ) = 8iUpq�(p, v, a, b; t ) − i(Jpv/2)[�(v, v, a, b; t ) + �(p, p, a, b; t )]. (A6)

In order to obtain the bound-state solutions, we now need to partially Fourier transform Eq. (A5). The Fourier transform of
�(i, j, a, b; t ) is given by

�(i, j, a, b; 
) =
∫ ∞

−∞
�(i, j, a, b; t )ei
t dt . (A7)

By using the definition of �(i, j, a, b; t ) and the Fourier transform of the single-magnon Green’s function, this can be written as

�(i, j, a, b; 
) =
∑

k1∈BZ

∑
k2∈BZ

(
eik1ria+ik2r jb + eik1rib+ik2r ja

N

) ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
G̃(k1, ω1)G̃(k2, ω2)ei(
−ω1−ω2 )t dt

dω1

2π

dω2

2π
, (A8)

where ria = ri − ra. We now rewrite the momentum sums using the sum and difference of momenta, Q = k1 + k2 and q =
(k1 − k2)/2, and also the sum and difference of coordinates R = (ri + r j )/2, r = ri − r j , and R′ = (ra + rb)/2, r′ = ra − rb.
Once we evaluate the frequency integrals, we then obtain

�(i, j, a, b; 
) =
∑

Q∈BZ

eiQ(R−R′ )

⎛
⎝−2i

N

∑
q∈BZ

cos(qr) cos(qr′)

 − S(q, Q)

⎞
⎠

=
∑

Q∈BZ

eiQ(R−R′ )�(r, r′; Q,
), (A9)

where S(q, Q) is the two-free-magnon dispersion, defined in Eq. (9) in the main text. Similarly, we can Fourier transform and
rewrite K (l, m, p, q; t ) as

K (a, b, p, v; 
) =
∑

Q∈BZ

eiQ(R′−R′′ )
∑
q∈BZ

2i

N

cos(qr′′)

 − S(q, Q)

[
8iU (r′) cos(qr′) − 2i

(
V (r′) − i

�(r′)
2

)
cos(Qr′/2)

]

=
∑

Q∈BZ

eiQ(R′−R′′ )K (r′, r′′; Q,
), (A10)

where R′′ = (rp + rv )/2 and r′′ = rp − rv . Transforming Eq. (A5) by inserting the results of Eqs. (A9) and (A10) gives

1

N

∫ ∞

−∞
dt

∑
Q∈BZ

eiQ(R−R′ )e−i
t

[
G(r, r′, Q,
) − �(r, r′, Q,
)h(r) +

N∑
r′′

K (r, r′′, Q,
)G(r′, r′′, Q,
)

]
= 0. (A11)

This equation is obeyed provided we set the integrand to zero such that

N∑
r′′

[δr′r′′ + K (r′, r′′, Q,
)]G(r, r′′, Q,
) = �(r, r′, Q,
)h(r). (A12)

The bound-state solutions are found when the determinant of the matrix δr′r′′ + K (r′, r′′, Q,
) is singular, which means
G(r, r′′, Q,
) cannot be written as the sum of two-free-magnon solutions. The bound-state solutions are therefore solutions to

det

⎡
⎣δr′r′′ − 2

N

∑
q∈BZ

8U (r′)
cos(qr′) cos(qr′′)


 − S(q, Q)
+ 2

N

∑
q∈BZ

[2V (r′) − i�(r′)]
cos(Qr′/2) cos(qr′′)


 − S(q, Q)

⎤
⎦ = 0. (A13)
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If the Ising interaction is nearest neighbor such that Uil = Jzδl,i+1/2, we can simplify the determinant in Eq. (A13) to obtain
Eq. (11) in the main text.

APPENDIX B: SIMPLIFYING THE DETERMINANT CONDITION

We first define the Ising and XY matrices:

ZZrr′ = −8Jz

N

∑
q∈BZ

cos(qr) cos(qr′)δr′,1


 − S(q, Q)
, XYrr′ = ArBr′ , (B1)

where

Ar = 4

N

∑
q∈BZ

cos(qr)


 − S(q, Q)
, Br′ =

(
V (r′) − i

�(r′)
2

)
cos(Qr′/2). (B2)

This allows us to rewrite the determinant condition, Eq. (A13), as

det(I + ZZ + XY ) =

∣∣∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎜⎜⎝

B1A1 + ZZ11 + 1 B2A1 . . BN A1

B1A2 + ZZ21 B2A2 + 1 . . BN A2

. . . . .

. . . . .

B1AN + ZZN1 B2AN . . BN AN + 1

⎞
⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎜⎜⎜⎝

A1 + ZZ11
B1

+ 1
B1

A1 . . A1

A2 + ZZ21
B1

A2 + 1
B2

. . A2

. . . . .

. . . . .

AN + ZZN1
B1

AN . . AN + 1
BN

⎞
⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣
B1..BN . (B3)

The determinant can be simplified by subtracting the last column from all the other columns, C1 − CN , C2 − CN , . . . CN−1 − CN ,
giving

(ZZ11 + 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . 0 BN A2

0 1 . . . BN A3

. . . . . .

. . . . 0 .

0 . . 0 1 BN AN−1

− B2
BN

. . . . BN AN + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ (BN A1)

(−1)N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ZZ21 1 0 . . 0

ZZ31 0 1 . . .

. . . . . .

. . . . . 0

ZZ(N−1)1 0 . . 0 1

ZZN1 − B1
BN

− B2
BN

. . . −BN−1

BN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (B4)

where we partially Laplace expand the determinant. For the first determinant, we can swap the first and last column, C1 ↔ CN ,
and then swap the first and last row, R1 ↔ RN . In the second determinant, we can carry out the row-swap operation, RN ↔ RN−1,
followed by RN−1 ↔ RN−2, RN−2 ↔ RN−3, etc., until the last row becomes the first row. This then gives

(ZZ11 + 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

BN AN + 1 − B3
BN

. . −BN−1

BN
− B2

BN

BN A3 1 0 . . 0

. 0 1 . . .

. . . . . .

BN AN−1 . . . . .

BN A2 0 . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
− (BN A1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ZZN1 − B1
BN

− B2
BN

− B3
BN

. .
BN−1

BN

ZZ21 1 0 . . 0

. 0 1 . . .

. . . . . .

ZZ(N−2)1 . . . . 0

ZZ(N−1)1 0 . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (B5)

which are the determinants of arrowhead matrices, where an arrowhead matrix is a matrix of the form

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a b2 b3 . . bN

c2 d2 0 . . 0

c3 0 d3 . . .

. . . . . .

. . . . . .

cN 0 . . . dN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B6)
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Using the Sherman-Morrison-Woodbury formula, we can evaluate the determinant of the arrowhead matrix by rewriting Eq. (B6)
as

det(G) = det(A + CBT ) = det(I + BT A(−1)C)det(A), (B7)

where

A =

⎛
⎜⎜⎜⎜⎜⎝

a 0 0 . . 0

0 d2 0 . . 0

0 0 . . . .

. . . . . .

0 0 . . . dN

⎞
⎟⎟⎟⎟⎟⎠, BT =

(
b1 b2 b3 . . bN

1 0 0 . . 0

)
, CT =

(
c1 c2 c3 . . cN

1 0 0 . . 0

)
. (B8)

Using this gives a determinant of

det(G) =
[

a −
N∑

i=2

bici

di

]
N∏

i=2

di. (B9)

Substituting the values of a, bi, ci, and di for the two arrowhead matrices in Eq. (B5), we obtain the determinant equation

det(G) = (ZZ11 + 1)[1 + tr(XY )] − A1

N∑
i=1

ZZi1Bi. (B10)

Once we plug in the definitions of ZZ and XY into Eq. (B10), we obtain Eq. (11) in the main text.

APPENDIX C: NEAREST-NEIGHBOR BOUND-STATE SOLUTION

Here we derive the analytic expression for the bound-state energy and decay rate given by Eq. (24) when the XY interaction
and nonlocal dissipation are nearest neighbor. We can evaluate the integrals as defined in Eq. (13) using contour integration.
Substituting z = exp(iq), the integral transforms into

Im(t, Q) = −1

2m

∮
(z + z−1)m

αz2 − (
 + χ )z + α

dz

2π i
, (C1)

where we have defined α = (2V12 − i�12) cos(Qa/2) and χ = 8Jz − 2� + i�. The integral has a pole of order m at z = 0 and
simple poles at z± = (
 + χ )/2α ±

√
[(
 + χ )/2α]2 − 1. The two poles only coincide at |z| = 1, so the case of double poles

can be ignored for the derivation. Evaluating the integrals gives

I0(t, Q) = − ±1√
(
 + χ )2 − 4α2

, I1(t, Q) = − 1

α
− (
 + χ )

2α

±1√
(
 + χ )2 − 4α2

,

I2(t, Q) = − (
 + χ )

α2
− (
 + χ )2

4α2

±1√
(
 + χ )2 − 4α2

, (C2)

where the ±1 sign depends on whether z+ or z− lies in the contour. Substituting these solutions into the bound-state equation,
Eq. (12), we obtain the equation

±1√
(
 + χ )2 − α2

(
2Jz

(
 + χ )

α2
− 1

)
+ 2Jz

α2
= 0, (C3)

which gives the solution 
 + χ = 4 + α2/(4Jz ).

APPENDIX D: NEXT-NEAREST-NEIGHBOR BOUND-STATE SOLUTION

To derive the analytic expression for the next-nearest-neighbor bound-state solution given by Eq. (27), we use the substitution
z = eiq to transform the integral in Eq. (13) into the following contour integral:

Im(t, Q) = −1

2m

∮
z(z + z−1)m

βz4 + αz3 − (
 + χ )z2 + αz + β

dz

2π i
, (D1)

where β = (2V13 − i�13) cos(Qa), χ = 8Jz − 2� + i�, and α = (2V12 − i�12) cos(Qa/2). The quartic in the denominator is
palindromic, which means the solutions obey a quadratic in (z + 1/z). Therefore, if z is a solution to the quartic, then so too is
1/z, and this immediately indicates that only two of the four roots can exist inside the contour. We also find that the residues of
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the roots 1/z and z only differ by a sign. The integrals in Eq. (D1) can therefore be evaluated to give

I0(t, Q) = −1

β
(F1 + F2), I1(t, Q) = −1

2β
(β1F1 + β2F2), I2(t, Q) = −1

4β

(
1 + β2

1 F1 + β2
2 F2

)
, (D2)

where

F1/2 = ± 1√
β2

1/2 − 4(β1/2 − β2/1)
, β1/2 = − α

2β
∓

√(
α

2β

)2

+ (
 + χ )

β
+ 2. (D3)

The sign of F1/2 depends on whether the root z1/2 or its inverse lies inside the contour. Substituting the integral solutions into the
bound-state equation, Eq. (12), gives

1

F1
+ 1

F2
+ 2Jz(β1 − β2)2

β + 2Jz
= 0. (D4)

We can now solve Eq. (D4) to obtain the solution given in Eq. (27) in the main text. There is also the possibility of a double
root when 
 + χ = 2β + α2/(4β ). When this is the case, the denominator of the integrals in Eq. (13) can be simplified to
[4β cos(q) − α]2/(4β ). We can then evaluate the NNN integrals without using contour integration, but find the integral solutions
do not obey the bound-state equation, Eq. (12).
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