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Bloch oscillations of multimagnon excitations in a Heisenberg XXZ chain
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The studies of multimagnon excitations will extend our understandings of quantum magnetism and strongly
correlated matters. Here, by using the time-evolving block decimation algorithm, we investigate the Bloch
oscillations of two-magnon excitations under a gradient magnetic field. Through analyzing the symmetry of our
Hamiltonian, we derive a rigorous and general relation between ferromagnetic and antiferromagnetic systems.
Under strong interactions, in addition to free-magnon Bloch oscillations, fractional bounded-magnon Bloch
oscillations appear which can be understood by an effective single-particle model. To extract the frequencies of
Bloch oscillations and determine the gradient of the magnetic field, we analyze the fidelity and the substandard
deviation in both time and frequency domains. Our study not only explores the interaction-induced Bloch
oscillations of multimagnon excitations, but also provides an alternative approach to determine the gradient
of the magnetic field via ultracold atoms in optical lattices.
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I. INTRODUCTION

The Heisenberg spin chain, a paradigmatic model in many-
body physics, is a benefit to studying collective excitations
and low-energy properties of quantum magnets. In particular,
the elementary aspects of quantum magnetism can be well
described by spin excitations. The spin-wave theory provides
the fundamental insight that magnons are quasiparticle excita-
tions over ferromagnetic ground states [1,2]. The Bethe ansatz
has predicted the existence of magnon bound states (BSs) in
Heisenberg chains [3]. It renders an attractive research subject
to identify the signatures of magnons [4–7]. The quench
dynamics is considered an effective way to probe magnon
BSs [8,9]. It has demonstrated that ultracold atomic ensembles
offer an ideal platform to simulate spin excitations [10,11]. In
particular, single-magnon excitations and multimagnon BSs
have been observed in cold-atom experiments [12,13].

In contrast, if a constant force is applied, a quantum particle
in a periodic potential will undergo Bloch oscillations (BOs)
[14,15]. The BOs have been directly observed with ultracold
atoms [16–18]. In multiparticle systems, interparticle interac-
tion will have a huge influence on the BOs. For a strongly
interacting few-body system, fractional BOs can arise at a
Bloch frequency double (or integer multiple) that of single-
particle BOs [19]. Fractional BOs have been studied in various
systems, such as photonic systems [20,21], cold-atom systems
[22–24], and electronic systems [25]. In addition, BOs of
magnetic solitons have been studied theoretically in spin chain
systems [26,27]. Similar to the BOs of an electron in a static
electric field, the single-magnon dynamics in spin chains
subjected to a gradient magnetic field has been examined
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[28–30]. However, the BOs of multimagnon excitations are
still unclear, in particular how to characterize and extract the
effects induced by the intermagnon interactions.

This paper aims to explore the two-magnon dynamics in
the Heisenberg spin chain under a gradient magnetic field.
We provide a dynamical symmetry analysis to explore the
relation between ferromagnetic and antiferromagnetic sys-
tems. By analyzing the spin distributions and longitudinal
spin-spin correlations, we track the dynamical difference for
different interactions via the time-evolving block decimation
(TEBD) algorithm [31,32]. From the time evolution of spin
distributions and longitudinal spin-spin correlations, we find
the dynamical signature from free-magnon BOs to bounded-
magnon BOs. We also calculate the fidelity and substandard
deviation to extract the multifrequency BOs and determine the
gradient of the magnetic field.

This paper is organized as follows. In Sec. II we describe
the Heisenberg XXZ chain within a gradient magnetic field
and analyze its symmetry. In Sec. III we simulate the BOs of
two-magnon excitations via the TEBD algorithm. In Sec. IV
we calculate the fidelity and the substandard deviation. In
Sec. V we give a brief summary and discussion.

II. MAGNON EXCITATIONS AND THEIR DYNAMICAL
SYMMETRY

We consider a spin-1/2 Heisenberg XXZ chain in the
presence of a gradient magnetic field

Ĥ =
L∑

l=−L

(
J

2
Ŝ+

l Ŝ−
l+1 + H.c. + �Ŝz

l Ŝz
l+1 + lBŜz

l

)
. (1)

Here Ŝi
l (i = x, y, z) are spin-1/2 operators for the lth site (l =

−L, . . . , 0, . . . , L), Ŝ±
l = Ŝx

l ± iŜy
l are spin raising and lowing
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operators for the lth site, J is the spin exchange energy which
is set as unity (i.e., J = h̄ = 1), � is the interaction between
nearest-neighbor spins, and B is the magnetic-field gradient.

When B = 0, there are three types of ground states: the
critical phase in −1 < � < 1, the ferromagnetic phase in
� < −1, and the antiferromagnetic phase in � > 1. In the
ferromagnetic phase regime � < −1, the excitation of a
magnon is equal to the flipping of one spin. For a sufficiently
large ferromagnetic interaction � � 0, the ground state is a
completely ferromagnetic state |0〉 with all spins downward
|↓↓↓ · · · ↓〉 or upward |↑↑↑ · · · ↑〉. The multimagnon exci-
tations can be prepared by flipping spins in the completely
ferromagnetic state.

The Hamiltonian (1) exhibits a U(1) symmetry under
global spin rotations around the z axis and the number of
its total spin Ŝz = ∑

l Ŝz
l is conserved (i.e., [Ĥ , Ŝz] = 0).

This means that the subspaces with different numbers of
magnon excitations are decoupled. Using the mapping {|↓〉 ↔
|0〉, |↑〉 ↔ |1〉, Ŝ+

l ↔ â†
l , Ŝ−

l ↔ âl , Ŝz
l ↔ n̂l − 1

2 }, the Hamil-
tonian (1) can be mapped onto Ĥ = ∑

l (
J
2 â†

l âl+1 + H.c. +
�n̂l n̂l+1 + Bln̂l ), with n̂l = â†

l âl . Here â†
l (âl ) is particle

creation (annihilation) operator at the lth site and they satisfy
the commutation relations of hard-core bosons. Thus one can
understand the magnon excitations in the picture of a hard-
core bosonic system.

Intermagnon interaction is a key ingredient in the for-
mation of BSs and also has an influence on the dynamics.
Intuitively, ferromagnetic interactions (� < 0) and antifer-
romagnetic ones (� > 0) may affect the dynamics in dif-
ferent ways. Nevertheless, a symmetry protected dynamical
symmetry (SPDS) theorem [33] reveals a symmetric relation
of the time evolution observable between the repulsive and
attractive systems, i.e., dynamical symmetry. Combining with
the time-reversal operator R̂ and a unitary operator Ŵ , an
antiunitary operator Q̂ is defined as Q̂ = R̂Ŵ . The SPDS
theorem indicates that if the system follows three conditions,
i.e., {Q̂, Ĥ ′} = 0, [Q̂, Ĥ ′′] = 0 for the two parts of the Hamil-
tonian Ĥ = Ĥ ′ + Ĥ ′′, Q̂−1|ψ (0)〉 = eiθ |ψ (0)〉 for the initial
state |ψ (0)〉 with θ a global phase factor, and Q̂−1ÔQ̂ = ±Ô
for a certain observable Ô, the system is able to manifest an
interaction-induced dynamical symmetry for the time evolu-
tion of a certain observable.

According to the SPDS theorem, we divide the Hamilto-
nian (1) into two parts Ĥ = Ĥ ′ + Ĥ ′′ with

Ĥ ′ = 1

2

∑
l

(Ŝ+
l Ŝ−

l+1 + Ŝ−
l Ŝ+

l+1) (2)

and

Ĥ ′′ = �
∑

l

Ŝz
l Ŝz

l+1 +
∑

l

lBŜz
l . (3)

For the system with only nearest-neighbor spin exchange, one
can decompose it as an odd lattice A and even lattice B, and
thus we can define an operator Ŵ related to the bipartite lattice
symmetry

Ŵ −1Ŝ−
l Ŵ =

{
Ŝ−

l if l ∈ A
−Ŝ−

l if l ∈ B.
(4)

For the time-reversal operator R̂, R̂−1iR̂ = −i, it is easy to
conclude that

R̂−1Ŝ+
l Ŝ−

l+1R̂ = R̂−1
(
Ŝx

l + iŜy
l

)(
Ŝx

l+1 − iŜy
l+1

)
R̂

= Ŝ+
l Ŝ−

l+1 (5)

and

R̂−1Ŝz
l Ŝz

l+1R̂ = Ŝz
l Ŝz

l+1. (6)

Thus Ĥ ′ and Ĥ ′′ satisfy, respectively, the relations

Q̂−1Ĥ ′Q̂ = 1

2

∑
l

Ŵ −1R̂−1(Ŝ+
l Ŝ−

l+1 + Ŝ−
l Ŝ+

l+1)R̂Ŵ

= 1

2

∑
l

(Ŵ −1Ŝ+
l ŴŴ −1Ŝ−

l+1Ŵ

+Ŵ −1Ŝ−
l ŴŴ −1Ŝ+

l+1Ŵ )

= −Ĥ ′ (7)

and

Q̂−1Ĥ ′′Q̂ =
∑

l

Ŵ −1
(
�Ŝz

l Ŝz
l+1 + lBŜz

l

)
Ŵ

=
∑

l

Ŵ −1(4�[Ŝ+
l , Ŝ−

l ] · [Ŝ+
l+1, Ŝ−

l+1]

+ 2lB[Ŝ+
l , Ŝ−

l ])Ŵ

= Ĥ ′′, (8)

with Ŝz
l = 2[Ŝ+

l , Ŝ−
l ]. This antiunitary operator Q̂ ensures that

Q̂ anticommutes with Ĥ ′ and commutes with Ĥ ′′,

{Q̂, Ĥ ′} = 0, [Q̂, Ĥ ′′] = 0. (9)

Below we concentrate on discussing the time evolution from
the initial state of two-magnon excitations over the fully fer-
romagnetic state |ψ (0)〉 = Ŝ+

l i
1
Ŝ+

l i
2
|0〉, where |0〉 = |↓↓↓ · · · ↓〉

and l i
1 	= l i

2. Obviously, the initial state is invariant under the
transformation Q̂,

Q̂−1|ψ (0)〉 = −|ψ (0)〉, (10)

but a global phase factor appears. The spin correlations Ŝz
l ′ Ŝ

z
l ′′

between sites l ′ and l ′′ satisfy

Q̂−1Ŝz
l ′ Ŝ

z
l ′′Q̂ = Ŝz

l ′ Ŝ
z
l ′′ . (11)

Defining

Cl ′,l ′′ (t ) = 〈ψ (t )|Ŝz
l ′ Ŝ

z
l ′′ |ψ (t )〉 (12)

from Eqs. (9)–(11) and Q̂−1e−iHt Q̂ = eQ̂−1(−iHt )Q̂, we obtain

Cl ′,l ′′ (t )(�,B)

= 〈ψ (0)|ei(Ĥ ′+Ĥ ′′ )t Ŝz
l ′ Ŝ

z
l ′′e

−i(Ĥ ′+Ĥ ′′ )t |ψ (0)〉
= 〈ψ (0)|Q̂ei(Ĥ ′+Ĥ ′′ )t Q̂−1Ŝz

l ′ Ŝ
z
l ′′Q̂e−i(Ĥ ′+Ĥ ′′ )t Q̂−1|ψ (0)〉

= 〈ψ (0)|ei(Ĥ ′−Ĥ ′′ )t Ŝz
l ′ Ŝ

z
l ′′e

−i(Ĥ ′−Ĥ ′′ )t |ψ (0)〉
= Cl ′,l ′′ (t )(−�,−B). (13)

This means that the time-dependent spin correlation is the
same when we simultaneously change the signs of the inter-
action � and magnetic-field gradient B. We can find a direct

063614-2



BLOCH OSCILLATIONS OF MULTIMAGNON EXCITATIONS … PHYSICAL REVIEW A 99, 063614 (2019)

FIG. 1. Dynamical symmetry of spin correlations under the pa-
rameters (�, B) and (−�, B). The time evolution of two-spin corre-
lations at the 9th and 10th sites with ferromagnetic interaction (left
half) and the ones at the −10th and −11th sites with antiferromag-
netic interaction (right half).

connection between the spin correlations with � and B and
with −� and −B. Different from the single-point operators in
[33], we extend its conclusions to a two-point operator.

When the sign of the gradient magnetic field is flipped,
the system (1) is equivalent if we reverse the lattice around

the centroid position of the initial state l i
c = l i

1+l i
2

2 , that is, the
lattice index is changed from l to 2l i

c − l . Then we have

Cl ′,l ′′ (t )(−�,−B) = C2l i
c−l ′,2l i

c−l ′′ (t )(−�,B). (14)

Combining (13) and (14), we can conclude that

Cl ′,l ′′ (t )(�,B) = C2l i
c−l ′,2l i

c−l ′′ (t )(−�,B). (15)

The relation (15) indicates that when the sign of the interac-
tion � is changed, the time evolution of the spin correlation is
symmetric about the centroid position l i

c of the initial state.
This is to say, once we know the spin correlation under
ferromagnetic interactions, we can deduce the results under
antiferromagnetic interactions. Therefore, below we consider
only the system with ferromagnetic interactions � < 0.

In Fig. 1, starting from the initial state |ψ (0)〉 = Ŝ+
−1Ŝ+

0 |0〉,
we compare the spin correlation C−10,−11(t ) with anti-
ferromagnetic interaction (−�) and the spin correlation
C9,10(t ) with ferromagnetic interaction (�). The parameters
are chosen as � = −1.5, B = 0.05, and the total chain
length Lt = 101. The numerical results completely follow the
relation (15).

III. SIGNATURE OF BLOCH OSCILLATIONS IN SPIN
CORRELATIONS

In this section we consider how the interactions affect the
dynamics of spin excitations under a gradient magnetic field.
Here the initial state is chosen as |↓ · · · ↓↑↑↓ · · · ↓〉, which
means two-magnon excitations at adjacent sites. In the time
evolution, the spin excitations will undergo BOs. To show the
interaction effects on BOs, we calculate the spin distributions

Sz
l (t ) = 〈ψ (t )|Ŝz

l |ψ (t )〉 (16)

as a function of time, and the instantaneous longitudinal spin-
spin correlations Cl ′,l ′′ (t ) between sites l ′ and l ′′ among the
spin chain. In the absence of interaction, we recover the results
of traditional individual-particle BOs with frequency ωB = B.

FIG. 2. Bloch dynamics of free magnons. (a) Spin distributions
Sz

l versus the rescaled time t/TB. (b)–(f) Longitudinal spin-spin
correlations Cl ′,l ′′ at different times marked as A–E in (a). The
parameters are chosen as � = 0, B = 0.05, and the total chain length
Lt = 101.

Under strong interaction, we find a doubled Bloch frequency
ωeff

B = 2B, which indicates the appearance of interaction-
induced fractional BOs of magnon BSs. In the moderate-
interaction case, we find the coexistence of individual-particle
and bound-state BOs.

A. Dynamics of free magnons

We first consider the BOs of magnons in a noninteracting
system. The eigenvalues form a Wannier-Zeeman ladder with
equidistant level spacing �E = B [34], which directly gives
the Bloch frequency. We numerically compute the time evo-
lution of the longitudinal spin-spin correlations via the TEBD
algorithm. The parameters are � = 0, B = 0.05, and the total
chain length Lt = 101. The noninteracting magnons indepen-
dently undergo BOs with period TB = 2π

B [see Fig. 2(a)]. The
free magnons periodically widen and shrink in an interval [35]

|l| <
2

B

∣∣∣∣ sin
Bt

2

∣∣∣∣ = lb. (17)

Since there is no interaction, each magnon behaves as a free
particle and the time evolution recovers the breathing mode in
the single-particle BOs.

Now we discuss the connection between the longitudinal
spin-spin correlations Cl ′,l ′′ and the two-magnon correlations
�l ′,l ′′ (t ) = 〈ψ (t )|Ŝ+

l ′ Ŝ+
l ′′ Ŝ

−
l ′′ Ŝ

−
l ′ |ψ (t )〉. The two-magnon correla-

tions �l ′,l ′′ describe the probability of detecting one magnon at
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site l ′ and the other one at site l ′′. From their definitions, one
can find

Cl ′,l ′′ = �l ′,l ′′ − 1
2 Sz

l ′ − 1
2 Sz

l ′′ − 1
4 , (18)

with l ′ 	= l ′′ (see Appendix C for more details). Due to (Ŝz
l )2 =

0.25, the longitudinal spin-spin correlations Cl ′,l ′′ are always
equal to 0.25 for l ′ = l ′′. Therefore, we set Cl ′,l ′′ = 0.25 as the
background value of the longitudinal spin-spin correlations.
As every site in the region of |l| > lb is spin down and �l ′,l ′′ =
0 in the region of |l ′| > lb or |l ′′| > lb, the relation (18) is
further given as

Cl ′,l ′′ =
{

− 1
2 Sz

l ′ if |l ′′| > lb, l ′ 	= l ′′

− 1
2 Sz

l ′′ if |l ′| > lb, l ′′ 	= l ′.
(19)

Thus, (i) in the region of |l ′| < lb and |l ′′| > lb, Cl ′,l ′′ show
fringes and may not equal the background value 0.25,
and (ii) in the region of |l ′| > lb and |l ′′| > lb, Cl ′,l ′′ =
〈ψ (t )|Ŝz

l ′ Ŝ
z
l ′′ |ψ (t )〉 = (−0.5) × (−0.5) = 0.25.

Different from Cl ′,l ′′ , only in the region of (−lb, lb) are �l ′,l ′′

nonzero. Obviously, the cross-overlapping region in Cl ′,l ′′ is
consistent with the region of nonzero �l ′,l ′′ . The significant
�l ′,l ′+1 correspond to the BOs of bounded magnons. If there is
no significant �l ′,l ′+1, the BOs of free magnons dominate.

As an example, in Fig. 2(d), when the spin excitations
propagate to lb = 40 at tb = TB/2, in the region of |l| < 40
we have −0.5 � Sz

l (t ) � 0.5, while in the region of |l| >

40 we have Sz
l (t ) = −0.5. From the relation (19), in the

four corners of |l ′| > 40 and |l ′′| > 40, Cl ′,l ′′ = 〈Ŝz
l ′ Ŝ

z
l ′′ 〉 =

(−0.5) × (−0.5) = 0.25. Moreover, the longitudinal spin-
spin correlations satisfy −0.25 � C|l ′|<40,|l ′′ |>40 � 0.25 and
−0.25 � C|l ′ |>40,|l ′′ |<40 � 0.25 and show fringes. The basic
pattern of the longitudinal spin-spin correlations behaves like
a cross in the (l ′, l ′′) plane. The cross-overlapping region
in Cl ′,l ′′ is consistent with the region of nonzero �l ′,l ′′ [see
Fig. 2(d) and the top panel in the third column of Fig. 8].
The cross-overlapping region in Cl ′,l ′′ is determined by the
amplitude of BOs [see point C in Fig. 2(a)]. These numerical
results are consistent with the analytical ones (18) and (19).

In Figs. 2(b)–2(f) we show the Cl ′,l ′′ at different times:
t = 0 (A), t = TB/4 (B), t = TB/2 (C), t = 3TB/4 (D), and
t = TB (E ). As the spin excitations expand and shrink, the
cross-overlapping region becomes larger at B (t = TB/4),
reaches the maximum at C (t = TB/2), gradually decreases
at D (t = 3TB/4), and finally recovers the initial state at E
(t = TB). The cross-overlapping regions in Figs. 2(b)–2(f) are
in excellent agreement with the regions of spin excitations in
A–E in Fig. 2(a), respectively.

B. Dynamics of strongly interacting magnons

Under strong interactions, through implementing the
many-body degenerate perturbation analysis, we derive
an effective single-particle Hamiltonian and explore the
interaction-induced fractional BOs [36–39]. Under the condi-
tion of |�| � (1/2, |B|), one can treat the hopping term and
the gradient-magnetic-field term

Ĥ1 = 1

2

∑
l

(Ŝ+
l Ŝ−

l+1 + Ŝ−
l Ŝ+

l+1) +
∑

l

lBŜz
l (20)

FIG. 3. Bloch dynamics of two strongly interacting magnons.
(a) Spin distributions Sz

l versus the rescaled time t/TB. (b)–(f) Longi-
tudinal spin-spin correlations Cl ′,l ′′ at different times marked as A–E
in (a). The parameters are the same as in Fig. 2, except for � = −5.

as a perturbation to the interaction term

Ĥ0 = �
∑

l

Ŝz
l Ŝz

l+1. (21)

The effective single-particle Hamiltonian can be written as

Ĥeff = 1

4�

∑
m

(Ĉ†
mĈm+1 + Ĉ†

m+1Ĉm) +
∑

m

2BmĈ†
mĈm, (22)

with m = −L, . . . , 0, . . . , L, whose detailed derivation can be
found in Appendix A. Here the operator Ĉ†

m = Ŝ+
m Ŝ+

m+1 means
simultaneously flipping two adjacent spins at the mth and
(m + 1)th sites. The two-magnon excitations behave like a
single particle in the tilted lattices with doubled frequency
ωeff

B = 2B. The two magnons tend to travel together and
undergo fractional BOs [see Fig. 3(a)]. The initial state and
parameters are the same as those in Fig. 2, except for � = −5.
The region of spin excitations is given as

|l| <
1

2�B
| sin(Bt )|. (23)

Compared with Fig. 2(a), the width is reduced by a factor
1/4�, while the oscillation frequency becomes double. The
numerical results are consistent with the analytical ones (23).

The Cl ′,l ′′ reveal the effective single-particle dynamics.
Similarly, in one period, Cl ′,l ′′ behave like a cross for each
instantaneous state [see Figs. 3(b)–3(f)]. As the spin excita-
tions expand and shrink, the cross-overlapping region reaches
a maximum at B (t = TB/4), recovers the initial state at C
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FIG. 4. Bloch dynamics of two moderately interacting magnons.
(a) Spin distributions Sz

l versus the rescaled time t/TB. (b)–(f) Longi-
tudinal spin-spin correlations Cl ′,l ′′ at different times marked as A–E
in (a). The parameters are the same as in Fig. 2, except for � = −1.5.

(t = TB/2), increases to the maximum again at D (t = 3TB/4),
and finally recovers the initial state again at E (t = TB). It
clearly manifests that the two strongly interacting magnons
undergo a breathing motion with the half-period of the free-
magnon breathing motion. The cross-overlapping regions in
Figs. 3(b)–3(f) are in excellent agreement with the regions of
spin excitations in A–E in Fig. 3(a), respectively.

C. Dynamics of moderately interacting magnons

Finally, we study the dynamics of two-magnon excitations
in the moderate-interaction case. The initial state and the
parameters are the same as those in Fig. 2, except for � =
−1.5. The spin distributions Sz

l exhibit the coexistence of two
breathing modes [see Fig. 4(a)]. The outer and inner breathing
modes correspond to the oscillations of free magnons and
bounded magnons, respectively. This is because the initial
state is prepared as the superposition of scattering and bound
states (see Appendix B for more details). Nevertheless, the
outer breathing mode is slightly asymmetric about the ini-
tial position l i

c, different from the breathing mode of free
magnons. The asymmetry may come from the interaction-
induced scattering of the free-magnon component.

Similar to the spin distributions Sz
l , Cl ′,l ′′ also show the

coexistence of inner and outer patterns [see Figs. 4(c)–4(f)]
for different times: t = TB/4 (B), t = TB/2 (C), t = 3TB/4
(D), and t = TB (E ). The correlations partially recover the
initial correlations at C (t = TB/2). This is because the

bound-state component returns to the initial ones while the
scattering-state component has not yet. At E (t = TB), both
components nearly return to the initial state [see Fig. 4(f)].

So far, we have examined the role of spin-spin interaction
on the dynamics of magnon excitations among the spin chain.
By increasing the interaction strength, one may observe clear
enhancement of the correlated tunneling of two magnons.
Moreover, the longitudinal spin-spin correlations can be uti-
lized to characterize the multimagnon BOs.

IV. EXTRACTING MAGNETIC-FIELD GRADIENT FROM
MULTIMAGNON BLOCH OSCILLATIONS

In this section we discuss how to determine the magnetic-
field gradient from the multimagnon BOs. For convenience,
we flip two neighboring spins in the completely ferromag-
netic state |↓↓↓ · · · ↓〉. When two-magnon excitations are
launched on the adjacent sites of the spin chain under a
gradient magnetic field, it may exhibit a dynamical localiza-
tion in a period. The time-dependent spin distributions and
longitudinal spin-spin correlations both show the coexistence
of two components when the interaction strength is moderate.
However, we cannot accurately determine the magnetic-field
gradient (which determines the Bloch frequency) via the spin
distributions or longitudinal spin-spin correlations. Below we
analyze the fidelity and the substandard deviation in both time
and frequency domains to extract the gradient of the magnetic
field and the Bloch frequency.

A. Fidelity

By simulating the time evolution with the TEBD algorithm,
we calculate the time-dependent fidelity

F (t ) = |〈�(0)|�(t )〉|2, (24)

which characterizes the probability of the time-evolved state
returning to the initial state. A slight change of the interaction
may have a huge influence on the dynamics. We discuss the
fidelity versus the rescaled time t/TB for different interaction
strengths � = 0 [Fig. 5(a)], � = −1 [Fig. 5(b)], � = −1.5
[Fig. 5(c)], and � = −5 [Fig. 5(d)]. The gradient of the
magnetic field is chosen as B = 0.05 and the total length of
the spin chain is Lt = 101. For clear visibility, the evolved
time is set to be t = 4TB. Without interaction, the sharp peaks
perfectly emerge at the integer multiples of period TB [see
Fig. 5(a)]. When the interaction increases, in addition to the
peaks at the integer multiples of period TB, peaks also appear
at the integer multiples of half-period TB/2 [see Figs. 5(b)–
5(d)]. For the moderate-interaction strength � = −1.5, we
find the coexistence of peaks at both the integer multiples
of periods TB/2 and TB [see Fig. 5(c)]. The period TB and
half-period TB/2 correspond, respectively, to the free-magnon
Bloch frequency B and the bounded-magnon Bloch frequency
2B. For stronger-interaction strength � = −5, the dynamics
transfers from the independent BOs to the effective single-
magnon BOs and the half-period oscillation of fidelity is dom-
inant [see Fig. 5(d)]. To explain how the interaction affects the
fidelity, we project the initial state onto the scattering and the
bound states. We find that the occupation on BSs becomes
larger as the interaction increases (see Appendix B for more
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FIG. 5. (a)–(d) Fidelity F versus the rescaled time t/TB for
different values of �: (a) 0, (b) −1, (c) −1.5, and (d) −5. (e)–(h)
Frequency distribution fF (ω) of the fidelity for different values of
�: (e) 0, (f) −1, (g) −1.5, and (h) −5. The other parameters are
B = 0.05 and the total chain length Lt = 101.

details). Thus the peaks of fidelity at the half-period TB/2
become higher as the interaction increases.

However, when the free-magnon component dominates in
the weak-interaction case, it is difficult to distinguish the
bound-state component from the scattering-magnon compo-
nent by directly observing the time evolution of the fidelity.
Under such a moderate interaction, the periodicity of fidelity
is destroyed due to the appearance of irregular behaviors (such
as quantum chaos) [see Fig. 5(b)].

In Figs. 5(e)–5(h) we show the frequency distribution
fF (ω) of the fidelity F (t ) for different interaction strengths
� = 0 [Fig. 5(e)], � = −1 [Fig. 5(f)], � = −1.5 [Fig. 5(g)],
and � = −5 [Fig. 5(h)]. In the absence of interaction, the
peaks nωB (with positive integers n) gradually decay [see
Fig. 5(e)]. Once the interaction is introduced, significant peaks
appear at 2ωB and the peaks at ωB vanish [see Figs. 5(f)–5(h)].
This means that, for moderate-interaction strengths, fF (ω)
cannot successfully identify the free-magnon BOs and it is
difficult to show the coexistence of free-magnon BOs and
bounded-magnon fractional BOs.

B. Substandard deviation

In this section we present how to use the substandard
deviation to extract the multifrequencies of BOs, especially
when the free-magnon BOs and bounded-magnon fractional
BOs coexist. Here we will analyze the frequency distribution
of the time-dependent generalized standard deviation

Dx(t ) =
√∑

l

(〈
Ŝz

l

〉 + 1/2
)|l − lc(t )|x, (25)

FIG. 6. (a)–(d) Substandard deviation D1/2 versus the rescaled
time t/TB for different values of �: (a) 0, (b) −1, (c) −1.5, and
(d) −5. (e)–(h) Frequency distribution fD(ω) of the substandard
deviation for different values of �: (e) 0, (f) −1, (g) −1.5, and (h)
−5. The other parameters are B = 0.05 and the total chain length
Lt = 101.

which can characterize the fluctuation of spin excitations in a
spatial distribution. Here 〈Ŝz

l 〉 represents the spin magnetiza-
tion at site l and

lc(t ) =
∑

l l
(〈

Ŝz
l

〉 + 1/2
)

∑
l

(〈
Ŝz

l

〉 + 1/2
) (26)

is the centroid position of the time-evolved state. When
x = 2, the generalized standard deviation becomes traditional
standard deviation. Instead of traditional standard deviation,
we define the superstandard deviation for x > 2 and substan-
dard deviation for x < 2 to highlight the bounded- and free-
magnon components, respectively. After a series of trials, we
find that one may choose substandard deviation with x = 1/2
to extract the multiple Bloch frequencies.

The time-dependent substandard deviations show that the
spatial region of spin excitations decreases as the interaction
strength increases [see Figs. 6(a)–6(d)]. Making a fast Fourier
transform of the substandard deviations to obtain the fre-
quency distribution fD(ω), one can observe sharp peaks cen-
tered at the integer multiples of ωB in the frequency domain.
The maximum peak centers at ωB for noninteracting systems
[see Fig. 6(e)]. As the interaction increases, the peak at ωB

becomes lower while the peak at 2ωB becomes higher, and
the peak at 2ωB becomes dominant under strong interactions
[see Figs. 6(f)–6(h)]. Since the peaks at ωB and 2ωB are
mainly induced by BOs of scattering and bounded magnons,
respectively, the dominance of the peak at 2ωB is a clear
signature of two-magnon BSs.
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Unlike fF (ω), the frequency distribution fD(ω) of sub-
standard deviation may clearly show the coexistence of the
free-magnon BOs and bounded-magnon fractional BOs. This
means that fD(ω) is a better quantity to witness the co-
existence and competition between free-magnon BOs and
bounded-magnon fractional BOs. However, for fF (ω), al-
though significant peaks appear at 2ωB, the peak at ωB

nearly vanishes and thus cannot show the coexistence of free-
magnon BOs and bounded-magnon fractional BOs.

There are two typical schemes to measure the force based
on the delocalization-enhanced BOs and driving resonance
tunneling effects [40]. Here we find that once we determine
the position of the peak ωB or 2ωB, the magnetic-field gra-
dient can be accurately given. Moreover, bounded magnons
undergo fractional BOs with frequency doubling 2ωB. The
fractional BOs are an excellent indicator for judging the
appearance of two-magnon BSs.

V. SUMMARY AND DISCUSSION

In this work, through considering a Heisenberg XXZ chain
under a gradient magnetic field, we studied how the inter-
action affects the BOs of two-magnon excitations and gave
a quantitative method to extract the magnetic-field gradient
from the multifrequency BOs. We extended the theory of dy-
namical symmetry of single-point operators to the one of two-
point operators and found that the dynamics in antiferromag-
netic systems can be directly derived from the corresponding
ferromagnetic ones. As the interaction increases, we found
that the spin distribution or longitudinal spin-spin correlation
dynamics gradually transfers from BOs of free magnons to the
fractional BOs of bounded magnons. The interaction-induced
fractional BOs provide a different perspective to observe
the magnon BSs. Moreover, we used the fidelity and the
substandard deviation in both time and frequency domains to
probe the multifrequency BOs and determine the magnetic-
field gradient. The substandard deviation is an excellent can-
didate to witness the coexistence and competition between
free-magnon BOs (at frequency ωB) and bounded-magnon
fractional BOs (at frequency 2ωB).

Based on the current techniques in engineering ultracold
atoms, it is possible to simulate our Heisenberg spin chain.
By loading two-state 87Rb atoms into a one-dimensional
optical lattice in the Mott regime with one particle per lattice
site, the two hyperfine states with different magnetic dipole
moments can be labeled as spin up and spin down, respec-
tively. Applying a gradient magnetic field along the lattice,
our spin-dependent lattices can be realized. The dynamics
of spin distribution and longitudinal spin-spin correlation
can be tracked via the techniques of an atomic microscope
[12,13]. The interaction between magnons can be tuned via
Feshbach resonance techniques [41,42]. With the observed
spin distributions and longitudinal spin-spin correlations, the
fidelity and the substandard deviation can be given.
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APPENDIX A: EFFECTIVE SINGLE-PARTICLE
HAMILTONIAN FOR STRONGLY INTERACTING

MAGNONS

Under strong ferromagnetic interactions, the magnons tend
to travel together instead of by individual propagation. In
order to explain this phenomenon, we analytically construct
an effective single-particle Hamiltonian by using the many-
body degenerate perturbation theory.

When |�| � (1/2, |B|), we can divide the Hamiltonian
into Ĥ0 as a dominant term and Ĥ1 as a perturbation
term. In the two-magnon basis {|l ′

1l ′
2〉 = Ŝ+

l ′1
Ŝ+

l ′2
|0〉 : −L �

l ′
1 < l ′

2 � L}, Ĥ0 consists of two subspaces U and V . The
total chain length Lt = 2L + 1. The degenerate eigenstates
{|Gm〉 = |m, m + 1〉 : −L � m � L} form the subspace U
with eigenvalues E0 = �. Correspondingly, the degener-
ate eigenstates {|El1l2〉 = |l1l2〉 : l1 	= l2 ± 1,−L � l1 < l2 �
L} form the subspace V with eigenvalues E1 = 0. The projec-
tion operators are defined as P̂U = ∑

m |Gm〉〈Gm| onto U and
P̂V = ∑

l2 	=l1±1
1

E0−E1
|El1l2〉〈El1l2 | onto V . The second-order

effective Hamiltonian is written as

Ĥeff = ĥ0 + ĥ1 + ĥ2

= E0P̂U + P̂U Ĥ1P̂U + P̂U Ĥ1P̂V Ĥ1P̂U . (A1)

The first-order perturbation reads

ĥ1 = P̂U Ĥ1P̂U

=
∑
l,mm′

|Gm〉〈Gm|(lBŜz
l )|Gm′ 〉〈Gm′ |. (A2)

Since

∑
l

〈Gm|(lBŜz
l

)|Gm′ 〉

= Bδmm′
∑

l

l
(
δlm + δl,m+1 − 1

2

)
= Bδmm′ (2m + 1), (A3)

we have

ĥ1 = B
∑

m

(2m + 1)|Gm〉〈Gm|. (A4)

The second-order perturbation reads

ĥ2 = P̂U Ĥ1P̂V Ĥ1P̂U

= 1

4�

∑
mm′,ll ′,l1l2

[|Gm〉〈Gm|(Ŝ+
l Ŝ−

l+1 + Ŝ−
l Ŝ+

l+1)|El1l2〉

×〈El1l2 |(Ŝ+
l Ŝ−

l+1 + Ŝ−
l Ŝ+

l+1)|Gm′ 〉〈Gm′ |]. (A5)
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After careful calculation, we have

ĥ2 = P̂U Ĥ1P̂V Ĥ1P̂U

= 1

4�

∑
m

(|Gm〉 + |Gm+1〉)(〈Gm| + 〈Gm+1|). (A6)

Combing Eqs. (A4) and (A6), we derive the effective single-
particle Hamiltonian up to the second order

Ĥeff = 1

4�

∑
m

(|Gm〉 + |Gm+1〉)(〈Gm| + 〈Gm+1|)

+ B
∑

m

(2m + 1)|Gm〉〈Gm|

+�
∑

m

|Gm〉〈Gm|, (A7)

with m = −L, . . . , 0, . . . , L. We introduce the operator Ĉ†
m =

Ŝ+
m Ŝ+

m+1, which means simultaneously flipping two adjacent
spins at the mth and (m + 1)th sites from the vacuum state
|0〉 = |↓↓ · · · ↓〉. Therefore, the bound pairs behave as a
composite particle following the Hamiltonian

Ĥeff = 1

4�

∑
m

(Ĉ†
mĈm+1 + Ĉ†

m+1Ĉm)

+
∑

m

2BmĈ†
mĈm, (A8)

where the energy constant is omitted. Compared with free
magnons, the formation of bound pairs performs BOs with
double the frequency.

APPENDIX B: TWO-MAGNON ENERGY SPECTRUM

To explain the interaction effects on magnon dynamics, we
calculate the overlaps of the initial state with the scattering
and bound states in the absence of a gradient magnetic field.
Since [Ĥ, Ŝz] = 0 with Ŝz = ∑

l Ŝz
l , the total number of spin

excitations is conserved and all states keep evolving in the
two-magnon Hilbert space. The two-magnon Hilbert space
is spanned by the basis B(2) = |l ′

1l ′
2〉 = Ŝ+

l ′1
Ŝ+

l ′2
|0〉 with −L �

l ′
1 < l ′

2 � L and the total chain length Lt = 101. The eigen-
states can be expressed as |�〉 = 
l ′1<l ′2�l ′1l ′2 |l ′

1l ′
2〉 with �l ′1l ′2 =

〈0|Ŝ−
l ′2

Ŝ−
l ′1
|�〉. Thus the system satisfies the eigenequation

E�l1l2 = 1
2 (�l1,l2+1 + �l1,l2−1 + �l1+1,l2 + �l1−1,l2 )

+ �(δl1,l2−1 + δ−L,L )�l1l2 . (B1)

In the absence of a gradient magnetic field, the Heisenberg
XXZ chain has a cotranslational symmetry and the center-of-
mass quasimomentum is a good quantum number under the
periodic boundary condition. The motion of the two-magnon
excitations consists of the motion of the center of mass
R = 1

2 (l1 + l2) and the relative position r = l1 − l2. Defining
�l1l2 = eiKRφ(r), the eigenequation (B1) reads

Eφ(r) = cos
K

2
[φ(r − 1) + φ(r + 1)] + �δr,±1φ(r). (B2)

Under periodic boundary conditions, we find eiKLt = 1
and φ(r + Lt ) = eiKLt /2φ(r) with the quasimomentum K =

FIG. 7. Two-magnon energy spectrum for B = 0, Lt = 101, and
(a) � = 0, (b) � = −1, (c) � = −1.5, and (d) � = −5, with the
overlaps PK,r between the initial state and each eigenstate shown by
the color bar.

2πα/Lt (with α = −L,−L + 1, . . . , L). Moreover, we have
φ(0) = 0 and φ(r) = φ(−r) with the commutation relations.

We give the two-magnon energy spectrum by numerically
diagonalizing the Hamiltonian without a gradient magnetic
field. With the nearest-neighbor ferromagnetic interaction, the
two magnons are able to form BSs. When the interaction
|�| > 1, the energy spectrum shows that BSs (corresponding
to the lower band) completely separate from the scattering
states (SSs). After calculating the overlaps

PK,r = |〈ψK,r |ψ (0)〉|2, (B3)

we reveal exactly the proportion of initial state in each eigen-
state ψK,r (see the color of the energy spectrum in Fig. 7).
The interaction values are set as � = 0 [Fig. 7(a)], � = −1
[Fig. 7(b)], � = −1.5 [Fig. 7(c)], and � = −5 [Fig. 7(d)].
The proportion in SSs makes the spins undergo independent
BOs, while the proportion in BSs induces the correlated
and fractional BOs. Once the initial state strongly overlaps
with BSs, one can clearly observe the signature in the time
evolution of spin distributions. As the interaction increases,
the overlaps with BSs become larger and the BOs of bounded
magnons become dominant.

APPENDIX C: TWO-MAGNON CORRELATIONS

In addition to the longitudinal spin-spin correlations, we
also calculate the time-dependent two-magnon correlation

�l ′,l ′′ (t ) = 〈ψ (t )|Ŝ+
l ′ Ŝ+

l ′′ Ŝ
−
l ′′ Ŝ

−
l ′ |ψ (t )〉, (C1)

which gives the correlations between magnons at sites l ′ and
l ′′. If the two magnons propagate within the region l � lb,
different from the longitudinal spin-spin correlation, there
will be zero complete two-magnon correlations for |l ′| > lb
or |l ′′| > lb. For comparison, we calculate the two-magnon
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FIG. 8. Rescaled two-magnon correlations �l ′,l ′′ = �l ′,l ′′/�
max
l ′,l ′′ . The top, middle, and bottom rows correspond to noninteracting � = 0,

strong-interacting � = −5, and moderate-interacting � = −1.5 systems, respectively. For all three rows, the evolved time is set as t = 0,
TB/4, TB/2, 3TB/4, and TB from left to right, respectively. The parameters are B = 0.05 and Lt = 101. The red regions of 0.25 < �l ′,l ′′ � 1
represent regions out of range of the color bar.

correlations in the BOs of noninteracting magnons, strong-
interacting magnons, and moderate-interacting magnons (see
the top, middle, and bottom rows of Fig. 8, respectively). For
all three cases, the evolved time for two-magnon correlations
is set as t = 0 (A), t = TB/4 (B), t = TB/2 (C), t = 3TB/4 (D),
and t = TB (E ) from left to right, respectively. The parameters
in the three cases are the same as those in Sec. III A, III B, and
III C, respectively.

For noninteracting magnons, the region with nonzero two-
magnon correlations expands and shrinks in a Bloch period
and is consistent with the region in |l| < 2

B | sin Bt
2 | of magnon

excitations (see the top row of Fig. 8). For strong-interacting
magnons, �l ′,l ′′ (t ) is mainly distributed along two minor off-
diagonal lines (l ′, l ′ ± 1), which significantly manifests the
formation of magnon BSs. The two magnons are bound to-
gether and undergo a fractional BO with a reduced amplitude

1
2�B (see the middle row of Fig. 8). For moderate-interacting
magnons, apart from the clear signal in the off-diagonal
�l ′,l ′±1(t ), fractional distributions also exist in �l ′,l ′′ 	=l ′±1(t ),
which means that the BOs of free-magnon and bounded-
magnon components coexist, as shown in the bottom row of
Fig. 8.
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