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Momentum correlations of a few ultracold bosons escaping from an open well
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The dynamical properties of a one-dimensional system of two and three bosons escaping from an open
potential well are studied in terms of the momentum distributions of particles. In the case of a two-boson
system, it is shown that the single- and two-particle momentum distributions undergo a specific transition as the
interaction strength is tuned through the point where tunneling switches from the pair tunneling to the sequential
one. Characteristic features in the momentum spectra can be used to quantitatively determine the participation
of specific decay processes. A corresponding analysis is also performed for the three-boson system, showing a
scheme for generalizations to higher particle numbers. For completeness, the time-dependent Tan contact of the
system is also examined and its dynamics is found to undergo a similar transition. The results provide insight
into the dynamics of decaying few-body systems and offer potential interest for experimental research.
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I. INTRODUCTION

The quantum tunneling through a classically impenetrable
barrier is one of the oldest problems in quantum mechanics.
This problem arises in the analysis of such phenomena as
the α decay of an atomic nucleus [1], proton emission [2,3],
fusion, fission, photoassociation, and photodissociation [4–7].
While the tunneling of a single particle is well understood [8],
and the tunneling of a Bose-Einstein condensate of a large
number of particles is well described by a mean-field approx-
imation [9–12], the escape behavior of interacting few-body
systems is a more complicated problem in which the dynamics
is nontrivially governed by the interplay between interactions,
indistinguishability, and quantum correlations [13]. Although
significant attention has been already devoted to the dynam-
ical processes of a few particles confined in closed lattice
potentials [14–17], in recent years the significantly different
problem of a few particles tunneling into open space has
attracted an increasing amount of interest [18–30].

Current experimental advancements in the field of ultracold
physics allow realizing a variety of formerly purely theoretical
scenarios in the laboratory [31–33]. In particular, it is pos-
sible to precisely control the shape of the external confine-
ment [34–36], the interparticle interactions [37–39], as well
as engineer the initial state of the system [37,40] and mimic
low-dimensional physics [41–43]. The recent experiments on
the tunneling of a few interacting atoms escaping from an
effectively one-dimensional potential well [44,45] provide
fresh motivation for the study of such tunneling problems.
Since the presence of interparticle interactions and quantum
correlations affects the tunneling of few-body systems in
interesting and complex ways, a deeper understanding of this
issue could become important also from a theoretical point of
view [18–30].

Although the system of two tunneling particles is the
simplest possible case of the few-body tunneling problem,
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many open questions still remain unanswered, and it con-
tinues to be explored in recent research [46,47]. In [22,25]
the properties of the system were partially studied from the
momentum distribution point of view for repulsive interac-
tions. Here we extend this description by also taking the
attractive branch of interactions into account. This allows us
to examine how the momenta of the system are changed when
the interaction strength is tuned across the point of transition
between sequential tunneling (when bosons leave the well
one by one) and collective tunneling (when bosons leave the
well as clusters of two or more particles) [30,48,49]. Precise
relationships can be established that connect the form of the
momentum spectra to quantities such as the system energy and
the relative participation of the different tunneling processes.
Apart from the two-boson system, we also touch upon the
more complicated three-boson case, showing how the analysis
may be generalized to higher particle numbers. In addition, we
touch upon the time evolution of the Tan contact, a quantity
related to the interaction energy between the particles [50–52].

The work is organized as follows. In Sec. II we describe
the model system under study. In Sec. III we examine the
eigenspectrum of the many-body Hamiltonian of the open
well system. In Sec. IV we describe the decay dynamics of a
two-boson system, showing the basic nature of the tunneling
dynamics, and the transition between distinct regimes that
occurs at a specific value of the interaction strength. In Sec. V
we discuss the momentum distribution of the decaying two-
boson system. In Sec. VI we focus on the ways in which
the transition between different regimes is reflected in the
center-of-mass momentum distribution and the Tan contact.
In Sec. VII we discuss the momentum distributions of a three-
boson system. Section VIII is the conclusion.

II. MODEL

In this work we consider a system of N = 2 and N =
3 indistinguishable ultracold bosons of mass m, interacting
via a pointlike δ potential and confined in an effectively
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FIG. 1. The shape of the trapping potential at t < 0 [V0(x), black
dashed line] and after a sudden change at t � 0 (V (x), solid red
line). Energy and length are given in units of h̄�0 and

√
h̄/m�0,

respectively.

one-dimensional external trap. The many-body Hamiltonian
of this system has the form

H =
∑

i

[
− h̄2

2m

∂2

∂x2
i

+ V (xi )

]
+ g

∑
i< j

δ(xi − x j ), (1)

where xi represents the position of the ith boson and V (x)
is the external potential. The effective interparticle interac-
tion strength g is related to the three-dimensional s-wave
scattering length [53,54] and its magnitude can be tuned
experimentally via the Feshbach resonances [37,39] or by
changing the confinement in perpendicular directions [53].
Recently it was argued that a potential boson species feasible
for experimental realization of such a system is 87Rb or 85Rb
atoms [18]. It is worth mentioning that few-body systems of
bosonic 87Rb atoms have already been prepared in optical
lattices [15,55–57].

We assume that at t < 0 bosons are confined within a
closed asymmetric well potential V0(x) (dashed line in Fig. 1):

V0(x) =
{

m�0x2/2, x < 0,

m�x2/2, x > 0,
(2)

where the modified frequency � ≈ �0/2.26. Accordingly, the
initial many-body state at t = 0 is chosen as the ground state
of an interacting N-boson system confined inside V0(x). For
given interaction g, we find the ground state numerically by
propagating in imaginary time a trial many-body wave func-
tion (chosen as the ground state of N noninteracting bosons
in a harmonic oscillator well). In Fig. 2, we show the single-
and two-particle density profiles [ρ1(x) = ∫

dx2|�(x, x2)|2
and ρ2(x1, x2) = |�(x1, x2)|2] of the obtained initial state for
N = 2 bosons for three generic interaction strengths g: nonin-
teracting (g = 0), repulsive (g = 1), and attractive (g = −1).
In the initial state the bosons are completely contained within
the well region. For the noninteracting case [Fig. 2(a)], the
two-particle density ρ2(x1, x2) corresponds to a product of
two identical single-particle wave functions that have a nearly
Gaussian profile reflected by ρ1(x) [solid red in Fig. 2(d)]. In
the presence of attractive (repulsive) interactions, the bosons
are more likely (less likely) to be near each other and
the density ρ2(x1, x2) is concentrated closer to (away from)
the x1 = x2 diagonal [Figs. 2(b) and 2(c)]. It is reflected in the
shrinking (broadening) of the single-particle density profile
ρ1(x) [dotted green and dashed blue in Fig. 2(d)].
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FIG. 2. The two-particle probability density ρ2(x1, x2) of the
initial state for the two-particle system with zero interactions g = 0.0
(top left), attractive interactions g = −1.0 (top right), and repulsive
interactions g = 1.0 (bottom left). Bottom right: The single-particle
density profile ρ1(x) of the initial state for different interactions. It
can be seen that repulsive interactions broaden the single-particle
density profile and reduce the two-particle density along the x1 = x2

diagonal, while attractive interactions narrow the single-particle den-
sity profile and concentrate two-particle density along the diagonal.
Positions are in units of

√
h̄/m�0, interaction strength in units of√

h̄3�0/m two-particle probability density in units of m�0/h̄, single-
particle density in units of

√
m�0/h̄.

At t = 0 the trap is suddenly opened and the external po-
tential is changed to V (x), given by the following expression
(x0 = √

h̄/m�0 is the harmonic oscillator length unit):

V (x) =
⎧⎨
⎩

m�0x2/2, x < 0,

m�x2/2, 0 � x � 2x0,

h̄�0e−2(x/x0−9/4)2
, x > 2x0.

(3)

The resulting shape of V (x) is that of a potential well sepa-
rated from open space by a finite barrier (solid line in Fig. 1).
The function V (x) is chosen so that both it and its first
derivative are continuous everywhere.

The time evolution of the many-body state for t > 0 is
obtained straightforwardly by solving numerically the time-
dependent many-body Schrödinger equation in position rep-
resentation. The equation is integrated using a fourth-order
Runge-Kutta method. The calculations are done on a dense
grid (with spacing δx = 0.25x0 for the two-boson case and
δx = 0.33x0 for the three-boson case) in a region that includes
the potential well and a large extent of space outside [30]. The
boundaries of the simulated region are chosen large enough
to ensure that reflections from the hard-wall boundaries do
not affect the main results. For the N = 2 case the simulated
region is given by x ∈ [−10x0,+200x0], while for the N = 3
case it is given by x ∈ [−4x0,+120x0]. In contrast to our
previous study [30], we do not use a complex absorbing
potential at the boundaries, since then, as argued in [58], it
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FIG. 3. The eigenenergies of the many-body Hamiltonian (1)
after the well is opened at t = 0, for N = 2 bosons and different in-
teraction strength g. The eigenstates can be divided into two groups:
states which describe a pair of almost independent particles for all g
(red), and states which for g > 0 describe independent particles but
for g < 0 describe bound boson pairs with energy strongly dependent
on g (blue). Energies are in units of h̄�0, interaction strength in units
of

√
h̄3�0/m.

would be impossible to properly study correlations between
particles inside and outside the well.

For convenience, in all further discussion we use har-
monic oscillator units, i.e., energy, length, and the interaction
strength are given in h̄�0,

√
h̄/m�0, and

√
h̄3�0/m,

respectively.

III. HAMILTONIAN EIGENSPECTRUM

To build some intuition of the system properties, we first
examine the spectrum of the many-body Hamiltonian (1)
after the trap is opened at t = 0 for a system with N = 2
bosons (Fig. 3). It is very useful to refer this spectrum to
the well-known eigenspectrum of the Gaudin-Lieb-Liniger
model, describing a one-dimensional system of N ultracold
bosons in free space, adapted to the N = 2 case [59–63].
Although the system studied is slightly different from the
original model (nontrivial confinement in the initial region),
the eigenspectra of both Hamiltonians are very similar and
all eigenstates can be divided into two well-distinguished
groups. The first group consists of states of almost inde-
pendent particles having momenta k1 and k2, i.e., the total
energy of the state is E ≈ k2

1/2 + k2
2/2. Since this energy is

almost independent of interaction strength g, these states are
represented by nearly horizontal lines in the plot (shown in
red). The second group of states represents particles which
become bounded for attractive forces. It means that for g < 0
the bounded pair has a total energy directly dependent on
interactions, E ≈ K2/4 − g2/4, where K is the center-of-mass
momentum [60]. For repulsive forces (g > 0) these states
behave similarly to states from the first group and their energy

is nearly independent of interactions. Consequently, these
states are represented in Fig. 3 by characteristic parabolic lines
on the attractive branch which smoothly evolve into horizontal
lines on the repulsive branch (shown in blue).

Similar argumentation can be also applied to the system
of N = 3 bosons. By comparison to the Gaudin-Lieb-Liniger
model, in this case we expect three groups of many-body
eigenstates [63]. The first group includes states with three al-
most independent particles with energy independent of inter-
actions, E ≈ k2

1/2 + k2
2/2 + k2

3/2. The second group contains
states of three particles which for g < 0 form a composition of
a bound pair and a third independent particle. The correspond-
ing eigenenergy can be written as E ≈ K2/4 − g2/4 + k2

3/2,
where K is the center-of-mass momentum of the pair. Finally,
the third group is built from states which for g < 0 describe
bound trimers with energies E ≈ P2/6 − g2, where P is the
center-of-mass momentum of the trimer.

The evolution of an initial state prepared as the interacting
ground state of the confined system depends on its direct
decomposition into many-body eigenstates of the postquench
Hamiltonian (the eigenspectrum itself does not directly pro-
vide information about which of the different tunneling mech-
anisms will dominate in the dynamics). Therefore, tunneling
processes other than sequential tunneling, which involve clus-
ters of two or more particles, become available only for g < 0.
Unfortunately, due to numerical complexity, the aforemen-
tioned decomposition cannot be performed efficiently and ac-
curately, and one needs to use other approaches to answer the
question of the participation of different tunneling processes.
Having in mind that different tunneling processes are asso-
ciated with specific momentum correlations, in the following
we address this question by performing a numerically exact
time evolution of the system and analyzing the momentum
distributions.

IV. DYNAMICS OF TWO ESCAPING BOSONS

After the well is suddenly opened at t = 0, the bosons
start escaping through the barrier into open space. Before we
analyze the two-boson system from the momentum distribu-
tion point of view, let us recall recent results from [30] and
shortly discuss the dynamical properties of the system from
the point of view of density distributions. It is known that
the dynamical properties of the system depend significantly
on the strength of interparticle interactions. As the interaction
strength is changed from repulsions to sufficiently strong
attractions, the dynamics of the two-boson system undergoes a
transition between two distinct scenarios, characterized by the
dominance of different decay processes. Below a critical value
of interactions (approximately g = −0.9 in the case studied),
essentially the entire decay is dominated by pair tunneling,
i.e., both bosons leave the well simultaneously as a bound
pair. Conversely, for g above the critical value, the decay is
dominated by a sequential tunneling, in which the bosons
leave the well one by one. In such a regime, pair tunneling can
still occur but is significantly less likely. In fact, for g � 0, for
which a two-boson bound state does not exist, pair tunneling
essentially vanishes.

To illustrate the transition between the two tunneling mech-
anisms, in Fig. 4 (exactly as in [30]) we show snapshots of the
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FIG. 4. Time evolution of the two-particle probability density
ρ2(x1, x2; t ) of an initially trapped two-boson system for various in-
teraction strengths g. The dashed lines demarcate the well boundary
xB = 3x0. For the noninteracting and repulsive systems (g = 0.0, g =
1.0), essentially the entire decay process takes place via sequential
tunneling, while for sufficiently strong attractions (g = −1.0) the
system decays almost solely via pair tunneling. Positions are in units
of

√
h̄/m�0, interaction strength in units of

√
h̄3�0/m, time in units

of 1/�0 two-particle probability density in units of m�0/h̄. Compare
also to Fig. 2 in [30].

two-particle density profile ρ2(x1, x2; t ) = |�(x1, x2; t )|2 for
different moments after the opening of the well, and different
interaction strengths g. For better visibility we indicate the
well boundary xB ≈ 3x0 with dashed lines.

In the most trivial scenario of vanishing interactions
(g = 0) both bosons tunnel entirely independently of each
other. After a short time (t = 40) a significant amount of
the density is present in the region (x1 − xB)(x2 − xB) < 0
indicating a high probability of exactly one boson being
outside the well. For longer times both bosons are likely to
end up outside the well. Due to the absence of interactions, the
two-particle wave function is simply a product of two identical
single-particle wave functions during the entire process.

For a repulsive system (g = 1.0) the dynamics is also
dominated by the sequential tunneling, indicated by the initial
accumulation of the probability density in (x1 − xB)(x2 −
xB) < 0 region. However, the interparticle repulsion causes a
significant anticorrelation in the boson positions, so that the
probability density vanishes close to the x1 = x2 diagonal.
It is clear that simultaneous tunneling of bosons is strongly
suppressed in this case.

For sufficiently strong attractions the scenario is com-
pletely different (see example results for g = −1.0 in Fig. 4).
The sequential tunneling is suppressed and the bosons leave
the well only as a composite pair. This can be seen from
the density distribution, which during the whole evolution is
nonzero only in the regions with (x1 − xB)(x2 − xB) > 0 and
remains concentrated around the line x1 = x2.

It is useful to compare the described pair tunneling mecha-
nism with an analogous process in an optical lattice, recently
observed [14–17,64]. In the latter case, the cotunneling of an
atom pair between neighboring sites is forced by the energy

conservation: two interacting particles occupying the same
site are forced to tunnel as a pair to avoid energy mismatch.
This mechanism is present for attractive as well as repulsive
interactions. By contrast, collective tunneling from a single
well to the open space (as shown above) occurs only when
particles form a bound state, which in a one-dimensional
scenario is possible only for attractive interactions.

V. MOMENTUM DISTRIBUTIONS

Now let us discuss how the different tunneling regimes are
reflected in the particle momenta. For this purpose we study
the time evolution of the two- and single-particle momentum
distributions defined as

π2(k1, k2; t ) = 1

4π2h̄2

∣∣∣∣
∫

dx1dx2 e−i(k1x1+k2x2 )/h̄�(x1, x2; t )

∣∣∣∣
2

,

(4a)

π1(k; t ) =
∫

dk′ π2(k, k′; t ). (4b)

It should be pointed out that, from the experimental point
of view, measuring momentum distributions is quite feasible,
since appropriate techniques have been developed for measur-
ing positions and velocities [65–71] of individual untrapped
atoms. For the specific problem of bosons escaping from a
potential well, a relevant experimental scheme to measure the
momenta of the emitted particles has been proposed in [22].

Initially (t = 0) both momentum distributions have nearly-
Gaussian shapes centered at k1 = 0, k2 = 0. For larger times,
depending on the tunneling mechanism dominating the dy-
namics, characteristic features in π2 and π1 emerge. In
Fig. 5(a) we show the single-particle and two-particle mo-
mentum distributions for a few different interaction strengths,
after the bosons have been allowed to tunnel for some time t .
To increase understanding of the results, we show these dis-
tributions for the same interactions and time moments as in
Fig. 4.

In the simplest, noninteracting case (g = 0), as the particles
tunnel from the well, a narrow peak appears in the distribution
π1, centered around the value k0 ≈ 0.89. It is clear that the
two bosons are emitted with a very well-defined momentum.
The two-particle momentum distribution is a simple product
of two identical single-particle distributions π2(k1, k2; t ) =
π1(k1; t )π1(k2; t ) and clear horizontal or vertical lines at
k1 = k0 and k2 = k0 are visible. They indicate that the emitted
boson has a narrowly defined momentum, while the trapped
boson still has a nearly Gaussian distribution of momenta.

The momentum characteristics become more complicated
for interacting systems. In the case of repulsive interactions
[g = +1.0, second row in Fig. 5(a)] the dynamics is dom-
inated by the sequential tunneling of bosons. This behav-
ior is reflected in the single-particle momentum distribution
π1(k; t ) by two distinct peaks. One of them is centered around
the noninteracting value k0 while the second one is shifted
to larger momenta k′ ≈ 1.15. These two different momenta
can be directly associated with momenta of the sequentially
emitted bosons. Due to the repulsive interaction, the first
boson which leaves the well carries additional energy and in
consequence has a higher momentum k′. The second boson

063608-4



MOMENTUM CORRELATIONS OF A FEW ULTRACOLD … PHYSICAL REVIEW A 99, 063608 (2019)
π 1

(k
)

Momentum k

g = 0.0, t = 120

(a)

 0

 2

 4

 6

 8

 10

 0  0.5  1  1.5  2

π 1
(k

)

Momentum k

g = 1.0, t = 120

 0

 1

 2

 3

 4

 5

 6

 0  0.5  1  1.5  2

π 1
(k

)

Momentum k

g = -1.0, t = 120

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.5  1  1.5  2

k 2

k1

g = 1.0, t = 120

(b)

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5  0  0.5  1  1.5  2

-2

-1

 0

 1

 2

k 2
k1

g = 0.0, t = 120

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5  0  0.5  1  1.5  2
 0

 0.2

 0.4

 0.6

 0.8

 1

k 2

k1

g = 1.0, t = 120

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5  0  0.5  1  1.5  2
 0

 0.2

 0.4

 0.6

 0.8

 1

k 2

k1

g = -1.0, t = 120

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5  0  0.5  1  1.5  2
 0

 0.2

 0.4

 0.6

 0.8

 1

k 2

k1

g = -1.0, t = 120

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5  0  0.5  1  1.5  2
-1

-0.5

 0

 0.5

 1

FIG. 5. (a) The single-particle momentum distribution π1(k; t )
and the two-particle momentum distribution π2(k1, k2; t ) of the
two-boson system for various interaction strengths g, at a specific
moment t = 120. Black dashed lines indicate predicted values of
characteristic momenta calculated from the system energy (see text).
In the noninteracting system (g = 0.0) two bosons are emitted se-
quentially with identical momenta. In the repulsive system (g = 1.0)
two bosons are emitted sequentially with two different momenta.
In a system with sufficiently strongly attractions (g = −1.0) the
bosons are emitted as a bound pair with a well-defined center-of-
mass momentum. For g = −1.0, the thin black line shows π1 when
Eqs. (4) are redefined to exclude the part of the wave function
corresponding to the trapped particles. (b) The noise correlation
G(k1, k2; t ) for the two-boson system at g = ±1.0 and t = 120. The
correlations and anticorrelations that cannot be captured by a single-
particle description become clearly visible. Momenta are in units
of

√
h̄m�0, interaction strength in units of

√
h̄3�0/m, time in units

of 1/�0 two-particle momentum distribution in units of 1/(m�0 h̄),
single-particle momentum distribution in units of

√
1/(m�0 h̄).

no longer feels any interaction and therefore it tunnels with
the momentum k0. All this means that the momenta of the
emitted particles are also causally correlated, i.e., the boson
can be emitted with the momentum k0 only if the other has
been already emitted with momentum k′. This specific time
correlation is directly reflected in the two-particle momentum
distribution π2(k1, k2; t ). It is clearly seen that probability
of finding the boson with momentum k0 almost vanishes
whenever the remaining boson has momentum different than
k′. Contrary, probability of finding the boson with momentum
k′ is associated with almost Gaussian distribution of the
second boson centered around k = 0, i.e., distribution which
is characteristic for the trapped boson in the well.

Particular values for the momenta of emitted bosons k0 and
k′ can be easily found from analysis of the relevant system
energies. In the case studied (g = +1.0) one finds that the
initial energy of two confined bosons EINI(g) ≈ 1.07, while
the ground-state energy of a single boson in the well E1 ≈ 0.4.
These energies correspond to k′ = √

2[EINI(g) − E1] ≈ 1.16
and k0 = √

2E1 ≈ 0.89, respectively [vertical dashed lines in
the left middle and left upper plot in Fig. 5(a)]. Our numerical
results are in full agreement with this phenomenological
analysis.

Note that the above argument also predicts that, for suf-
ficiently strong attractions, when EINI(g) < E1, sequential
tunneling is strongly suppressed by the energy conserva-
tion [25,30]. For example, in the case of g = −1.0 [bottom
row in Fig. 5(a)] the pair tunneling is the dominating mech-
anism of the decay. Although the single-particle momentum
distribution π1(k; t ) is quite broad, a clear correlation between
momenta of emitted bosons along the line k1 + k2 = K =
const is visible in the two-particle distribution π2(k1, k2; t ).
This indicates that bosons are emitted simultaneously as a
bounded pair with a clearly defined center-of-mass momen-
tum K (in this case K ≈ 1.50), with the particles oscillating
around the center of mass with opposite relative momenta.
Note that in the distribution π2(k1, k2; t ) also some additional
Gaussian background centered around k1 = k2 = 0 is visible.
This part of the momentum distribution reflects the momenta
of bosons which still remain in the well (see Fig. 4 for the
corresponding density distribution of the remaining particles).

It is worth noticing that by using a projector P = θ (x1 −
xB)θ (x2 − xB), the two-particle wave function � can be writ-
ten as a sum of two orthogonal wave functions, �IN = P� and
� ′ = (1 − P)�. Then �IN encodes the state of exactly two
bosons being inside the well while � ′ encodes the remaining
part of the two-particle system. With this decomposition it is
possible to study the momentum distribution of the escaping
bosons independently of the state of bosons remaining in the
well. This approach corresponds to a simple modification of
definitions (4) by limiting the wave function to the � ′ part
only. This approach is also justified experimentally since it
is possible to measure the momenta of the escaping particles
only. With this redefinition, the single-particle distribution is
significantly modified since the threshold from confined parti-
cles is removed [thin black solid line in the left bottom plot in
Fig. 5(a)]. After this modification a significant enhancement
at momentum K/2 (half of the center-of-mass momentum) is
clearly visible [vertical dashed line in the left bottom plot in
Fig. 5(a)].
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FIG. 6. The center-of-mass momentum distributions πCM(K ; t )
of the two-boson system for various values of g, at a specific mo-
ment t = 120. For the repulsive (g = 1.0) and sufficiently strongly
attractive (g = −1.0) systems, only one decay process is available
(sequential and pair tunneling, respectively) and it is reflected in the
distribution as a single peak. For a system with weaker attractions
(g = −0.5) both sequential and pair tunnelings are possible, and
two peaks appear in the spectrum, each corresponding to a different
process. Momenta are in units of

√
h̄m�0, interaction strength in

units of
√

h̄3�0/m, time in units of 1/�0 momentum distribution in
units of

√
1/(m�0 h̄).

The particular value of the center-of-mass momentum K
can be predicted with simple phenomenological argumenta-
tion. In this case the initial energy of the system EINI(g) is
fully converted to the energy of the emitted interacting pair
Epair (g). The corresponding pair energy, as noted in Sec. III,
is approximately Epair (g) ≈ (K2 − g2)/4. Consequently, K =√

4EINI(g) + g2. In the case studied (g = −1.0) one finds
Epair (g) ≈ 0.31 and K ≈ 1.50, which agrees very well with
the momentum distribution obtained with our numerical
approach.

To make this analysis more comprehensive one can discuss
interparticle correlations not only in terms of the two-particle
momentum distribution but also via the so-called noise corre-
lation [72–76]. This quantity is defined straightforwardly as
the difference between the full two-particle distribution and
the product of corresponding single-particle distributions:

G(k1, k2; t ) = π2(k1, k2; t ) − π1(k1; t )π1(k2; t ). (5)

Phenomenologically, the noise correlation can be interpreted
as a distribution of correlations which are forced by interparti-
cle interactions that cannot be captured by any single-particle
description. In Fig. 5(b) we plot the noise correlation for
two different interactions corresponding to the dominance of
two different decay channels (g = ±1.0). It is evident that a
single-particle description strongly underestimates probabili-
ties of finding particles in cases when two-particle momentum
distributions display strong correlations (green areas). More
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FIG. 7. The relative participation of pair and sequential tunneling
in the overall dynamics of the two-boson system, for various interac-
tion strengths g. Green and red symbols show the participation of pair
tunneling and sequential tunneling, respectively, calculated from the
areas of the corresponding peaks in the center-of-mass momentum
distribution πCM at t = 180. For comparison, the corresponding
results from Ref. [30] are shown as green dashed and red solid lines,
respectively. It can be seen that sequential tunneling dominates in a
wide range of interaction strengths, but its participation falls abruptly
to zero as g approaches the critical value g = −0.9. Interaction
strength is given in units of

√
h̄3�0/m.

importantly, the noise correlation nicely exposes the afore-
mentioned causal correlations between sequentially emitted
particles (vertical or horizontal lines localized around k′ ≈
0.89 for g = +1.0).

VI. TRANSITION

The specific transition between different tunneling chan-
nels can be analyzed and well described when the momen-
tum of the center of mass K = k1 + k2 is considered. Its
distribution can be extracted from the two-particle momentum
distribution as follows:

πCM(K ; t ) =
∫

dk2 π2(K − k2, k2; t ). (6)

In Fig. 6 we display this distribution for three different in-
teractions g, after the system has been allowed to evolve for
some time t . In the case of repulsions (g = +1.0) as well as
sufficiently strong attractions (g = −1.0) a single peak in the
center-of-mass momentum emerges. It is centered around the
sum of the individual emitted boson momenta k0 + k′ ≈ 2.05
or the bound pair momentum K ≈ 1.50, respectively. How-
ever, for weaker attractions (for example g = −0.5) both tun-
neling mechanisms are present, and the distribution πCM(K ; t )
displays two distinct peaks. They can be directly associated
with different tunneling processes. By comparing integrated
intensities of both peaks it is possible to determine a relative
participation of different tunneling mechanisms in the overall
dynamics. In Fig. 7, we show the relative participation of
pair tunneling (green crosses) and sequential tunneling (red
triangles) obtained for a few example interaction strengths g.
For comparison, we include similar quantities (red and green
lines) obtained recently by a theoretical analysis of different
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probability fluxes through the potential barrier [30]. A qual-
itative agreement between both results opens an additional,
much less demanding from the experimental point of view,
method for detecting the transition between different tunnel-
ing mechanisms.

Dynamical properties of the system in the vicinity of the
transition are also encoded in the interaction energy between
particles I (t ) = g

∫
dx |�(x, x; t )|2. It is worth noticing that

interaction energy is closely related to the Tan contact C [77],

C(t ) = m2g2

π h̄4

∂E
∂g

= m2g

π h̄4 I (t ), (7)

which is known to be a very universal quantity linking many
different features of atomic systems such as the dependency
of energy on interaction strength, the pair-correlation func-
tion, and the relation between pressure and energy den-
sity [78]. Furthermore, it is accessible to experimental mea-
surements [79,80]. Note that, although the total energy of the
system E is conserved, its derivative with respect to g changes
during the evolution due to the dynamical changes of the
system’s wave function.

In Fig. 8 we plot the time evolution of the Tan contact
(relative to its initial value at t = 0) for different interaction
strengths. As it is seen, the contact displays exponential
decay. Moreover, the decay rate (inset in Fig. 8) strongly
depends on the interaction strength and near the transition
between sequential and pair tunneling channel at g ≈ −0.9 it
approaches 0.

These results can be explained intuitively when the dif-
ferent decay processes are considered. One suspects that the
interaction energy, due to the short-range form of interactions,
rapidly decreases when particles are sequentially emitted from
the trap. Accordingly, when sequential tunneling dominates
the dynamics, the magnitude of the contact is closely tied to

the probability that the system remains in the initial trapped
state. For systems such as the one under study, this probability
obeys an exponential decay law to a very good approxima-
tion [81], hence C(t ) decays exponentially.

The rate of this exponential decay decreases as the in-
teraction energy in the trapped system is lowered [44]. Ad-
ditionally, as the interactions become more attractive, the
system dynamics is increasingly dominated by the process of
pair tunneling. During pair tunneling the interaction energy
remains almost unchanged since particles in all stages of the
evolution form a bound pair. Hence, for interaction strengths
g < −0.9, for which the bosons tunnel only as bound pairs,
the decay rate of Tan’s contact remains close to zero.

VII. THREE-BOSON CASE

Let us now apply the above approach to the system of N =
3 bosons. In this case the dynamics is more complicated, as
now the bosons can tunnel in more ways: as single particles, as
bound pairs, or as bound trimers. Accordingly, the momentum
distributions of the system display more complex structures.
In order to analyze them, we first define the three-particle
momentum distribution π3(k1, k2, k3; t ) as

π3(k1, k2, k3; t ) = 1

8π3h̄3

∣∣∣∣
∫

dx1dx2 dx3

×e−i(k1x1+k2x2+k3x3 )/h̄�(x1, x2, x3; t )

∣∣∣∣
2

.

(8)

Consequently, the single-particle momentum and center-of-
mass momentum distributions π1, πCM are now defined as

π1(k; t ) =
∫

dk′dk′′ π3(k, k′, k′′; t ), (9a)

πCM(K ; t ) =
∫

dk′dk′′ π3(K − k′ − k′′, k′, k′′; t ). (9b)

In Fig. 9 we show the distributions π1 and πCM for a
three-boson system with different interaction strengths, after
the system has been allowed to tunnel for some time t . First
we focus on the case of repulsive interactions g = 0.50. In this
case the bosons cannot form bound states and consequently
tunnel one at a time, with the successive emitted bosons
having momenta k′′, k′, and k0. Much like in the two-boson
case, one can obtain these momenta straightforwardly from
the relevant system energies. For g = 0.50 we find k′′ ≈
1.18, k′ ≈ 1.05, k0 ≈ 0.89. This result is directly reflected by
the distribution π1, which displays three distinct peaks cen-
tered near these values [Fig. 9(a)]. Similarly, the distribution
πCM displays a single clear peak centered at k′′ + k′ + k0 ≈
3.12, confirming that sequential tunneling is the only available
process [Fig. 9(b)]. Note that, compared to the two-boson case
[Fig. 5(a)], the peaks in Fig. 9(a) are not as well resolved.
The main reason is that the characteristic momenta k′′, k′, k0

fall quite close to each other and therefore the corresponding
momentum peaks, having their natural width, are partially
overlapping.

The situation changes significantly in the case of weaker
attractions (for example g = −0.37). In this case the system
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FIG. 9. The single-particle momentum distribution π1(k; t ) and
the center-of-mass momentum distribution πCM(K ; t ) of the three-
boson system for two different interaction strengths, at specific
moments t . In the repulsive case (top row) three bosons are emitted
sequentially with well-defined momenta k′′, k′, k0. In the attractive
case (bottom row) the bosons can additionally tunnel as bound pairs
with well-defined center-of-mass momenta K or K ′, or as a trimer
with center-of-mass momentum P. Each peak in the distributions
can be associated with specific characteristic momenta, as indicated
by arrows. Momenta are in units of
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h̄3�0/m, time in units of 1/�0 momentum distributions in
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exhibits the full variety of three-boson tunneling processes,
and it can decay in several distinct ways. The first scenario
is a sequential tunneling of three independent particles, as de-
scribed above. In the second scenario, the emission of an inde-
pendent boson with momentum k′′ is followed by the emission
of a bound pair with center-of-mass momentum K . In the third
scenario, the first two particles tunnel as a bound pair with
center-of-mass momentum K ′, followed by the remaining
particle tunneling independently with momentum k0. The final
possibility is that all three bosons tunnel as a bound trimer
with center-of-mass momentum P. Similarly to the two-boson
case, it is straightforward to obtain all these characteristic
momenta by analyzing the energy of each emitted group of
particles. For g = −0.37 we obtain the following values: k′′ ≈
0.42, k′ ≈ 0.71, k0 ≈ 0.89, K ≈ 1.66, K ′ ≈ 1.22, P ≈ 2.30.

Each of the distinct scenarios of decay is reflected directly
in the momentum distributions [Figs. 9(c) and 9(d)]. In the
single-particle momentum distribution π1, peaks are clearly
visible at positions k′′, k′, k0 corresponding to the sequential
tunneling, as well as K/2 and K ′/2 that correspond to the
pair tunneling. The distribution πCM displays two distinct
peaks. The first, smaller peak is associated with the trimer
tunneling and it is centered near the value P. The second,
larger peak in πCM accounts collectively for the single-particle
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FIG. 10. The relative participation of trimer tunneling in the
overall dynamics of the three-boson system, for various interaction
strengths g. Blue symbols show the participation of trimer tunneling
calculated from the areas of the corresponding peaks in the center-
of-mass momentum distribution πCM at t = 140. For comparison,
the corresponding result from Ref. [30] is shown as a blue solid
line. It can be seen that the participation of trimer tunneling remains
near zero for approximately g > −0.46, increases throughout the
region −0.65 < g < −0.46, and becomes close to 1 for g < −0.65.
Interaction strength is given in units of

√
h̄3�0/m.

and pair tunneling processes, since their corresponding total
center-of-mass momenta fall very close to each other. It can
be seen that the distributions π1 and πCM, when considered
together, can provide information about the complete variety
of the participating tunneling processes.

Analogously to the two-boson system, the three-boson sys-
tem undergoes a transition between several distinct regimes
as the interaction strength is tuned across critical val-
ues [30]. These regimes can be identified by analyzing the
changing participation of different tunneling mechanisms in
the overall decay process. Similarly as in the two-boson
case, the proportional participation of the trimer tunnel-
ing can be obtained by comparing the integrated inten-
sities of peaks in the distribution πCM(K ; t ). In Fig. 10
we show the relative participation of trimer tunneling ob-
tained by this method for various g (star symbols). For
comparison, we also show the analogous quantity (solid
line) obtained in [30] from analysis of the probability flux
through the potential barrier. There is a qualitative agree-
ment between both results, supporting the validity of the de-
scribed method for detecting the transition between tunneling
mechanisms.

VIII. CONCLUSION

We have analyzed the decay of a system of a few ultracold
bosons, initially trapped in an open one-dimensional potential
well. In particular, we have examined the influence of the
interaction strength g on the dynamics of the momentum
distributions of the system, as well as the Tan contact. We
find that there is a essential difference in the behavior of
these quantities when the interaction strength g is tuned across
a critical value that corresponds to strong suppression of
sequential tunneling. These findings are in full agreement
with previous results based on careful analysis of many-body
probability fluxes [30]. We show that it is possible to establish
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a relationship between the dominant tunneling process and
the form of the momentum distributions. In particular, from
the center-of-mass momentum distribution of the system one
can quantitatively determine the relative participation of the
different tunneling processes in the dynamics. These findings
are shown to apply equally well both to N = 2 and N = 3
systems. Additionally, we examine the evolution of the Tan
contact and show that its behavior also reflects the dominant
tunneling process.

Since the single- and two-particle momentum distributions
as well as the Tan contact are accessible to experimental mea-
surements, the presented results have potential significance
for upcoming experiments with ultracold bosons in quasi-
one-dimensional potentials. The theoretical and experimental
analysis of these quantities can give increased insight into the
system dynamics.

Although the results presented here focus on comparably
small values of g, we have also performed corresponding sim-
ulations for the system being in the Tonks-Girardeau regime,
i.e., in the limit of infinite repulsive interactions [82–84]. The
results indicate that the features described in this paper for
smaller repulsive interactions remain in effect even for very
strong repulsions that approach the Tonks-Girardeau limit.
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JACEK DOBRZYNIECKI AND TOMASZ SOWIŃSKI PHYSICAL REVIEW A 99, 063608 (2019)

[44] G. Zürn, F. Serwane, T. Lompe, A. N. Wenz, M. G. Ries, J. E.
Bohn, and S. Jochim, Phys. Rev. Lett. 108, 075303 (2012).

[45] G. Zürn, A. N. Wenz, S. Murmann, A. Bergschneider, T.
Lompe, and S. Jochim, Phys. Rev. Lett. 111, 175302 (2013).

[46] I. S. Ishmukhamedov and V. S. Melezhik, Phys. Rev. A 95,
062701 (2017).

[47] I. S. Ishmukhamedov and A. S. Ishmukhamedov, Phys. E 109,
24 (2019).

[48] M. Rontani, Phys. Rev. Lett. 108, 115302 (2012).
[49] M. Rontani, Phys. Rev. A 88, 043633 (2013).
[50] S. Tan, Ann. Phys. (NY) 323, 2952 (2008).
[51] S. Tan, Ann. Phys. (NY) 323, 2971 (2008).
[52] S. Tan, Ann. Phys. (NY) 323, 2987 (2008).
[53] M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).
[54] E. Haller, M. Gustavsson, M. J. Mark, J. G. Danzl, R. Hart, G.

Pupillo, and H.-C. Nägerl, Science 325, 1224 (2009).
[55] S. Trotzky, P. Cheinet, S. Fölling, M. Feld, U. Schnorrberger,

A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, and I.
Bloch, Science 319, 295 (2008).

[56] W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen, S.
Fölling, L. Pollet, and M. Greiner, Science 329, 547 (2010).

[57] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch,
and S. Kuhr, Nature (London) 467, 68 (2010).

[58] S. Selstø and S. Kvaal, J. Phys. B 43, 065004 (2010).
[59] E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).
[60] E. H. Lieb, Phys. Rev. 130, 1616 (1963).
[61] M. Gaudin, Phys. Rev. A 4, 386 (1971).
[62] M. T. Batchelor, X. W. Guan, N. Oelkers, and C. Lee, J. Phys.

A 38, 7787 (2005).
[63] M. Takahashi, Thermodynamics of One-Dimensional Solvable

Models (Cambridge University Press, Cambridge, UK, 2005).
[64] J. Dobrzyniecki and T. Sowiński, Eur. Phys. J. D 70, 83
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