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Realization of PT -symmetric and PT -symmetry-broken states in static optical-lattice potentials
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Labouvie et al. [Phys. Rev. Lett. 116, 235302 (2016)] have described an experiment with a weakly interacting
Bose-Einstein condensate trapped in a one-dimensional optical lattice with localized loss created by a focused
electron beam. We show that by setting suitable initial currents between neighboring sites, it is possible to
create PT -symmetric quasistationary and PT -symmetry-broken decaying states in an embedded two-mode
subsystem. This subsystem exhibits gain provided by the coupling to the reservoir sites and localized loss due
to the electron beam and shows the same dynamics as a non-Hermitian two-mode system with symmetric real
and antisymmetric imaginary time-independent potentials, except for a proportionality factor in the chemical
potential. We also show that there are three other equivalent scenarios and that the presence of a localized loss
term significantly reduces the size of the condensate required for the realization.
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I. INTRODUCTION

In 1998, Bender and Boettcher [1] introduced a new class
of Hamiltonians H, which are invariant with respect to the
combined effect of the parity operator P and the time-reversal
operator T , that is [H,PT ] = 0, without being necessarily
invariant with respect to either of them. This allows for non-
Hermitian Hamiltonians with entirely real spectra within a
so-called PT -symmetric regime, and otherwise an eigenvalue
structure with complex conjugate pairs called PT -symmetry
broken.

There is a wide range of applications for PT -symmetric
systems, as non-Hermitian Hamiltonians are particularly
suited to effectively describe open quantum systems (e.g.,
see Ref. [2]). They can, for example, be used to describe
delocalization transitions in condensed matter [3] or for the
investigation of population biology [4] and exceptional points
[5–8]. Furthermore, the concept of PT symmetry can be
applied to the fields of laser modes [9–11], electronic circuits
[12–14], microwave cavities [15], or for the realization of
unidirectional invisibility [16–18].

A direct observation of PT symmetry is possible in opti-
cal systems [19,20] due to the mathematical equivalence of
the wave equation of electrodynamics in paraxial approxi-
mation and the Schrödinger equation. By considering light
propagation in two waveguides, the transition between the
PT -symmetric and the PT -symmetry-broken regimes can be
investigated. However, to date an experimental observation
of PT symmetry in a quantum mechanical system is still
lacking.

A promising experimental procedure for the realization of
PT -symmetric quantum systems was proposed by consid-
ering a Bose-Einstein condensate in an optical double-well
potential [21]. As shown in Refs. [22–24], the formalism of
PT symmetry can be applied to such a nonlinear quantum
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system, which can develop stable PT -symmetric states [25].
In more recent works, the use of bounded and unbounded
states [26] or coupling to another Bose-Einstein condensate
[27] was suggested to provide a coherent in- and out-coupling
of particles. However, both methods are difficult to realize
experimentally.

Kreibich et al. [28–30] proposed an experiment based
on time-dependent optical lattices [31], in which the wells
are loaded with Bose-Einstein condensates [32]. In this way,
a two-mode system embedded into a larger multiwell sys-
tem is created, which shows PT -symmetric dynamics in
the mean-field approximation and beyond [33,34]. Although
this approach effectively allows for the realization of PT
symmetry, the experimental setup is quite demanding and
currently hardly realizable because of the time-dependent
optical potentials.

In the present paper, we will focus on an experiment with a
time-independent optical lattice and localized Bose-Einstein
condensates of 87Rb atoms [35]. An electron beam can be
used to create local losses at specific lattice sites [36]. In the
following, we will propose a modification of this experiment
to realize PT -symmetric and PT -symmetry broken states in
the mean-field approximation. It is sufficient to describe the
system in the mean field, as effects beyond the mean-field
theory do not play a role due to the large number of atoms
present in the experiment.

II. THEORY

A. Two-mode system

To demonstrate the characteristics of PT symmetry, a two-
well system filled with ultracold Bose-Einstein condensates is
considered where the imaginary part of a complex potential
describes the in- and out-coupling of particles. If the potential
barrier separating the two wells is high enough, the respective
wave functions can be assumed to be localized, so that the sys-
tem is discrete. By using dimensionless units (h̄ = m = 1), the
theoretical description of localized Bose-Einstein condensates
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in the PT -symmetric double well is given by the discrete
Gross-Pitaevskii equation (e.g., see Ref. [37])

i
∂

∂t

(
ψ1

ψ2

)
=

(
g|ψ1|2 + iγ −J

−J g|ψ2|2 − iγ

)(
ψ1

ψ2

)
, (1)

to which we will refer as the two-mode system (TMS) in the
following. While the real part of the potential is symmetric,
the imaginary part is antisymmetric. The coherent coupling
with the environment is given by the gain and loss factor γ ,
which effectively represents a complex potential. The factor
J is the coupling and describes the tunneling of the particles
between the two wells. The Hamiltonian (1) represents a non-
linear system with the corresponding strength of nonlinearity
g = 4πaN , where N is the particle number and a describes
the scattering length according to the s-wave scattering in
Bose-Einstein condensates [38].

With the use of mean-field wave functions ψi =√
ni exp(iϕi ), where ni = |ψi|2 is the number of particles and

ϕi the phase of the condensate in the corresponding lattice site,
the system in Eq. (1) can be solved. Under the assumption of
a symmetric occupation distribution with ni = n0 the solution
of the PT -symmetric system is given by(

ψ1

ψ2

)
=

( √
n0 exp(iϕ)√

n0 exp(−iϕ)

)
(2)

with the phase

ϕ = −1

2
arcsin

(γ

J

)
. (3)

The chemical potentials

μ = gn0 ±
√

J2 − γ 2 (4)

of these eigenstates are purely real for |γ | � J . In this case,
the time-evolved solutions ψi(t ) = ψi exp(−iμt ) are station-
ary and constitute the so-called PT -symmetric solutions. For
larger values of γ , the eigenvalues contain an imaginary part
resulting in a time-dependent norm of the states, so that the
PT symmetry is broken.

In the following investigations, our aim is to realize the
stationary symmetric solutions of the system. Therefore, the
accessible observables

ck,l = 2
√

nknl cos(ϕl − ϕk ), (5a)

jk,l = 2J
√

nknl sin(ϕl − ϕk ), (5b)

i.e., the correlation c and the net current j, are introduced
in order to describe important properties of the dynamics of
the PT -symmetric states. The corresponding characteristic
values of the TMS

c1,2 = 2n0

√
1 −

(γ

J

)2
, (6a)

j1,2 = 2n0γ , (6b)

are time independent and depend only on the phase difference
of the two components of the wave function (2).

B. Complex-extended wave functions

Beyond the PT -symmetric regime with |γ | > J , the re-
sulting complex eigenvalues (4) and time-dependent norm

cause a time dependence of the Hamiltonian in Eq. (1). Never-
theless, for a time-independent Hamiltonian with a vanishing
nonlinearity g = 0, the wave functions (2) with a complex
phase present solutions of the Schrödinger equation (1). By
using the general relation

arcsin(α) = −i ln(iα ±
√

1 − α2)

= π

2
− i ln(α ±

√
α2 − 1) (7)

for |α| > 1, the phase (3) turns into

ϕ = −π

4
+ i

2
ln (α ±

√
α2 − 1) (8)

and has the effect of shifting the initial occupations of each
well so that the wave function reads

(
ψ1

ψ2

)
=

⎛
⎝

√
n0(α ± √

α2 − 1)exp(−iπ/4)√
n0(α ∓ √

α2 − 1)exp(iπ/4)

⎞
⎠, (9)

where α = γ /J . The two possible solutions in Eq. (9) cor-
respond to the two solutions (4). For every such solution,
there are either exponentially increasing, or exponentially
decreasing particle numbers

ni(t ) = ni(0) exp[2Im(μ)t], (10)

which correspond to the PT -symmetry broken states.

C. Open few-mode model

An experimental realization of the PT -symmetric and
PT -symmetry broken states of the TMS requires a coherent
in- and out-coupling of particles. It was shown that an out-
coupling can be easily obtained with a focused electron beam
[36]. An injection of particles can be realized by embedding
the TMS into an optical lattice filled with Bose-Einstein
condensates, which acts as a particle reservoir and allows for
a steady current of particles into the system.

The mean-field description of a general open few-mode
model is again given by the Gross-Pitaevskii equation,

i
∂

∂t
ψk = −Jψk−1 − Jψk+1 + g|ψk|2ψk

+μkψk − i
γk

2
ψk, (11)

where ψk represents a Bose-Einstein condensate localized in
the lattice site k of a one-dimensional optical lattice with the
corresponding onsite energy μk . The parameters γk describe
local in- or out-couplings of particles depending on their
signs. The strength of the interaction g is assumed to be equal
to the strength of the nonlinearity g of the PT -symmetric
TMS at each lattice site. In order to ensure a simple real-
ization, the tunneling coupling J between neighboring lattice
sites is assumed to be equal at all sites.

The differential equations (11) describe the experimental
setup in Ref. [35]. In this experiment, roughly 45 000 87Rb
atoms were placed in a one-dimensional optical lattice, so
that around 700 particles are located at each lattice site in
the center of the potential. It was shown that the use of a
strong loss term leads to the creation of a stationary state
in the corresponding lattice site due to the quantum Zeno
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FIG. 1. The inner lattice sites with the currents jL, j and jR

between them and two local loss terms −iγkS and −iγkS+1 in the
subsystem which is bounded by the dashed rectangle.

effect [39,40]. However, these stationary states do not have the
characteristics of the solutions in the PT -symmetric TMS in
Eq. (6). In the following, it is shown that the setting of appro-
priate initial phases and particle numbers of the condensates
leads to stationary and exponentially decaying states with the
PT -symmetric and PT -symmetry broken characteristics of
the TMS, respectively.

1. PT -symmetric regime

In the following investigations, the goal is to obtain the
PT -symmetric states in the two sites of the subsystem labeled
with kS and kS + 1. In particular, the physically observable
parameters, that is, the particle number and the current, are
desired to be realized as the constant characteristic values of
the TMS. As the onsite energy leads to a shift in the energy
of the system and has no influence on the dynamics, it is set
to zero. The characteristics of the subsystem have to fulfill the
conditions of the TMS, viz.

nkS = nkS+1
!= n0, (12a)

jkS,kS+1
!= j = 2n0γ . (12b)

The other currents jk,k+1 to the left of the subsystem are
considered as equal and will be called jL. The same holds for
the currents to the right, which will consequently be called jR.
This special experimental setup with constant localized loss
terms −iγkS and −iγkS+1, which only exist in the subsystem,
is shown in Fig. 1. If these parameters γk are negative, they
act as a gain of particles in these lattice sites instead. In the
PT -symmetric TMS, the occupation in each well is a time-
independent constant, as there is the same amount of particles
that are coupled in and out. For this reason, it has to be ensured
that the occupations are constant. Since

∂

∂t
nk = jk−1,k − jk,k+1 − γknk, (13)

which follows from Eq. (11), the time independence of the
particle numbers of the subsystem yield the parameters

γkS = jL − j

n0
, (14a)

γkS+1 = j − jR
n0

. (14b)

To fulfill the requirements of time-independent currents and
correlations in all lattice sites, it can be shown by using

TABLE I. The different possibilities for the values of the currents
jL and jR with the local gain and loss terms γkS and γkS+1 assuming
that the current j in the subsystem is positive, j > 0. Positive values
of γkS and γkS+1 correspond to the loss of particles, while negative
values correspond to particle gain.

Orientations of
jL jR n0γkS n0γkS+1 jL j jR

+ j − j 0 2 j −→ −→ ←−
+ j + j 0 0 −→ −→ −→
− j + j −2 j 0 ←− −→ −→
− j − j −2 j 2 j ←− −→ ←−

Eq. (11) that all currents must have the same absolute values,

| jL| != j
!= | jR|, (15)

assuming there is a positive current j in the subsystem, i.e.,
from left to right (cf. Fig. 1). Moreover, all initial occupations
have to be equally distributed throughout the lattice with
nk (t = 0) = n0 to produce the desired dynamics. As a result,
there exist four different possibilities for the orientations of
the currents jL and jR as shown in Table I. According to
Eq. (5b), the derived initial values for the currents and particle
numbers yield the phase differences

ϕk+1 − ϕk = arcsin

(
jk,k+1

2J
√

nknk+1

)
, (16)

which have to be prepared initially. Consequently, all initial
phases in Eq. (16) have to exhibit the same phase differences
±2ϕ of the TMS in Eq. (3) to ensure the stationary dynamics.

2. PT -symmetry-broken regime

In a manner similar to that of Sec. II B, we apply the ap-
proach of using complex phases to realize the PT -symmetry-
broken states of the TMS. It is expected that the characteristic
dynamics for γ > J can also be created by a preparation of the
initial phases and occupations. To obtain analytic solutions in
the following, the nonlinearity is set to zero, i.e., g = 0. Since
g is freely adjustable by Feshbach resonances [41], this is no
restriction with respect to experimental realizability.

The ansatz (16) with the current j of the PT -symmetric
states in Eq. (6b) yields the phase differences

ϕk+1 − ϕk =

⎧⎪⎨
⎪⎩

arcsin
(
s1

γ

J

)
for k < kS,

arcsin
(

γ

J

)
for k = kS,

arcsin
(
s2

γ

J

)
for k > kS,

(17)

where the signs s1 and s2 can be selected independently, which
corresponds to the four possibilities for the currents shown
in Table I. Since γ > J , the initial complex phases have an
impact on the initial occupations [see Eq. (7)], so that the time-
dependent particle numbers of the subsystem follow as

nkS (t ) = n0(α ±
√

α2 − 1)exp[2 Im(μ)t], (18a)

nkS+1(t ) = n0(α ∓
√

α2 − 1)exp[2 Im(μ)t] (18b)
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0.0
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c k
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(c)

c in TMS
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FIG. 2. The dynamics of the occupations, the currents, and the
correlations (in dimensionless units) of all 50 lattice sites for the
initial currents jL = j = − jR with J = 1 and the gain and loss term
γ = 0.8 and nonlinearity g = 0. The occupations of the subsystem
start to deviate significantly from the initial occupations at t ≈ 10.
The curves which decrease at a smaller timescale belong to the outer
sites.

with μ = ±
√

J2 − γ 2. If this is transferred to all lattice sites,
all neighboring occupations obey the relation

nk (t ) = nk+1(t )(α ±
√

α2 − 1)2. (19)

Thus, the effective initial preparation consists of exponentially
distributed particle numbers and the same absolute phase
differences of π/2 between all lattice sites.

III. RESULTS

A. Realizing PT symmetry

Using the results of Sec. II a one-dimensional lattice with
50 sites is considered. The subsystem {kS, kS + 1} with kS =
25 is located in the middle of this lattice with uniformly
distributed optical characteristics. Without loss of generality,
we choose units such that J = 1. Further, the nonlinearity g
is now set to zero both in the PT -symmetric and the PT -
symmetry-broken regimes. As the mean-field dynamics is
independent of the particle number, the initial occupations can
be set to nk (t = 0) = 0.5. According to the four possibilities
for the currents and their respective gain and loss terms γkS

and γkS+1 in Table I, the phase differences must be equal to
the values given in Eq. (16). Since the absolute phase shift is
arbitrary, the phases of the subsystem are set to the values of
the TMS given in Eq. (3), ϕkS = −ϕkS+1 = ϕ.

To begin with, the first case for the currents in Table I is
considered: The directions of all currents are aligned toward
the subsystem in which, only in the right-hand site, a loss
term with γkS+1 = 4γ exists. The resulting dynamics of the
occupations and the correlations as well as the currents of

0.0

0.5

n
k

(a)

0.0

0.5

n
k

(b)

0.0

0.5

n
k

(c)

0 2 4 6 8 10 12 14 16
t

0.0

0.5

n
k

(d)

n0

nkS−2

nkS−1

nkS

nkS+1

nkS+2

nkS+3

FIG. 3. The particle numbers nk (t ) of the inner six lattice sites
for J = 1 and γ = 1 corresponding to the four possibilities of the
currents jR and jL in Table I. The nonlinearity is set to zero, g = 0.
All quantities are given in dimensionless units.

all lattice sites is shown in Fig. 2 for the gain and loss factor
γ = 0.8.

It is noticeable that the occupation of the inner lattice
sites in Fig. 2(a) remains approximately constant while the
outer sites decrease one after another. Furthermore, all curves
develop a local maximum. This is because the tunneling
currents exceed the initially set currents. The constant particle
numbers of the subsystem remain at the constant value n0 of
the TMS until t ≈ 8 when the adjoining sites can no longer
maintain the appropriate current and thus the PT symmetry
breaks down.

The currents and correlations in Figs. 2(b) and 2(c) exhibit
a similar behavior because they are directly correlated to the
occupations. With the gain and loss factor that is used in
Fig. 2, the characteristic values of the PT -symmetric regime
are given by ckS,kS+1 = 0.6 and jkS,kS+1 = 0.8 according to
Eqs. (6a) and (6b). These theoretical expectations of the TMS
are depicted by the dash-dotted straight lines.

A comparison of the particle numbers nk (t ) of the inner
six lattice sites with γ = 1 is illustrated in Fig. 3 for all four
possibilities of the currents jR and jL in Table I. The local
maxima in Fig. 3(a) do not appear here because the coupling
constant γ = 1 makes the tunneling current and the initial
current equally large. For all four cases in Fig. 3, the occu-
pations of the subsystem deviate from the constant value n0

at t ≈ 8, which is followed by chaotic dynamics. The second
case in Fig. 3(b) represents the trivial case with identical initial
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t

−0.5
0.0
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R
e(
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t

−0.5
0.0
0.5

Im
(ψ

k
)

(b)

t
0

20

ϕ
k

(c)

0 2 4 6 8 10 12 14
t

0

1ϕ̇
k

(d)

kS in TMS
kS + 1 in TMS

kS

kS + 1

FIG. 4. The real and imaginary parts of the wave functions of the
subsystem, as well as their phases and the derivatives of these phases,
are compared with the expected values of the TMS. The parameters
are the same as in Fig. 2.

phases at all lattice sites and vanishing loss and gain terms
because the currents of the reservoir sites effectively supply a
balanced gain and loss term for the subsystem. In Figs. 3(c)
and 3(d), the particle numbers of the inner six lattice sites
diverge after the quasistationarity breaks down at t ≈ 8. As
in Eq. (13), the gain term γkS < 0 increases the occupation
nkS exponentially. The gain and loss terms γkS = −γkS+1 in
the fourth case look similar to those of the TMS in Eq. (1),
but due to the interaction J �= 0 with the adjoining sites, the
dynamics of the subsystem finally collapses due to the finite
reservoir. The time where the quasistationarity breaks down
due to the emptying of the outer wells increases with the
number of wells used as reservoirs. This timescale decreases
for nonlinear interactions g �= 0 as our investigations showed.
However, since the nonlinearity does not lead to qualitative
differences with respect to the realizability or the dynamics,
we will focus on the linear case.

Because of the difficult realization of a gain term with
γkS < 0 in an actual experiment (e.g., see Ref. [42]), we
consider the first two cases in Table I with the respective
dynamics in Figs. 3(a) and 3(b) as experimentally accessible
situations with PT -symmetric characteristics.

Discussion of the phases

Although the physical observables match the theoretically
expected values, we will now consider the wave functions
of the subsystem directly. To observe the oscillations of the
phases it has to be ensured that the chemical potential does
not vanish as for γ = 1. Therefore, in the following we use
γ = 0.8.

The real and imaginary parts of these wave functions
shown in Figs. 4(a) and 4(b) are qualitatively similar. They
start at the correct values but evolve differently in time.
Therefore, since the norms |ψk (t )|2 = nk (t ) coincide with
those of the TMS, the time-dependent phases ϕk (t ) of the

k

10−3

10−2

10−1
(a)

k

10−2

100

102 (b)

k

100

101

102 (c)

0 5 10 15 20 25 30 35 40 45 50
k

10−2

100

102 (d)

|ψ
k
(t

=
0)
|2

FIG. 5. The initial occupations |ψk (t = 0)|2 of the four possible
decaying states with μ < 0 for the values of the currents from Table I
with J = 1 and γ = 1.01. The nonlinearity is set to zero, g = 0. All
quantities are given in dimensionless units.

wave functions ψk (t ) = √
nk (t ) exp[iϕk (t )], which are shown

in Fig. 4(c), have to be analyzed. While the phase differences
of the subsystem and TMS are identical, their time derivatives
ϕ̇k (t ) shown in Fig. 4(d) are different.

Since the wave functions of the TMS evolve in time with
the factor exp(−iμt ), the derivatives of their phases ϕ̇i(t ) =
−μ = 0.6 are half as large as those of the subsystem with the
value ϕ̇k (t < 8) = 1.2. In the Appendix, it is shown that the
chemical potentials indeed differ from one another by a factor
of 2.

For the general case of a nonvanishing nonlinearity g �= 0,
the wave functions of the subsystem have the form ψk (t ) =
ψk (0) exp(−iμ̃t ) with the chemical potentials

μ̃ = gn0 ± 2
√

J2 − γ 2, (20)

whereas the wave functions of the TMS evolve in time with
the chemical potentials (4). Since the currents and correlations
in Eqs. (5a) and (5b) only depend on the phase differences,
and the particle numbers are independent of any phases, the
wave functions exhibit the same physical dynamics as those of
the TMS. Because there are no additional degrees of freedom
in the system discussed in Sec. II C 1, the chemical potentials
μ̃ of the subsystem are not adjustable.

B. Realizing broken PT symmetry

The aim of this subsection is to realize the PT -symmetry-
broken states of the TMS using the same setup as in the previ-
ous section. As derived in Sec. II C 2, the approach of complex
phases leads to exponentially distributed initial occupations
[see Eq. (19)], which are illustrated in Fig. 5 for the four cases
in Table I with γ = 1.01 > J . All four initial particle numbers
of the subsystem are set to the same values given by Eq. (18)
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FIG. 6. The particle numbers nk (t ) of the inner six lattice sites
for γ = 1.01 correspond to the four possible decaying states with
the initial occupations shown in Fig. 5. The dash-dotted lines mark
the expected particle numbers of the TMS.

with n0 = 0.5, where the sign belonging to the exponentially
decaying occupations with μ < 0 is chosen. The nonlinearity
is set to g = 0 again, as a nonzero value disturbs the desired
dynamics in Eq. (11) because of the time-dependent norm
|ψk|2. We want to emphasize that although nkS and nkS+1

are the same in every case shown in Fig. 5, the case with
just localized loss [cf. Fig. 5(a)] requires only a surprisingly
small overall number of particles in the condensate. Therefore,
this approach seems particularly suitable for an experimental
realization.

A comparison of the particle numbers nk (t ) of the inner six
lattice sites with γ = 1.01 is illustrated in Fig. 6 for all four
possibilities of the currents jR and jL in Table I. It is notice-
able that the occupations of the inner lattice sites evolve purely
exponentially in time, but with a different factor compared to
the TMS in Eq. (10). This stable behavior collapses roughly
at the same time t ≈ 8 as the PT -symmetric states in Fig. 3.

A closer examination reveals that the exponentially decay-
ing rates of these curves are identical in all subplots and also
twice as large as the ones of the TMS. As a consequence,
the wave functions exhibit the chemical potential μ̃ as the
PT -symmetric wave functions in Eq. (20) with g = 0. This
complex eigenvalue results in time-dependent occupations

nk (t ) = nk (0)exp[2 Im(μ̃)t], (21)

and is thus consistent with the wave functions of the PT -
symmetric regime.

IV. CONCLUSION

In this paper, we proposed an experimental setup for the
realization of a two-mode quantum system consisting of Bose-
Einstein condensates coupled to a reservoir, which leads to
localized particle gain and loss. With a suitable choice of the
particle numbers and phases, respectively, in each well the
system exhibits either PT symmetry or broken PT symmetry
for a finite time interval. In contrast to previous work, the
theoretical treatment of the experiment is based on an open
few-mode model with time-independent uniform optical char-
acteristics.

All suitable initial phases allow for four types of envi-
ronments, some with additional gain and loss in the inner
wells, in which quasistationary states can be produced in
a subsystem having almost the same dynamics as the PT -
symmetric TMS. However, a closer inspection shows that the
chemical potentials of both systems in the linear case are
proportional by a factor of 2. Thus, real and imaginary parts of
the wave functions in the inner wells oscillate with different
frequency. By continuing the phases of the PT -symmetric
wave functions into the complex plane, we find states with
a time-dependent norm showing similar characteristics as the
PT -symmetry broken solutions of the TMS. The resulting
initial exponentially distributed particle numbers and equal
absolute phase differences lead to wave functions with com-
plex eigenvalues causing an exponential increase or decrease
of the particle numbers in the inner wells, which differ from
the behavior of the TMS again by the same factor of 2.

For an actual experimental realization, the situation with
only localized loss seems particularly suited, as this approach
can significantly reduce the number of particles required.
Such localized losses can simply be created via a focused
electron beam as shown in Ref. [35]. The creation of arbitrary
occupations in each lattice site is also experimentally possi-
ble [32,43]. However, the preparation of specific phase dif-
ferences between Bose-Einstein condensates in neighboring
sites, which is crucial for our approach, remains demanding.
A possible experimental technique for such phase engineering
may be to optically imprint the phases via far-off resonant
lasers [44–47].

APPENDIX: COMPARISON OF THE CHEMICAL
POTENTIAL OF THE TMS AND THE SUBSYSTEM

IN THE LATTICE

Here we show that the chemical potential of the subsystem
in the lattice is twice as large as the one of the TMS, assuming
that the nonlinearity vanishes, g = 0. The wave functions of
the lattice site k

ψk = ψR + iψI, (A1)

leaving out the indices for clarity, is split into its real and
imaginary parts. Thus the time derivative of the phase ϕ =
arctan(ψI/ψR) can be calculated,

ϕ̇ = 1

1 + (ψI/ψR)2

ψ̇IψR − ψIψ̇R

ψ2
R

= 1

n
(ψ̇IψR − ψIψ̇R),

(A2)
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with the particle number ψ2
R + ψ2

I = n. By using Eqs. (1) and
(3), the derivatives of the phases of the TMS yield

ϕ̇1 = ϕ̇2 = J cos(ϕ2 − ϕ1) = J cos

[
arcsin

(
γ

J

)]

=
√

J2 − γ 2 = −μ, (A3)

which are equivalent to the expected value in Eq. (4) for g = 0.
In the same manner, the derivatives of the phases at the initial
time t = 0, where all phase differences between neighboring

sites have the same absolute value, can be calculated for a
lattice described by

i
∂

∂t
ψk = − Jψk−1 − Jψk+1 − i

γk

2
ψk . (A4)

Using the loss term γkS+1 = 4γ , for example, one finds

ϕ̇kS = ϕ̇kS+1 = 2J cos
(
ϕkS+1 − ϕkS

) = −2μ = −μ̃, (A5)

which explains the different behavior of the phases in the
lattice system and in the TMS shown in Figs. 4(c) and 4(d).
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