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We show that the realization of synthetic magnetic fields via light-matter coupling in the � scheme implements
a natural geometrical construction of magnetic fields, namely, as the pullback of the area element of the sphere
to Euclidean space via certain maps. For suitable maps, this construction generates linked and knotted magnetic
fields, and the synthetic realization amounts to the identification of the map with the ratio of two Rabi frequencies
which represent the coupling of the internal energy levels of an ultracold atom. We consider examples of maps
which can be physically realized in terms of Rabi frequencies and which lead to linked and knotted synthetic
magnetic fields acting on the neutral atomic gas. We also show that the ground state of the Bose-Einstein
condensate may inherit the topological properties of the synthetic gauge field, with linked and knotted vortex
lines appearing in some cases.
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I. INTRODUCTION

Lord Kelvin’s conjecture 150 years ago that atoms are
made of knotted vortex structures [1] anticipated today’s
study, both theoretical and experimental, of topological struc-
tures in nature. Nontrivial topological structures have been
studied in classical fluids [2–6], plasma physics [7–9], nu-
clear physics [10,11], condensed-matter physics [12], DNA
[13,14], soft matter [15], and light [16–19]. There has also
been interest in the physics of topological magnetic field lines,
with research focusing on their construction [20] and stability
[4,6,21]. Understanding the behavior of matter in nontrivial
topological magnetic fields is also important in the study of
plasma physics and the determination of stable confining mag-
netic field configurations in thermonuclear reactors [22,23].

Ultracold atoms allow the realization of synthetic gauge
fields in such a way that neutral atoms mimic the dynamics
of charged particles in a magnetic field [24–29]. One method
of creating a synthetic gauge field is to exploit atom-light
couplings by driving internal transitions of the atoms to realize
static Abelian gauge fields which are tunable via the applied
laser [30–32]. There has also been significant interest in
creating knotted structures in quantum gases [33–37], with
the first knots in quantum matter having been realized in
spinor BECs [38,39]. Further experiments have investigated
the formation of a Shankar skyrmion in the spinor BECs with
knotted spin structure [40,41]. The imprinting of linked and
knotted vortex structures has also been proposed using driving
schemes of the internal energy levels [42,43].

The formation of knotted vortex lines (or knotted solitons)
has been extensively investigated in superfluids and supercon-
ductors [44–46], including the conditions for their stability in
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multicomponent superconductors [47]. In addition, there have
been proposals for fault-tolerant [48], topologically protected
quantum computations [49,50] using vortices in superconduc-
tors [51,52] and spin interactions in optical lattices [53,54].
The knotted vortices considered in superconductors are of a
different nature from those we consider here. However, as
we will explain in Sec. V, knotted or linked magnetic fields
generically open up new avenues for quantum computing.

In this paper, we point out and exploit a remarkably direct
link between the realization of synthetic magnetic fields in
ultracold atoms and a mathematical construction of knotted
and linked magnetic fields, due to Rañada [55,56], out of a
map from Euclidean 3 space to the 2-sphere. In a nutshell,
we show that this map can be realized as the ratio of two
complex Rabi frequencies describing the atom-light coupling
in a three-level atomic � scheme.

The mathematically most natural choice of the Rañada map
for a given link or knot is challenging to implement directly in
an experiment, but our results suggest that one can implement
an approximation to this map which crucially preserves the
topology of the knot or link. We propose a general method
for constructing this approximation and illustrate it with three
examples of maps, called fH , fL and fT , whose associated
magnetic field lines are, respectively, Hopf circles, linked
rings, and the trefoil knot.

Finally, we find that some of the topological structure of
the synthetic gauge-field lines is inherited by the ground state
of the dark-state wave function in the � scheme. The details
of this depend on the potential and magnetic field which
appear in the effective Hamiltonian. For instance, if the scalar
potential is peaked along a knot or link, the wave function
reflects this through a vortex structure along that knot or link.
This happens for the trefoil knot and linked rings but not
for the Hopf circles, where the scalar potential is spherically
symmetric. A similar interplay between linked magnetic field
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lines and vortex lines in a spinorial wave function was recently
studied in Ref. [57].

II. RAÑADA’S KNOTTED LIGHT

In the 1980s, Rañada proposed a systematic mathemati-
cal construction of linked or knotted electric and magnetic
fields [55,56]. This construction has a beautiful geometrical
interpretation in terms of the geometry of the 2-sphere which
we review briefly in Appendix A. It leads to an explicit
formula for a magnetic field in terms of a map f : R3 → S2.
Identifying the 2-sphere with C ∪ {∞} via the stereographic
projection, the magnetic field is

B = 1

2π i

∇ f ∗ × ∇ f

(1 + | f |2)2
. (1)

This field has vanishing divergence and therefore satisfies the
static Maxwell equations, generally with a nontrivial current.
Moreover, one checks that field lines are determined by
the (complex) condition f = constant. In this way one can
therefore construct topologically interesting magnetic fields
by drawing on the extensive mathematical literature studying
links and knots as level curves of complex functions. The
formulation of the magnetic field in Eq. (1), along with the
definition of the maps, has been utilized to study the properties
of topologically nontrivial vector fields [9,16,18–20,58].

The maps R3 → S2 considered by Rañada and in this paper
go via S3, i.e., they are compositions

f : R3 → S3 → S3 → S2, (2)

where the first step is the inverse stereographic projection in
three dimensions, and the last step is projection of the Hopf fi-
bration. The details of the map are encoded in the intermediate
step S3 → S3. Using complex coordinates u, v ∈ C satisfying
|u|2 + |v|2 = l2 to parametrize the 3-sphere of radius l , the
inverse stereographic projection maps (x, y, z) ∈ R3 to

u = 2l2(x + iy)

l2 + r2
, v = 2l2z + il (r2 − l2)

l2 + r2
, (3)

with r2 = x2 + y2 + z2 and l setting the unit of length. The
map (2) then takes the form

f (x, y, z) = g[u(x, y, z), v(x, y, z)]

h[u(x, y, z), v(x, y, z)]
, (4)

where g and h are complex functions of u, v, which must not
vanish simultaneously.

In this paper we focus on three examples: the standard
Hopf map fH = u/v (defining Hopf circles), the quadratic
Hopf map fL = u2/(u2 − v2) (defining linked rings), and the
map fT = u3/(u3 + v2), which defines the trefoil knot. The
first two define links whose topology is independent of the
chosen (complex) level; the level curves of fH are circles or
the z axis (an “infinite circle”), and any two circles link once.
The level curves of fL are linked rings or the z axis; different-
level curves link each other four times. The third map defines
a trefoil knot when the level set is ∞ or sufficiently large.

FIG. 1. Illustration of the �-scheme, with internal atomic energy
levels |e〉, |g1〉, and |g2〉 coupled by lasers κ1 and κ2.

III. THE � SCHEME

Synthetic gauge potentials for ultracold atoms can be real-
ized in many ways [28,29]. We consider an ensemble of atoms
with three internal energy levels where two ground states |g1〉
and |g2〉 are coupled by two laser beams to a third excited state
|e〉. This configuration of energy levels is called a � scheme
and is illustrated in Fig. 1. The strength of the atom-light cou-
pling is characterized through space-dependent, complex Rabi
frequencies κ1, κ2. We assume the lasers are resonant with the
transitions and with zero two-photon detuning, resulting in the
atom-light coupling Hamiltonian

Hint =
⎛
⎝ 0 0 κ1

0 0 κ2

κ∗
1 κ∗

2 0

⎞
⎠. (5)

A general state of the light-matter coupled system can then
be written as |�〉 = ∑

i=D,+,− ψi(x)|i〉, where |D〉, |+〉, |−〉
depend parametrically on space and are the three eigenstates
of Hint . The eigenstate for eigenvalue zero is the dark state

|D〉 = 1√
|κ1|2 + |κ2|2

⎛
⎜⎝

κ∗
2

−κ∗
1

0

⎞
⎟⎠. (6)

It has no contribution from the excited state and is therefore
also robust against detrimental spontaneous decay.

If we include the kinetic term and a confining potential V
in the full Hamiltonian H = p2

2m + Hint + V and, using the adi-
abatic approximation, project the corresponding Schrödinger
equation ih̄∂t |�〉 = H |�〉 onto the dark state while neglecting
the coupling to the other dressed states, then ψD is governed
by the equation of motion

ih̄
∂

∂t
ψD =

[
(p − A)2

2m
+ � + V

]
ψD. (7)

The vector potential A, the corresponding magnetic field B,
and geometric potential � are fully determined by the Rabi
coefficients κ1, κ2, with the magnetic field and scalar poten-
tial conveniently expressed in terms of ζ = κ1/κ2. Explicitly
we have

A = ih̄(κ1∇κ∗
1 + κ2∇κ∗

2 − κ∗
1 ∇κ1 − κ∗

2 ∇κ2)

2(|κ1|2 + |κ2|2)
, (8)

B = ih̄
∇ζ × ∇ζ ∗

(1 + |ζ |2)2
, (9)

� = h̄2

2m

∇ζ ∗ · ∇ζ

(1 + |ζ |2)2
. (10)

063613-2



LINKED AND KNOTTED SYNTHETIC MAGNETIC FIELDS PHYSICAL REVIEW A 99, 063613 (2019)

(c)

(b) (d)

(e)

(f)

z 

x y 

z
z

x x
y

y

z

xy

z
z

x x
y y

(a)

FIG. 2. Exact and approximated magnetic field lines, realized as level curves of the complex field f and its Laguerre-Gaussian
approximation ζ . We show level surfaces of | f | and |ζ |, and, on each level surface, we show magnetic field lines in light blue. (a) Exact
Hopf circles ( fH ). (b) Realized Hopf circles (ζH ). (c) Exact linked rings ( fL). (d) Realized linked rings (ζL). (e) Exact trefoil knot ( fT ).
(f) Realized trefoil knot (ζT ). The unit of length for the exact magnetic fields (a, c, e) is l , and for the realized fields (b, d, f) it is the laser
wavelength λ with α = 100.

Note that expressing A in terms of ζ would lead to a singular
gauge.

For the synthetic magnetic field and its corresponding
gauge potential to be experimentally viable, the lifetime of the
dark state needs to be long enough. For example, spontaneous
emissions from the excited state would change the lifetime
of the dark state, but this is mitigated if the Rabi frequency is
large enough to ensure the adiabatic approximation is valid. In
addition, strong collisional interactions should be avoided, as
any atom-atom interactions will be detrimental to the stability
of the dark state. This can be addressed by ensuring the atoms
are in the dilute limit or the scattering length is tuned to
be small. We also require that any Zeeman coupling terms
between the two ground states of the � scheme are sufficiently
small to allow them to be neglected.

If we identify ζ ≡ f , then the magnetic fields of Rañada,
Eq. (1), and the � scheme, Eq. (9), are equivalent (in fact,
equal with h̄ = 1/2π ). Therefore, to realize the topological
magnetic field of a particular f we are required to drive the
atomic transitions by the Rabi frequencies such that their
ratio ζ forms the mapping f . The Rabi frequencies κ1 and κ2

can be chosen independently, giving a considerable amount
of flexibility and allowing us, in principle, to realize any
link or knot which is the level curve of a function f : R →
S2. However, we cannot set the Rabi frequencies to be any
arbitrary function of space and phase, as they are realized by
laser beams which need to fulfill Maxwell’s equations. This
restriction on the allowed forms of the Rabi frequencies is at
the heart of our discussion in the next section.

IV. REALIZATION OF TOPOLOGICAL FIELDS

Our approach is inspired by Refs. [59–61], where linked
and knotted optical vortex lines were realized in laser beams
as a superposition of Laguerre-Gaussian (LG) modes. These
superpositions of LG modes are usually obtained by the use
of spatial light modulators (SLMs) [62–68]. LG beams are
characterized by their azimuthal, n, and radial, p, indices,

and we will denote a single LG mode as Lpn, with the
full definition of a LG mode discussed in Appendix B. Our
method of constructing the topological synthetic magnetic
fields consists of the following steps:

(1) Starting from a map f of the form (4), restrict it to the
z = 0 plane, where z is the direction of propagation for the
lasers, and note that the result is a ratio of polynomials p and
q in x and y.

(2) Expand the polynomials p and q in terms of LG
modes restricted to the z = 0 plane and without the common
Gaussian factor.

(3) Replace p and q in f by the expansions in the LG
modes, including their z dependence (and note that the com-
mon Gaussian factor cancels).

(4) Check numerically if the level curves of the resulting
function ζ have the same topology as the level curves of f .

(5) If they do, realize the level curves as synthetic mag-
netic field lines via ζ = κ1/κ2, where κ1 and κ2 are the LG
modes approximating g and h.

All three examples considered in this work pass the check
in step 4, but we are not aware of a mathematical proof that
this should be true generally.

A. Form of the topological magnetic fields

Expanding in terms of LG modes, we find the following
approximations for the Hopf map fH , the quadratic Hopf map
fL, and the map fT for the trefoil knot:

ζH = 2αL0−1

i
[(

α2

2 − 1
)
L00 − α2

2 L10

] , (11)

ζL = (2α)2L0−2

(2α)2L0−2 + c0L00 + c1L10 + c2L20
, (12)

ζT = (2α)3L0−3

(2α)3L0−3 + c′
0L00 + c′

1L10 + c′
2L20 + c′

3L30
, (13)
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FIG. 3. Vortex structure of the ground states of the Hamiltonian
in (7) with a vector potential constructed from (a) fL and (b) fT .
Shown are level sets of the probability density (|ψ |2 = const.) for
a small constant, which visualizes the vortex core structure. The
vortices form linked rings in (a) and a trefoil knot in (b), thus
replicating the form of the magnetic field lines in both cases. Lengths
are in units of s0.

where we have defined α = ω0/l , with ω0 the beam waist of
the laser. Definitions of the coefficients ci and c′

i, which are
polynomials in α, can be found in Appendix B.

A comparison of the exact and realized magnetic fields for
all three cases considered is shown in Fig. 2. For all realized
fields we have chosen a beam width of α = 100 and work in
units of the wavelength of the laser λ. The realized fields are
found to be stretched out in the z direction compared to the
exact fields. For all three examples considered, the topological
nature of the realized magnetic field lines is clear, as the level
set of each has similar forms to that of the exact fields.

B. Beam-shaping realization

We note here that the specific combinations of LG modes
discussed in the previous section are entirely a beam-shaping
exercise. That is, the superposition of the LG modes in the
denominators of Eqs. (11)–(13) results in a single beam with
the required intensity and phase profiles. This single beam is
then used as κ2 in the driving of the � scheme.

The atomic transitions accessed in a � scheme are typ-
ically in the optical regime and thus the diffraction limit
of 0.2–0.4 μm sets the length scale limit. Furthermore, the
resolution of current beam-shaping technology imposes limits
on the spatial resolution of the resulting gauge field and on
the field strength. The atomic cloud size (∼100 μm [69]) is
typically smaller than the usual beam waists considered (e.g.,
∼1 mm [70]). Nonetheless, we do not foresee that the gauge-
field configurations discussed here will fall outside what is
currently experimentally achievable, as it is not unusual to
focus optical beams down to beam waists of 50–200 μm in
other settings [71,72].

C. Ground state of the quantum gas

In order to illustrate the effect the knotted synthetic mag-
netic fields can have on atoms, we envisage a noninteracting
gas of atoms forming a three-dimensional Bose-Einstein con-
densate which is trapped by a harmonic external potential V =
mω2r2/2, where ω is the trap frequency. We are interested in
the properties of the ground state of such a condensate which
is interacting with a linked or knotted magnetic field and a
geometric potential via Eq. (7). We solve for the ground state

|ψ|2

0.045

0-3

3

x-3 3 x

y

y

z z

(a) (b) (c)

-3 -3
-3 -3

3 3

3 3

FIG. 4. Ground state of the Hamiltonian in (7) with a vector
potential constructed from fH . The probability density is shown in
the (a) xy plane (z = 0), (b) xz plane (y = 0), and (c) yz plane (x = 0).
The ground state is real valued and forms a shell structure which is
close to spherical but slightly elongated in the z direction. Note that
the geometric potential � is spherically symmetric in this case, but
the magnetic field is not. Lengths are in units of s0.

ψ = ψD using imaginary time propagation [73–75] on a 2013

numerical grid and for the three exact gauge fields defined via
the maps fH, fL, and fT. We choose our unit of length to be
s0 = √

h̄/mω and take l = 1. It is not immediately obvious
what the properties of the ground states of this system should
be. The ground state is dependent on the interplay between the
strength and shape of the topologically nontrivial magnetic
field, the corresponding scalar potential, and the trapping
potential. The ground states discussed here reflect the choice
of considering a cloud of cold atoms confined in a harmonic
potential.

We observe the presence of vortex structures in the ground
states for the linked rings and the trefoil knot, which are shown
in Fig. 3 by the level sets of |ψ |2 and in the movies in the
Supplemental Material [76]. However, there is no vortex struc-
ture in the ground state for the Hopf circles shown in Fig. 4,
for this choice of parameters. The vortex structures in the
other ground states are determined by the maxima of the scalar
potential �, whose level sets for near-maximal values are very
similar to the level sets for the small probability density shown
in Fig. 3. We are not aware of a simple mathematical reason
for the relation between the level sets of � and the magnetic
field lines which we observe for the linked rings and the trefoil
knot.

The detection of such topological structures in the gas
requires a tomographic approach where three-dimensional
(3D) vortex core structures are imaged using a nondestructive
measurement of the density [77]. Alternatively, the presence
of nontrivial gauge fields can be indirectly detected by mea-
suring the shape oscillations of the gas [78].

V. CONCLUSIONS

We have shown that certain magnetic fields which are the
pullback of the normal area element of the 2-sphere to Eu-
clidean 3-space can be realized as a synthetic magnetic field in
the resonant � scheme. Based on this observation, we propose
a five-step method of realizing general synthetic topological
magnetic fields using a superposition of LG modes. We have
derived the required LG superpositions for three examples—
the Hopf circles, the linked rings, and the trefoil knot—and
show their topological nature. In some cases, the topological
form of these magnetic fields can be transferred to the ground
states of the ultracold gas in the form of linked and knotted
vortex cores. The general method presented in this work is
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not limited to the three examples considered, and we expect
more links and knots defined by a map f to be realizable.

The 3D nature of the generated states and the versatility of
our method opens a possible avenue for a physical realization
of the motion group of links or knots [79,80]. This group is
a generalization of the braid group of a surface and includes
elements which describe truly three-dimensional motions, for
example, motions where one circle is pulled through another.
If such motions proceed through configurations which are
the level sets of a complex-valued function they can, in
principle, be realized in our scheme. The quantum states of the
condensate would potentially pick up exotic and non-Abelian
phases in such motions, reflecting the intricate (and little
studied) representation theory of the motion group. It would
clearly be interesting to investigate this possibility and to
study its potential use in fault-tolerant, topologically protected
quantum computing.
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APPENDIX A: DIFFERENTIAL GEOMETRY BEHIND
RAÑADA’S CONSTRUCTION

Rañada’s construction of a magnetic field in terms of a
map f : R3 → S2 is most easily stated in the language of dif-
ferential forms and pull-backs. This clarifies the coordinate-
independent nature of the formula for the magnetic field
and provides a basis for generalizations. We give a succinct

summary here, referring the reader to textbooks like [81] for
the differential-geometric background.

A fundamental role is played by the 2-form representing
the area element  of the 2-sphere. Parametrizing the 2-sphere
via stereographic projection in terms of a complex coordinate
Z ∈ C ∪ {∞}, this 2-form is

 = 1

2π i

dZ∗ ∧ dZ
(1 + |Z|2)2

. (A1)

It is manifestly closed, i.e., satisfies d = 0, and normalized
to unit area. Given a map f : R3 → S2, Rañada’s magnetic
field is the pull-back

f ∗ = 1

2π i

df ∗ ∧ df

(1 + | f |2)2
(A2)

of  with f . This pull-back is a 2-form on R3 and is auto-
matically closed; it satisfies d ( f ∗) = 0 because pull-back
commutes with the exterior derivative. The magnetic field B
given by Eq. (1) in the main text is the vector field associated
to f ∗ using the metric and volume element of Euclidean
space. The closure of f ∗ is then equivalent to B having
vanishing divergence.

APPENDIX B: LAGUERRE-GAUSSIAN
EXPANSION TECHNIQUE

We provide the details for the expansions of the three
example maps,

fH = u

v
, fL = u2

u2 − v2
, fT = u3

u3 + v2
, (B1)

considered in the main text in terms of the complete set
of Laguerre-Gaussian beams, following the five-step method
also proposed in the main text. The LG modes are

Lpn(ρ, φ, z) = C√
1 + z2

z2
R

(
ρ
√

2

w(z)

)|n|
L|n|

p

(
2ρ2

w2(z)

)
e− ρ2

w2 (z) e
− ikρ2z

2(z2+z2
R ) e−inφei(2p+|n|+1) arctan z

zR , (B2)

with (ρ, φ, z) being the cylindrical coordinates, n the azimuthal index giving the angular momentum, p the radial index, and C
a normalization constant. We use the usual optical definitions of the beam waist w(z) = ω0

√
1 + (z/zR)2 and Rayleigh range

zR = πω2
0/λ. For z = 0, the LG modes can be written as

Lpn(ρ, φ, 0) = C̃

w0
e
− ρ2

w2
0 Ln

p

(
2ρ2

w2
0

)(
x − iy

w0

)n

. (B3)

The functions fH , fL, and fT are ratios of polynomials g and h in the complex coordinates u and v, which, in turn, are
functions of the Cartesian coordinates (x, y, z) as given in the main text. Restricting fH , fL, and fT to z = 0, we obtain ratios of
polynomials p and q in the variables x and y. By expanding in LG modes without the overall Gaussian factor exp(−ρ2/w2

0 ), we
obtain an expansion with coefficients which are polynomials in the parameter α ≡ ω0/l .

In this way, we arrive at the following exact identities:

fH |z=0 = 2αL0−1

i
[(

α2

2 − 1
)
L00 − α2

2 L10
]
∣∣∣∣∣
z=0

,

fL|z=0 = (2α)2L0−2

(2α)2L0−2 − ( − α4

2 + α2 − 1
)
L00 − (α4 − α2)L10 + α4

2 L20

∣∣∣∣∣
z=0

,

fT |z=0 = (2α)3L0−3

(2α)3L0−3 + 1
4 [(−4 + 2α2 + 2α4 − 3α6)L00 + α2(−2 − 4α2 + 9α4)L10 + (2α4 − 9α6)L20 + 3α6L30]

∣∣∣∣∣
z=0

.
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Dropping the restriction on the expressions on the right-hand side to z = 0 defines the approximations ζH , ζL, and ζT to the
functions fH , fL, and fT , which we used in the main text. The coefficients ci and c′

i used there are defined by the above
expansions.

As discussed in the main text, the �-configuration synthetic magnetic fields are obtained using two laser beams with Rabi
frequencies κ1 and κ2 given by the numerator and denominator of ζH , ζL, and ζT . In all cases, ζ = κ1/κ2 provides a physically
realizable approximation to the given function f and yields synthetic magnetic field lines whose topology agrees with that of the
level curves of the complex function f .
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