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We investigate the dimension of the phase-space attractor of a quantum chaotic many-body ratchet in the mean-
field limit. Specifically, we explore a driven Bose-Einstein condensate in three distinct dynamical regimes—Rabi
oscillations, chaos, and self-trapping regimes—and for each of them we calculate the correlation dimension. For
the ground state of the ratchet formed by a system of field-free noninteracting particles, we find four distinct
pockets of chaotic dynamics throughout these regimes. We show that a measurement of local density in each
of the dynamical regimes has an attractor characterized by a higher fractal dimension, Dg = 2.59 £ 0.01, D¢ =
3.93 £ 0.04, and Dg = 3.05 £ 0.05, compared to the global measure of current, Dg = 2.07 £ 0.02, D¢ = 2.96 +
0.05, and Dy = 2.30 &£ 0.02. The deviation between local and global measurements of the attractor’s dimension
corresponds to an increase towards higher condensate depletion, which remains constant for long time scales in
both Rabi and chaotic regimes. The depletion is found to scale polynomially with particle number N, namely, as
NP with Br = 0.51 £ 0.004 and B¢ = 0.18 £ 0.004 for the two regimes. Thus, we find a strong deviation from
the mean-field results, especially in the chaotic regime of the quantum ratchet. The ratchet also reveals quantum
revivals in the Rabi and self-trapping regimes but not in the chaotic regime, with revival times scaling linearly
in particle number for Rabi dynamics. Based on the obtained results, we outline pathways for the identification
and characterization of emergent phenomena in driven many-body systems. This includes the identification of
many-body localization from the many-body measures of the system, the influence of entanglement on the rate
of the convergence to the mean-field limit, and the establishment of a polynomial scaling of the Ehrenfest time

at which the mean-field description fails to describe the dynamics of the system.
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I. INTRODUCTION

In recent years, periodically driven quantum systems have
been the subject of extensive theoretical [1-4] and exper-
imental [5-8] efforts. These systems allow the exploration
of unique physical phenomena such as topological states of
matter [1,2,8], the ability to precisely tune quantum phase
transitions [5,7], and localization [3,6,9]. In close relation to
localization, periodically driven quantum systems have also
been instrumental in probing the understanding of various
aspects of quantum chaos [10-12]. In particular, these dy-
namical systems have established firm connections between
quantum signatures of chaos beyond random matrix theory by
observing quantum dynamics that are comparable to phase-
space attractors of classical-particle-like or semiclassical-
wave-like chaos [12,13]. However, the role of particle
interaction in many-body systems and their semiclassical
counterparts has not been fully understood in this context.
Such driven and interacting systems typically possess many
relevant length and time scales that may give rise to a new
realm of physical phenomena. In this paper, we explore
the dynamics of a periodically driven quantum many-body
system in the mean-field limit for both regular and chaotic
dynamics. We find that chaos in a quantum ratchet manifests
itself in a quantifiably different way depending on the length
scale observed within the system, i.e., local measurements
reveal higher-dimensional attractors as compared to global
measurements.
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Specifically, we study an interacting many-body quantum
ratchet that is known to be chaotic for a particular range of
atomic interaction strengths and external driving parameters.
This system consists of a Bose-Einstein condensate (BEC)
under periodic driving that breaks generalized parity and
time-reversal symmetries (see Fig. 1) [19-21]. The ratchet
effect, or directionally biased motion, is induced by these
symmetry violations [22-24] and manifests in the particle
current [19,20]. For near resonant driving this results in
two regular dynamical regimes, Rabi oscillations for weak
particle interaction and self-trapping for strong interactions,
with a chaotic regime for intermediate couplings [19-21].
This system can be treated in the many-body framework
of the Bose-Hubbard model with a time-dependent poten-
tial, or, alternatively, in a time-independent truncated Floquet
model [19-21]. In either case, a well-defined mean-field limit
gives rise to nonlinear dynamics. Using the delay embed-
ding method for calculating attractor correlation dimension
[13,25-28], we investigate the phase-space structures of the
many-body models as well as their mean-field counterparts.
We show agreement between the attractor dimension for both
mean-field models. Moreover, we identify four distinct re-
gions of interaction strengths that produce chaotic dynamics,
contrasting its identification in the spectral statistics and quan-
tum many-body dynamics [21]. We shall point out, however,
that the performed analysis of the dimension of the strange
attractor and the correlation dimension of the system are
meaningful only if the system is characterized with a nonzero
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FIG. 1. Quantum ratchet via toroidal condensate. (a) Off center
rotation of a toroidal Bose-Einstein condensate [14—18] generates the
effect of driving by two counterpropagating waves in one spatial
dimension [19]. Only when the amplitudes of the two waves are
unequal can such a system present a ratchet effect due to asym-
metric coupling to positive and negative angular momentum modes.
(b) Space-time plot of the drive given in (a) with equal amplitude
fields. (c) Once the drive amplitudes differ, the BEC becomes cou-
pled to positive and negative modes, easy visible in the symmetries
of the space-time plot for this case.

dissipation. Indeed, the existence of strange attractors in the
quantum ratchet indicates the existence of an underlying
structure that the system limits to in the presence of dissi-
pation. We shall point out that the identification of strange
attractors allows one to determine dynamical outcomes of the
system [29].

Mean-field methods have been instrumental in the descrip-
tion of a wide range of many-body phenomena such as the
Ginzburg-Landau theory of superconductivity and the Bogoli-
ubov theory of superfluidity, among many others [30-32].
The success of the mean-field description of a wide spectrum
of physical systems heavily relies on the fast convergence
of the dynamics of finite-sized many-body systems with the
number of particles that form the system. However, whenever
these systems exhibit chaotic dynamics, one usually considers
either classical aspects of the system with the correspond-
ing mean-field description or the full quantum many-body
treatment. In the studies that have merged both of these
descriptions, the physical systems have not been dominated
by the interactions, and therefore classical measures and pa-
rameters have been utilized in describing the dynamics of the
system [10-12]. In contrast, we take both approaches for the
quantum ratchet system where interactions play the dominant
role in defining the type of dynamics exhibited by the system.
This allows us to differentiate in a quantitative way between
different models that are used in the description of current
experiments [15,16,18]. Such differences can be seen even
in regular dynamical regimes via large condensate depletion
and subsequent quantum revivals. This situation only becomes
worse for chaotic regimes, where the condensate depletes,
and thus results in an absence of quantum revivals. The
nonequilibrium dynamics of the condensate held at a finite
temperature and driven by external fields results in both
thermal and dynamical depletion of the condensate. A number
of powerful methods have been developed that allow one

to investigate thermal depletion of the condensate, including
the Hartree-Fock-Bogoliubov-Popov method [33-35] and the
Zaremba-Nikuni-Griffin method [36,37], along with methods
based on the projected Gross-Pitaevskii [38,39] and stochastic
Gross-Pitaevskii equations [40,41]. The self-consistent treat-
ment of the dynamical depletion of a driven condensate held
at a finite temperature can be obtained within the second-
order number-conserving method [42—-45]. The latter method
allows one to obtain a number-conserving description of a
driven condensate, enables one to preserve the orthogonality
of condensate and non-condensate parts of the BEC using the
Penrose-Onsager criterion of the Bose-Einstein condensation
[46], and allows for the interaction and transfer of particles
within the entire BEC. Specifically, the application of this
method to a §-kicked-rotor condensate revealed that the un-
bounded growth of the noncondensate part of the condensate
is a direct consequence of the instabilities in the linearized
Gross-Pitaevskii equation. By incorporating the second-order
corrections, this method enables a self-consistent treatment of
the condensate’s back-action and shows that the growth of the
noncondensate part is damped out, thus revealing the role of
the dynamical depletion in a driven BEC [43-45].

Advances in the experimental control of ultracold atoms
have opened up a wide variety of new research directions
[47]. In particular, studies have demonstrated novel phenom-
ena including persistent currents [15,16,18], precision and
dynamic control of optical traps [14,17,18], the generation
of quantum ratchets [48,49], and the measurement of quasi-
classical phase-space structures [12]. Such techniques, along
with the knowledge that mean-field models have been well
tested and validated [30-32], allow for new perspectives on
the connection between linear quantum many-body dynamics
and mean-field nonlinear dynamics in the out of equilibrium
regimes. Furthermore, they allow investigations into dynami-
cal features of quantum chaos beyond the well-studied single-
particle case [10-12]. Here we provide a detailed study of
the mean-field and quantum many-body dynamics and find
that both treatments lead to the same subunity power-law
time scaling. Furthermore, we provide a context in which the
deviation from the mean-field description with the subsequent
recovery of the mean-field phase-space structures can be
observed via long-lived condensate depletion and quantum
revivals.

II. MANY-BODY AND MEAN-FIELD MODELS

In this paper, we consider a BEC in a toroidal trap [14—18],
resonantly driven by a generalized parity and time-reversal
symmetry-breaking potential that is periodic in time. We
will focus on a potential that can be experimentally real-
ized by rotating the entire condensate confined in a trap
around a circle of radius Ry [19,21]. This driving, together
with repulsive particle interactions, produces three distinct
dynamical regimes for a particle current: Rabi oscillation,
quantum chaotic, and self-trapping regimes, in accordance
with increasing interaction strength. This system can be effec-
tively treated using a one-dimensional Bose-Hubbard model
with periodic boundary conditions, which can be viewed as
a discretization of the torus or explicit lattice sites on a ring
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[21]. The Hamiltonian for this model is

L L
\ oo U, . =
Ay = —J ) (bibjp1 + He) + 5 Y iy — 1)
j=1 j=1

L
+ Y Vi, 1)
j=1

where the driving field, V;(¢), is given by
Vi(t) = Eqcos(krf; — wt) + E_cos(krf; + wt). (2)

Here 13;, b;, and ;= 13}13 ; are the bosonic creation, anni-
hilation, and number operators on the jth site, respectively.
These operators obey the standard bosonic commutation rela-
tions [13,-, 13;] = §;; and [Bi, Bj] = 0. Each site in the L length
discretization corresponds to a position r6;, where r is the
radius of the torus, 6; € [0, 27) is the angle to the site, and the
periodic boundary conditions of the torus impose 6;,; = 6;.
The coefficients E. give the amplitude of the driving as well
as control the violation of P and T symmetries when they are
not equal. « is the wave number of the driving field and w
is the frequency. For simplicity we consider resonant driving
with the first harmonic of the toroidal trap, k = 1/r, and
w = 2J[1 — cos(2w /L)]/h. A more detailed list of drive con-
figurations was considered in [19], while the specific choice
of the potential in Eq. (2) was made based on its simplicity
and experimental relevance [19,21].

The experimental realization of the quantum ratchet
[49-53] with the observation of its characteristic dynamical
regimes can be achieved by a Bose-Einstein condensate of
87Rb loaded in a ratchet potential given by Eq. (2) formed
by two counterpropagating laser fields. Upon loading the
BEC into the optical potential, the atomic cloud undergoes
a free expansion which can be monitored by imaging of the
BEC via the well-established time-of-flight (TOF) technique.
The TOF-generated images of the atomic cloud reveal the
atomic-velocity distribution. This allows one to obtain not
only the mean atomic momentum, but also the time evolution
of the particle current and depletion of the condensate as
a function of the coupling parameter g = U(N — 1)/L. The
periodic driving of the system and its dynamical response give
rise to two time scales exhibited by the quantum ratchet. The
first time scale is defined by the driving period, T = 27 /w,
while the noninteracting Rabi period, Tx = 27/ (EJZr + EE)%,
defines the second time scale. The inclusion of interaction in
the system results in three distinct dynamical regimes: Rabi
oscillation for weak interactions, the onset of self-trapping for
strong interaction U(N — 1) = 2LJ/max(E, E_), and finally
the chaotic regime that is exhibited by the system for the
intermediate interaction strengths [19,21].

It has been previously shown that the static and dynamic
signatures of quantum chaos in our ratchet are preserved in
a truncated three level system (3LS) defined by the Floquet
modes of the system [19,21]. This model can be derived by
applying the (¢,1") formalism to the equation of motion for
the second quantized field operator 4/ (x). This method takes
the time dependence induced by the periodic driving and
absorbs it into an auxiliary parameter ¢’ in a way that makes
the equation of motion take the form of a Floquet operator

in t. By expanding in Floquet states, a time-independent
representation of the system is acquired [19,20]. In the special
case of weak driving, one can restrict the expansion to the
three lowest angular momentum modes and obtain an effective
three level model (3LS) [19]. In this picture the effective
Hamiltonian is

g Ey o E_ i,
Hys = 7(a+a0 +Hc)+ T(a_ao +Hc)
Uw—. . .
ey va(nv -1, (3)

where &T), a,, and 7, are bosonic creation, annihilation, and
number operators, respectively, for the angular momentum
mode v, which satisfy the bosonic commutation relations,
[ay, &I] =6,y and [a,, a,] = 0. Here the index of the oper-
ator represents positive, negative, and zero angular momen-
tum modes. We note that interactions that are repulsive in
the Bose-Hubbard model become attractive in the angular
momentum representation of the Floquet modes [19] and the
factor of L comes from the L length spatial discretization of
the Bose-Hubbard model.

Both of these models allow for a corresponding mean-field
model in the limit where N — oo and U — 0 with U(N —
1) = const. These models can be acquired by first calculating
the equation of the boson destruction operators and, under the
usual assumptions, taking the expectation value with respect
to a tensor product of Glauber coherent states [54]. The result
for the Bose-Hubbard model is the nonintegrable discrete
nonlinear Schrodinger equation (DNLS) [54]

0
ih—; = =] (@jn1 + 1) + Vi, + NUI§;I"¢;, (4

where ¢; is the coherent-state amplitude at the jth site, with
Zj |o; |> = 1, and we are in the mean-field limit. For the 3LS
model, we arrive at a similar DNLS-type model with only
three amplitudes which we will call the 3GP [19]:

5 | P+ a2y 5 0 ¢+
il do|=| & %UEWOP = o |,
s 0 T Ate-r]L
5)

where ¢, is the coherent-state amplitude in the angular mo-
mentum mode v, we are again in the mean-field limit, and
>l =1

In our previous work [21], we have employed hopping
units where time is scaled by 7/J and energies are scaled
by J. However, for the clarity of the present paper we will
not assume /i = 1, and will use the parameters E; = 0.0225/
and E_ = 0.0075J and vary the mean-field interaction NU /J
in the range [0, 0.325], which covers all three dynamical
regimes. For our simulations we use the ground state of the
noninteracting system with no driving and time evolve for
a duration of 10007%. In the DNLS we use L = 6 in order
to capture an extended range of angular momentum modes,
which we simulate using a fourth-order Runge-Kutta method
with a sufficiently converged time step. The 3LS has a much
smaller Hilbert space than the Bose-Hubbard, scaling with

(N + 1)(N +2)/2 compared to (¥J*"), respectively. This
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allows for long-time dynamics for N up to 40 particles in
the 3LS using exact diagonalization. For the 3GP we use a
fourth-order Runge-Kutta method with a sufficiently small
time step, At, in order to converge results. We emphasize
that the convergence of the numerical solution for both 3GP
and DNLS directly corresponds to the truncation error of
the fourth-order Runge-Kutta method, egrg, which scales as
erk = O(At*) [55,56].

III. NONLINEAR METHODS

Extensive research in nonlinear dynamics has revealed a
number of fundamental results that firmly established the
numerical study of dynamical systems and chaos. The prime
example among them is the Takens theorem, which pro-
vides the necessary conditions under which the evolution of
a dynamical system can be obtained from a discrete time
series of the state of a dynamical system [13,27,28,57]. This
makes it possible to not only calculate attractor dimensions
but also determine Lyapunov exponents from experimental
data [13]. Similar methods have also been developed that
can identify the chaotic nature of a time series without hav-
ing to calculate the full spectrum of Lyapunov exponents
[58,59]. For our paper, we will consider the 0-1 test for
identification of the chaotic regime [58,59], and the delay
embedding method for estimating the correlation dimension
of an attractor [13,27,28,57].

A. 0-1 test for chaos

In this section we will introduce the binary 0-1 test for
chaos identification in a dynamical system that yields zero
for a regular dynamics and unity for a chaotic dynamics.
The underlying concept is to map a length A/ time series
X = {x1, x2, - - - , x»r} onto an effective two-dimensional (2D)
phase space with coordinates (p, g) where a chaotic system’s
trajectory will manifest as the Brownian-type motion with
characteristic linear scaling of mean-squared displacement
with time [58,59]. This map is defined as

J
pi = ) xicosic), (©6)
i=1
J
q; =Y xsin(ic) (7)
i=1
for j €{1,2,..., N} where c is an arbitrary parameter on

the interval (0, 7) (see Fig. 2). From the mapped coordinates
given by Eq. (6) one then proceeds with the evaluation of the
modified mean-squared displacement:

M(j) = D(j) + Wosc(j)- ®)

Here, D(j) is the normal mean-squared displacement for
points separated by j time steps in the series of p and ¢,

N
1
DGy = lim =¥ [(pivj = )’ + (@ir; = )", ()
i=1
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FIG. 2. 0-1 test coordinates. (a)—(i) Examples of the mapped
coordinates in the 0-1 test for chaos for the 3GP and six site
DNLS for all dynamical regimes. As expected in the regular regimes,
the Rabi (left) and self-trapping (right) dynamics are mapped to
tori in the (pg) plane. The center column, corresponding to the
chaotic regime, displays random-walk-like behavior with the points
spreading over the effective phase space. This diffusive behavior is
characteristic of chaotic dynamics under the map used in the 0-1
test, making use of linear scaling in the mean-squared displacement
to identify chaos.
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and the counteroscillatory function Wy () is given by

1\ 1= cos(jo)
N N ' —cos(jc
Wose(j) = (/vlgnmN;xl) Tooosie 10

The counteroscillatory function Wy (j) removes the oscil-
latory dynamics of the mean-squared displacement D(j),
while preserving the original asymptotic growth of the mod-
ified mean-squared displacement M(j) [59]. Since chaotic
dynamics is mapped to Brownian-like motion, M(j) scales
linearly with j approaching infinity. Thus, one can intro-
duce auxiliary vectors A =(1,2,...,|N/10]) and A =
(M(1),M(2), ..., M(IN/10])), and the final binary 01 test
output acquires a particularly simple form:

cov(A, A)
K= —————, (11)
J/var(A)var(A)
where the covariance, cov(A, A), between two vectors A and
A is defined as
LN/10]

cov(A, A) = (A =D A;—=D). (12)
j=1

(LN/10])

Here X and var(x) = cov(x, X) are the mean value and vari-
ance of the vector x, correspondingly. We note here that by
taking j € {1,---, [N/10]} the scheme preserves the limit
structure of the mean-squared displacement [58,59]. The test
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is then carried out for K. using a sample of ¢ values in the
range (0, ), which ensure the binary 0—1 test is independent
of the particular choice of ¢ [58]. We should mention that
a discrete time series which is obtained from a dynamical
system is characterized by an upper bound ¢ beyond which
the power spectrum decays to zero for large frequencies f.
This results in a maximal value of the upper bound, ¢ =
27 fmax/ fs» Which depends on the maximal frequency, fiax,
and the sample frequency, f;. This limit is imposed in order
to prevent false negatives of identifying chaos in the system,
since every bound ¢ exceeding the maximal value, ¢ > Cpux,
will result in periodic values for p and g and thus map phase
space to a torus [59]. It is also convenient to select an irrational
number for ¢ such that it is not resonant with the frequencies
of the time series being tested.

B. Correlation dimension

The 0-1 test allows us to determine the interaction
strengths for which our system exhibits chaotic dynamics.
In this section we will apply delay embedding techniques in
order to determine the fractal dimension of the attractors for
various measures of the quantum ratchet. There are multiple
types of fractal dimensions, i.e., the box counting, informa-
tion, and correlation dimensions [13]. All of these use the
scaling of some measure on a dynamical system attractor with
neighborhood size in phase space to calculate the dimension.
Due to the computational accessibility, we will focus on the
correlation dimension in order to characterize the dynamical
regimes beyond the presence of chaos. In order to calculate
the correlation dimension, D,, we take a time series X and
construct the delay embedding [13,27]. This takes our time
series and maps it to an m-dimensional phase-space vector for
each instant in time, that is X — X’ with

X' ={v. v}, Ve } (13)
where v] = (x;, Xiyr, -+, Xix(m—1)r) and 7 is the time delay,
which must be selected so that the attractor is sufficiently

unwrapped [13,27]. Using the delay vectors v} in X’ we can
calculate the correlation sum [13,27]:

P
C(m,e):%z Z @(6—|v;—v,§

j=mk<j—w

), (14

where € is the radius of an m-dimensional sphere, P is the
number of pairs of vectors used, ®(¢) is the Heaviside step
function, and w is the Theiler window, which ensures that all
of the points taken into account are sufficiently uncorrelated
in time [13,27]. With the proper selection of parameters, large
enough embedding dimension, and a sufficiently sampled
attractor, the correlation sum scales polynomially with the
radius of the m-dimensional sphere, where the power is the
correlation dimension, that is, C(m, €) o< €?> [13,27]. Gen-
erally, one does not have the a priori value for m to get a
proper estimate for the correlation dimension D,. Thus, the
convergence of the m value serves as an indicator for the
correct estimate of the correlation dimension D, [13,27]. A
typical method to select the time delay t is to take the first
minimum of the mutual information of the time series [26],
which will be used in our analysis. For the Theiler window we
select w = N'1/2 =~ 307k, where T is the Rabi period, which

- 1=
g =—
v 08" Kiesr? =15
< =%
3 =2
§ o6 ’=’;’
=iz
e ’Iﬂ
iy /r"
02 g”‘d‘! u ]
K]
0.0 (s L—-—
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Interaction Strength (N-1)U/L

FIG. 3. 0-1 test for chaos. The output of the 0-1 test for chaos,
K, shows distinct pockets of chaos (gray shading) that are the
same for each model and measure, with no chaos observed after
the transition to self-trapping. This is in contrast to the quantum
many-body dynamics and level statistics in [21], which predicted one
bulk region given by the gray hashed region. The current and local
density in DNLS agree exceptionally well with the 3GP, indicating
that the inclusion of higher angular momentum modes in the DNLS
does not affect the presence of chaos.

ensures that the temporal correlations do not produce spurious
attractor dimensions. We also check each parameter against
perturbations in order to confirm that the attractor is invariant
under smooth transformations [60].

IV. LAYERED CHAOS IN A DRIVEN QUANTUM RATCHET

We begin our study by characterizing the mean-field dy-
namics of our quantum ratchet in the 3GP and the DNLS. Us-
ing the 01 test we first characterize the interaction ranges for
which chaotic dynamics is present. We then move to calculate
the fractal dimension of the attractors throughout the dynami-
cal regimes of our system. For each method, we use a time se-
ries of length A; = 10 for particle current, and in the DNLS
we use Ny ~ 10° for the local density at the third site, |¢3]>.

In order to avoid resonances, we use a total of 100 ¢ values
at multiples of the golden ratio, ¢ = (1 4 +/5)/2, for calcu-
lating the test parameter K., from which the median is taken
as the final test value. For the maximum ¢ value imposed by
the 0—1 test for chaos, we have set fi.x = 2¢9Qr & 3.24Q2,
with Qz the Rabi frequency, since for frequencies higher
than the Rabi frequency the power spectrum decays to zero.
In Fig. 2 we provide examples of the effective phase-space
coordinates p and g for measurements of current in both of
our mean-field models and local density in the DNLS over
each dynamical regime with ¢ = 0.8 /100 ~ 0.025. In Fig. 3
we give the final test parameter. We note that there are distinct
pockets of chaos for the particle current in both mean-field
models as well as the local density of the DNLS. This is
contrary to the single dominant feature the level statistics and
dynamical measures display in [21], which is indicated by the
gray shaded region in Fig. 3. However, the two models are in
agreement for the regions which are chaotic, even though they
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FIG. 4. Delay reconstructed attractors. (a)—(c), (d)—(f) The cur-
rent in both the 3GP and DNLS, respectively, have qualitatively
similar attractors for each dynamical regime. The differences in
coordinate ranges are due to the exclusion of the scaling factors for
the angular momentum modes in the 3GP, which has no effect on
the attractor dimension. (g)—(i) The local density in the DNLS has
attractors that are visibly higher dimensional when compared to the
current. In the Rabi and self-trapping regimes we see densely filled
surfaces with no holes, unlike the currents, which appear as tori.
The attractors for the chaotic regime all show signs of self-similarity,
and have deviated from regular torus shapes to a higher-dimensional
region in phase space. Coloring is meant only to provide contrast to
aid the eye.

arise from quantum models with quite different assumptions
and completely different sets of approximations.

We now calculate the attractor dimension for the quantum
ratchet using the correlation method laid out in Sec. III B.
In Figs. 4-6, each subpanel corresponds to the same time
series as seen in Fig. 2, respectively, giving an example
of all three regimes in both models at different scales of
measurement for the DNLS. Each delay reconstruction uses
the first minimum of the mutual information to calculate the
time delay 7 [26]. In Fig. 4, the delay embeddings for the 3GP
and DNLS current show clear tori in the case of Rabi regime
[Figs. 4(a) and 4(d)] and self-trapping dynamics [Figs. 4(c)
and 4(f)]. However, the chaotic regime explores a much larger
region of the reconstructed phase space, while also displaying
fractal-like structure [Figs. 4(b) and 4(e)]. In contrast to the
particle current, the local density appears spherical during the
Rabi regime [Figs. 4(g) and 4(i)], while the chaotic regime
[Fig. 4(h)] is much more dense, and qualitatively different
from its counterparts.

The correlation sums are displayed in Fig. 5, where we

have selected the Theiler window w = +/10° ~ 337, in order
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FIG. 5. Correlation sums. (a)—(i) Gray dashed lines indicate the
start and end of the linear scaling regions used to calculate the
correlation dimension, with the embedding dimension decreasing
down and to the right. Each model and measure approaches a
constant slope in the indicated region, with the range of € checked
for being within the size of delay reconstructed attractors.

to avoid temporal correlations, for each of the attractors given
in Fig. 4. All show a region of linear scaling with € on the log-
log scale identified by the vertical dashed lines. When such a
region is found, the size of ¢ must be within the bounds of the
attractor, otherwise an incorrect dimension will be returned;
e.g., for the large € seen in Fig. 5(c) one would find D, =
1, which is clearly incorrect as the corresponding attractor
[Fig. 4(c)] can be seen to be dense on a 2D surface. For each
measure and interaction strength tested that can be identified
with a linear scaling, we perform a fit with a linear regression
and extract the correlation dimension D;, keeping those D,
which have an R? > 0.99. In Figs. 6(a)-6(i) we see that a
plateau is observed as m is increased. This is indicative of
the convergence of D,. However, one finds a slow increase of
the correlation dimension for some time series after the
plateau is reached. This is typical in time series of finite length
with some amount of noise [27]. In order to account for this
slow increase, we average over the plateaued region, including
the error in the linear fits, which gives the final correlation
dimension with some uncertainty seen in Table I. From these
three interaction strengths it is clear that higher-dimensional
attractors are observed for the DNLS local density [Figs. 4(g)—
4(i)] when compared to the particle current.

Figure 7 gives the correlation dimension for the 3GP cur-
rent, DNLS current, and DNLS local density for interaction
strengths ranging from g = 0 to 0.34 with lines meant to guide
the eye. It is clear that an increased correlation dimension is
associated with chaotic dynamics as identified by the 0—1 test
for the gray shaded regions. We stress that the particle currents
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FIG. 6. Converging correlation dimension. Each panel corre-
sponds to the slope of the correlation sum given in Fig. 5 with the
same letter. Each model and interaction strength shows a plateau
corresponding to the convergence of the correlation dimension in the
embedding dimension. The final correlation dimension is given by
the average over all m after the plateau is reached (see Table I for
numerical values). The slow increase in dimension as m increases
after the plateau, as seen in (b) and (i), is a typical artifact of noise in
the time series [27].

in the 3GP and DNLS are in general agreement, with only
slight variations. The local density in the DNLS is greater than
the particle current by 8D, ~~ 1 for each interaction strength.
This implies that if one were to experimentally observe a
system such as this, with two vastly different time scales, the
reconstructed attractor dimension can vary with the layer of
the system observed, i.e., global versus local. In our system,
this can be explained by accounting for the fact that the
particle current averages over the entire lattice in the DNLS,
and that the fluctuations due to the driving are averaged out.

TABLE I. Correlation dimension: saturation value for the corre-
lation dimension, D, of the attractors seen in Fig. 4. The dimensions
for 3GP and DNLS particle currents are in general agreement. Small
deviations are expected, as the 3GP removes the short-time dynamics
due to driving. The local density of the DNLS is consistently larger
than the corresponding total current, due to oscillations on the time
scale of the driving that are averaged out for the latter measure.

Model and Rabi Chaos Self-trapping
measure g=0.03 g=0.14 g=0.34
3GP current 2.06+002 3.27*013 2.02+002
DNLS current 2.07+002 2.97+005 2.3(0+002
DNLS density |¢3/? 2.59+0.01 3.93%0:04 3.05%0:05

4 5: - 3GP Total Current 1
"“I| =~ DNLS Total Current
[| =~ DNLS Local Densit!
Q40 y ]
C
iel [
@ i
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FIG. 7. Mean-field fractal dimension. The correlation dimen-
sion, D,, shows sharp increases for the regimes where chaos was
identified by the 0-1 test for chaos (vertical gray regions). The
dimensions of the current in the 3GP and the DNLS follow the
same trend with increasing interaction strength, further reaffirming
the effectiveness of the three mode model. However, the local density
in the DNLS is seen to be greater than the particle current regardless
of interaction. This is due to the inclusion of rapid oscillations with
the drive potential that get averaged out when the whole lattice is
considered. Lines are meant only to guide the eye.

Moreover, we note that the drive period T and the Rabi period
Tr cannot be related by a rational number. This implies that
a time series which contains the shorter time scale must have
an attractor that is one dimension larger for regular dynamics,
which is clearly seen if one observes the weakly interacting
regime at g = 0.02.

V. CHARACTERIZING THE APPROACH TO MEAN FIELD

With the mean-field attractors characterized, in this section
we test the convergence of our many-body quantum ratchet to
its mean-field limit. In Figs. 8(a)-8(d) we plot the normalized
particle current (I/Iy.x) in the Rabi regime (g = 0.03) over
1007 for the 3GP and the 3LS with N =6, 12, and 18,
respectively. For N = 6, we observe beat patterns, where the
current is approximated by the mean-field Rabi dynamics
envelopes separated by a nearly constant particle current in
between. As the number of particles is increased, we see an
elongation of the envelope of the oscillations, with further
elongated regions of nearly constant current. Extending the
time range for the larger system sizes reveals revivals of
current similar to those seen for N = 6. The onset of nearly
constant current is indicative of a change in the underlying
structure of the many-body dynamics. Indeed, if we plot the
depletion [Fig. 9(a)], defined as D = 1 — A /N, where 1, is
the largest eigenvalue of the single-particle density matrix
(&L&v), for this same time range and particle numbers, we
see high depletion for the constant current ranges. The ranges
where oscillating current is observed can be seen to have
the depletion trend with the envelope. It is clear that the
coherent dynamics of the quantum ratchet are short lived,
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FIG. 8. Dynamics beyond convergence time: (a)—(d) share the
horizontal axis given by (d). (a) The normalized particle current,
1/1,, for the mean-field 3GP. (b) The 3LS for particle number
N = 6 has an envelope that decays to a nearly constant value beyond
the initial time it is converged to the mean-field result. This is then
followed by a quantum revival of nearly Rabi-like oscillations, then
the pattern repeats. (c), (d) Normalized particle currents N = 12 and
16, respectively, show the same qualitative behavior as N = 6, with
envelopes and regions of near constant current increasing with N.

indicating that reconstructing the system mean-field attractor
from quantum many-body dynamics would require the initial
envelope to range the entire 1000 7% time scale.

For the increased interaction strength into the chaotic
regime (g = 0.14), we again observe the onset of high de-
pletion, see Fig. 9(b) with N =6, 12, and 18, respectively.
In contrast to the Rabi regime, there is no decay of the
depletion back to near zero for the chaotic dynamics within
1007g. For the self-trapping regime, the depletion increases,
but not to the magnitude of Rabi or chaotic dynamics, with
a maximum of approximately 0.2. Similar to our previous
finding, the depletion of the condensate for these regimes
makes the reconstruction of delay embedded attractors not
possible for accessible system sizes and time scales, due to
insufficient attractor sampling.

The initial onset of depletion for the Rabi and chaotic
regimes can be fitted with the function D(x) = A tanh[B(x +
C)] + D. From these fits we extract the value for C, which
is the turning point of the tanh function and for increasing
system sizes gives a measure of the time for which a coherent
condensate is present. On a log-log scale it is clear that C
scales polynomially with particle number N. Using the fitting
function C = a(N + B)° (see Fig. 10), we find that the onset
of depletion gives § = 0.508 % 0.004 for Rabi dynamics and
B =0.179 £0.004. We note that the system sizes N = 2,
4, 6, and 8 have not been used for the chaotic regime, and
that the self-trapping regime is not included since it could
not be properly fitted for D(¢). The trends of depletion after
its initial onset seen in Fig. 9 indicate that the condensate

( Rabi Chaos Self Trapping

N-1)U N-1)U N-1)U

DU — 0,005 MDY — 0,023 N=DY — 0,054
0.2

c 0.0/(&) (b) i

-% 0.4 W () h

202/ \ /

§ 0.0/(d) (e) <
0.4 [WAAMAI A, ettty (1) X
0.2,/ \ [
0.0/(8) (h) >

o

40 80 O 40 80 O 40 80
Time (TR)

FIG. 9. Condensate depletion. (a)—(c) Depletion of the original
condensate for each dynamical regime in the 3LS. The depletion
is defined as D = 1 — A, /N, where X, /N is the ratio of the largest
eigenvalue of the single-particle density matrix (g;a;) to a total num-
ber of particles, N, that form the BEC. Physically, depletion measures
the portion of the BEC that remains in a single-particle mode. The
large values of depletion throughout the dynamical regimes reveal
significant deviations from the mean-field description of the BEC.
Thus, persistent depletion indicates many-body dynamics of the
condensate that cannot be captured within the mean-field approx-
imation. (d)—(f), (g)—(i) The same mean-field interaction strength
with increased particle number, i.e., NUs.s = const. The Rabi and
self-trapping regimes show clear quantum revivals of a condensate,
while the chaotic regime remains depleted over multiple macroscopic
modes.

has revivals for the Rabi and self-trapping regimes, while
the chaotic regime does not. If we plot the fidelity defined
as (Yt = 0)|y(2))], seen in Figs. 11(a)-11(i), we confirm
that the Rabi and self-trapping dynamics have a large overlap
with the initial condensate, while chaotic dynamics present no
revivals. For the first case, a clear envelope of revival is seen.
The other two simply oscillate rapidly with no discernible
pattern. In the case with clear trending, we extract the mean
time for the first revival of |(y(0)|v¥(¢))| = 0.75, and give it
as a function of N in Fig. 11(j), which has a linear scaling
with the particle number, namely, T = —4.41 4+ 5.79N. We
note the average was taken due to the highly oscillatory nature
of the measure within the broad revival peak.

B

R
NWhUIoOO~N0
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Y
Fit Parameter C

iO 15 20 25 30 35 40
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Particle Number

FIG. 10. Onset of depletion. The black points are data for C and
the red curves are the fitting functions. (a), (b) Onset of depletion
in the Rabi and chaotic regimes, respectively, as measured by the
turning point of the tanh fit. Both scale polynomially with particle
number N. For Rabi dynamics the onset of depletion scales with
NO31£0.004 'wwhile for chaotic dynamics it scales as NO-18+0004,
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FIG. 11. Fidelity. (a)—(c) Overlap of the system with its initial
state, | (¥ (0)|y(¢))|, for Rabi, chaotic, and self-trapping dynamics,
respectively. (¢)—(f), (g)—(i) The same measure for increased system
size, with columns corresponding to regimes. The Rabi and self-
trapping regimes have large overlaps with the initial condensate,
with the revivals in the Rabi regime corresponding to the decrease
in depletion (see Fig. 9). Chaotic dynamics have little overlap with
the initial condensate, with the fidelity decreasing as the particle
number is increased. (j) Mean time for |{(y¥(0)[v(z))| = 0.75 in the
Rabi regime increases linearly in particle number, following Tievive =
5.79N —4.41.

VI. CONCLUSIONS AND OUTLOOK

In conclusion, we explored a driven Bose-Einstein con-
densate quantum ratchet and identified four distinct pock-
ets of chaos on the interval of interaction strength rang-
ing from g=0 to 0.28. These regions are identified for
the same interaction strengths using the particle current in
an effective three level mean-field model and the discrete
nonlinear Schrodinger equation, as well as the local density
of the discrete nonlinear Schrodinger equation. Our study
of the particle current reveals that the three level mean-
field model and discrete nonlinear Schrodinger equation have
qualitatively similar trends in correlation dimension for the
interaction strengths considered. However, the local density
in the discrete nonlinear Schrodinger equation results in a
dimension that is consistently higher. We characterized the
dynamics of the Rabi, chaotic, and self-trapping regimes
beyond the convergence time, where the deviation from the
mean-field value occurs due to the onset of condensate de-
pletion. Because the deviation of the many-body from the
mean-field dynamics depends chaotically on small differences
in the Hamiltonian in the chaotic regime, one cannot study
the space-time trajectory of some observable to determine
convergence of the many-body result to the mean-field one.
Instead, we treat the growth of the depletion, which is a
good overall measure for break-down of mean-field accuracy.
In the Rabi and chaotic cases, the depletion has a tanh-like

onset, the turning points of which scale as N0>1#0-004 and
NO-18£0.004 " regpectively. The decreases in depletion after its
initial onset were found to match the revival of over 75% of
the original condensate in the Rabi regime, with the revival
time scaling linearly in N. In contrast, a quantum ratchet with
the coupling strength corresponding to the chaotic regime
does not exhibit quantum revivals. Although the time scales
necessary to reliably reconstruct the attractor of our quantum
many-body system are currently out of reach for the current
Bose-Einstein condensate-based experiments, the conclusions
obtained in the paper will be important for the future studies
of driven many-body systems. In fact, local oscillations and
fluctuations that may be averaged out in macroscopic mea-
sures, e.g., current, can present higher-dimensional attractors.
Therefore, fractal structures in the dynamics of many-body
systems depend on the observable, which thus establishes the
notion of layered chaos in these systems.

The performed study of a driven quantum ratchet may
open up new pathways in the exploration and characterization
of emergent phenomena in driven many-body systems. The
prime example is the identification of Anderson and many-
body localization in driven interacting and noninteracting
quantum many-body systems by means of many-body mea-
sures, including binary identification of chaotic dynamics,
calculation of the depletion, and evaluation of the correlation
dimension. The other important research pathway corresponds
to the identification of the characteristic time scale at which
mean-field description fails to describe the quantum many-
body system. Specifically, the characteristic scaling of the
Ehrenfest time, tz, which can be expressed in terms of
the Lyapunov exponent y and particle number N as 1tz =~
In(N)/y, and which is conventionally used in the estimate
of the breakdown of mean field description, was found to
have large deviation in the special case of our system. There-
fore, the open question is whether the Ehrenfest time scales
logarithmically or polynomially with the number of particles
that form a quantum many-body interacting system. The other
critical question is the dependence of the rate of convergence
of the many-body dynamics to its mean-field limit on the
amount of entanglement present in the system. Finally, an
important question is related to the rate of the convergence to
the semiclassical strange attractors as a function of dissipation
exhibited by the system.
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