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Improving mean-field theory for bosons in optical lattices via degenerate perturbation theory
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The objective of this paper is the theoretical description of the Mott insulator to superfluid quantum phase
transition of a Bose gas in an optical lattice. In former works the Rayleigh-Schrödinger perturbation theory
was used within a mean-field approach, which yields partially nonphysical results since the degeneracy between
two adjacent Mott lobes is not taken into account. In order to correct such nonphysical results we apply the
Brillouin-Wigner perturbation theory to the mean-field approximation of the Bose-Hubbard model. Detailed
explanations of how to use the Brillouin-Wigner theory are presented, including a graphical approach that allows
one to efficiently keep track of the respective analytic terms. To prove the validity of this computation, the results
are compared with other works. Besides the analytic calculation of the phase boundary from Mott insulator to
superfluid phase, the condensate density is also determined by simultaneously solving two algebraic equations.
The analytical and numerical results turn out to be physically meaningful and can cover a region of system
parameters inaccessible until now. Our results are of particular interest provided a harmonic trap is added to
the former calculations in a homogeneous system, in view of describing an experiment within the local-density
approximation. Thus, the paper represents an essential preparatory work for determining the experimentally
observed wedding cake structure of particle-density profile at both finite temperature and finite hopping.
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I. INTRODUCTION

Since the first realization of a Bose-Einstein condensate
in 1995 [1,2], the field of ultracold quantum gases has re-
ceived an ongoing strong interest to study a vast variety of
new quantum many-body effects [3–7]. Regarding optical
lattices [8], one of these new effects is the quantum phase
transition from a Mott insulator to a superfluid phase [9].
This can be described theoretically via the Bose-Hubbard
model [10,11], which is a paradigm for quantum phase
transitions [12]. There are many well-established methods
to actually calculate the phase boundary of the Mott in-
sulator to superfluid phase transition. The purely analytic
mean-field approach [13], which is also used in this paper,
gives good qualitative insights about the physics close to
the phase boundary, but it is quantitatively imprecise as a
drawback. As a contrast, a full numerical quantum Monte
Carlo simulation [14] yields quantitatively quasiexact results,
but its qualitative insights are limited. In lower dimensions,
a strong-coupling expansion [15] gives good results, while
for higher dimensions an effective action approach [16–20]
is more reliable. Another method is the process chain, which
allows one to extend both the strong-coupling expansion [21]
and the effective action approach [22,23] to higher orders.
Thus, it became possible to yield for the quantum phase
boundary an accuracy comparable to quantum Monte Carlo
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simulations and even to determine critical exponents [24].
Also, an effective action approach to handle a time-periodic
driven optical lattice was studied in Ref. [25]. In Ref. [26]
it became even possible to reconstruct experimentally the
homogeneous superfluid to Mott insulator quantum phase
transition for a two-dimensional ultracold quantum gas in an
optical lattice with an additional harmonic confinement via an
in situ imaging. Also, the authors of Ref. [27] developed a
self-energy functional theory to calculate the phase boundary
and thermodynamical observables with good accuracy in two
and three dimensions. A near-exact phase diagram for the
three-dimensional system was achieved in Ref. [28] by means
of a projection operator approach.

This paper deals with the problem of determining the
condensate density for a homogeneous Bose gas in an optical
lattice within mean-field theory. As in the vicinity of the
mean-field phase boundary the condensate density is suppos-
edly small, the standard approach starts with the mean-field
Hamiltonian [13] and determines the ground-state energy with
nondegenerate perturbation theory [29]. However, the result-
ing Landau expansion [30] yields a condensate density that
turns out to vanish between two adjacent Mott lobes and has,
therefore, to be considered as not accurate enough. The origin
of this nonphysical result stems from the fact that between
adjacent Mott lobes a degeneracy occurs, so that in this point
the nondegenerate perturbation theory is no longer valid.
This deficiency was recognized, for instance, in Ref. [31]
and solved tentatively by determining the condensate density
with degenerate perturbation theory. Although this allowed
one to obtain a nonvanishing condensate density between two
adjacent Mott lobes, the result is inconsistent insofar as the
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condensate density does not vanish at the mean-field phase
boundary. Thus, the fundamental problem remained of how
to combine the results from nondegenerate [29] and degen-
erate [31] perturbation theory in order to obtain a consistent
mean-field result for the condensate density.

The present paper solves this problem by using the
Brillouin-Wigner perturbation theory [32]. It is based on a
projection formalism, which allows one to eliminate a larger
fraction of the Hilbert space in order to obtain an effective
eigenvalue equation for the remaining subspace. The resulting
effective Hamiltonian can then be systematically expanded in
a power series of the perturbative term. In this way, it turns
out that the Brillouin-Wigner perturbation theory formally
interpolates between the nondegenerate and the degenerate
perturbation theory.

In the context of the Bose-Hubbard mean-field theory, we
proceed as follows. Section II introduces the state of the
art for analytically describing the Mott insulator–superfluid
quantum phase transition, pointing out what modern theories
can do and where they fail. In Sec. III, we overcome all
these problems by applying the Brillouin-Wigner perturbation
theory. This allows one to determine reliably the quantum
phase boundary and the condensate density in the super-
fluid phase. Finally, we consider, in Sec. IV, the effect of
an additional harmonic trap to our calculations within the
local-density approximation, motivated by the experimental
detection of the wedding cake structure that was reported in
Ref. [33]. Our results allow one to study the melting of the
characteristic density profile in the form of a wedding cake
structure due to the mutual impact of both thermal fluctuations
and finite hopping. This leads, in particular, to the emergence
of superfluid shells between the Mott lobes as has already
been studied in Ref. [34].

II. DEGENERATE SOLUTIONS FOR THE MEAN-FIELD
BOSE-HUBBARD HAMILTONIAN

In this section we describe the current problem by calcu-
lating the condensate density. To this end, we first present the
Bose-Hubbard model to describe bosons in an optical lattice,
then we introduce within the Landau theory the condensate
wave function as an order parameter to distinguish between
the Mott and the superfluid phase. Afterwards, we apply the
mean-field theory together with nondegenerate perturbation
theory to get an approximate result for the quantum phase
boundary. Hence, we get formulas for the phase boundary and
the order parameter, where the latter turns out to be physically
inconsistent.

The Bose-Hubbard model, first published in 1963 by
Gersch and Knollman [10], is a bosonic adapted version of
the Hubbard model, which was published by Hubbard earlier
in 1963 [11] for fermionic particles. Two main assumptions
are made for the Bose-Hubbard model. The first one is that the
temperature is so low that it is sufficient to take into account
only the lowest-energy band. The second assumption is to
neglect any long-range interaction and long-range hopping.

The Hamiltonian operator for the Bose-Hubbard model
reads

Ĥ = 1

2
U

∑
i

n̂i(n̂i − 1) − J
∑
〈i, j〉

â†
i â j − μ

∑
i

n̂i, (1)

with U denoting the on-site interaction to be either U > 0
(repulsive) or U < 0 (attractive), whereas â†

i and âi are the
bosonic creation and annihilation operators at site i, while
n̂i = â†

i âi denotes the number operator at site i. Furthermore,
J represents the single-particle Hamiltonian, also called the
hopping term. The summation indices 〈i, j〉 represent the re-
striction that only nearest-neighboring transitions are allowed.
Finally, μ denotes the chemical potential, which corresponds
within a grand-canonical description to the energy for adding
a boson to the optical lattice.

According to Landau [30,35], we can represent the energy
of our system as a polynomial function of the order parameter,
i.e., E (�∗, �). Because of the U (1) symmetry present in the
Bose-Hubbard Hamiltonian (1), this dependency reduces to
E (�∗�) and only even orders can be present in the expansion:

E = a0 + a2�
∗� + a4�

∗2�2 + . . . . (2)

Following such expansion to describe second-order phase
transitions, we seek to minimize the truncated energy where
terms of order higher than 4 are neglected provided that
a4 > 0. Finding the extrema via ∂E/∂�∗ = 0, we have either
�∗� = 0 or �∗� = −a2/(2a4). Note that the minima of E
depend on the sign of a2. For a2 > 0 we have the Mott insula-
tor phase where there is no condensate density, with the cor-
responding energy EMott = a0. On the other hand, for a2 <0,
the superfluid energy reads ESuperfluid = a0 − a2

2/(4a4). In ad-
dition, the boundary separating the superfluid and the Mott
insulator phase is given by the points in the quantum phase
diagram where a2 = 0.

The energy E can be calculated via a field-theoretic
method, where the Legendre transform of the grand-canonical
free energy gives very precise results [18,36]. Another way is
to apply the mean-field approximation, which is quantitatively
less correct but gives already a quite good qualitative insight.
Furthermore, the calculations are less complex and thus much
faster to perform with high precision.

Due to the nonlocal term present in the hopping term
of (1) a direct calculation turns out to be difficult. In order
to get rid of this nonlocal term approximatively, we perform a
Bogoliubov decomposition:

âi = � + δâi, (3)

with � representing the mean field, whereas δâi stands for the
fluctuation correction. Within the mean-field approximation
one neglects all quadratic fluctuations, resulting in the Bose-
Hubbard mean-field Hamiltonian:

ĤMF = 1

2
U

∑
i

n̂i(n̂i − 1) − μ
∑

i

n̂i

− Jz
∑

i

(�∗âi + �â†
i − �∗�). (4)

Here z denotes the number of nearest neighbors. Since (4) is
local, we can restrict ourselves effectively to one lattice site.

A. Nondegenerate perturbation theory

As the condensate density �∗� is zero in the Mott insula-
tor and positive in the superfluid phase, we can assume that the
order parameter is small as long as we stay in the superfluid
phase close to the quantum phase boundary. This implies that
corrections due to the kinetic term can be obtained in power
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series of �∗ and � through a perturbative approach. In order
to do so, we split the on-site mean-field Hamiltonian into an
unperturbed part

Ĥ (0) = 1
2Un̂(n̂ − 1) − μn̂ (5)

and a perturbation

V̂ = −Jz(�∗â + �â† − �∗�), (6)

with λ denoting a smallness parameter according to

Ĥ = Ĥ (0) + λV̂ . (7)

From standard nondegenerate perturbation theory we can
get the energy in the Landau expansion up to the fourth order
following (3.39) in Ref. [29]. Thus we have for the coefficients
of (2)

a0 = E (0)
n , (8)

a2 = Jz + J2z2

(
n + 1

E (0)
n − E (0)

n+1

+ n

E (0)
n − E (0)

n−1

)
, (9)

and

a4 = J4z4

[
n + 1(

E (0)
n − E (0)

n+1

)2

(
n + 2

E (0)
n − E (0)

n+2

− n

E (0)
n − E (0)

n−1

− n + 1

E (0)
n − E (0)

n+1

)

+ n(
E (0)

n − E (0)
n−1

)2

(
n − 1

E (0)
n − E (0)

n−2

− n + 1

E (0)
n − E (0)

n+1

− n

E (0)
n − E (0)

n−1

)]
. (10)

Here the unperturbed ground-state energy is defined via

E (0)
n = 1

2Un(n − 1) − μn. (11)

According to Landau’s theory, the phase boundary can be
calculated from the condition a2 = 0. The resulting equation
is solved with respect to Jz/U as in Ref. [13]:

Jz

U
= −(

E (0)
n − E (0)

n+1

)(
E (0)

n − E (0)
n−1

)
U

[
E (0)

n − E (0)
n−1 + 2nE (0)

n − n
(
E (0)

n+1 + E (0)
n−1

)] . (12)

For large Jz/U , we are in the superfluid phase, far away
from the phase boundary, as the Mott insulator needs low
hopping probabilities. Since all of our theory is based on the
assumption of being close to the quantum phase boundary,
we cannot obtain reliable results for values of Jz/U deep
in the superfluid phase. Nevertheless, for Jz/U � 0.35, we
assume our model to be valid. While for Jz/U = 0 we have
no superfluid phase and only a Mott insulator, we always
reach the superfluid phase by increasing Jz/U . Another way
to get from the Mott insulator to the superfluid phase is by
tuning μ/U at Jz/U > 0. If we start in the first Mott lobe
and increase μ/U , the ordered structure breaks down at some
point and the superfluid phase is energetically more favorable
and thus realized. For μ/U < 0, the system is in the superfluid
phase for Jz/U > −μ/U , whereas for Jz/U < −μ/U we
have no particles at all.

After having obtained the quantum phase boundary, we
take a closer look at the lowest energies for increasing n. In
the plot of the unperturbed energies (11) in Fig. 1, we see that
the ground-state energies have a degeneracy at integer values
of μ/U . Like in between the lobes for n = 1 (line with the
smallest slope, red) and n = 2 (line with the second smallest
slope, blue) at μ/U = 1, we are at the degeneracy point of the
energies E (0)

1 and E (0)
2 . Analogous formulas are valid between

every two neighboring lobes. It is exactly this degeneracy at
μ = Un which makes every algebraic treatment of this system

quite complex, but since we have always only two degenerate
energies to handle at once, a solution can be found.

With this degeneracy in mind, we now discuss the order
parameter. First, we plot �∗� = −a2/(2a4) by using (9)
and (10). Since a4 approaches infinity for μ = Un, where we
have E (0)

n = E (0)
n+1, according to (8), the condensate density

�∗� tends to zero at the degeneracy between two adjacent
lobes, which falsely indicates a quantum phase boundary. This
nonphysical behavior is depicted in Fig. 2 through the dashed
plots.

B. Degenerate perturbation theory

One way to improve these results is to apply degen-
erate perturbation theory, which was done up to the first

- 2 - 1 1 2 3 4 5

- 10

- 5

5

10

FIG. 1. Unperturbed ground-state energies (11). Different lines
correspond to different values for n from smaller to larger slope:
n = 1 (red), n = 2 (blue), n = 3 (green), and n = 4 (purple). Vertical
dashed black lines correspond to the points of degeneracy. Solid
colored lines represent realized lowest energy, while dashed colored
lines indicate the continuation of the energy line.
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FIG. 2. Condensate density from nondegenerate perturbation
theory (dashed lines) in comparison with the condensate density from
degenerate perturbation theory according to (16) [31] (dotted lines)
with μ = Un + ε and n = 1 for the left part and n = 2 for the right
part, respectively. From the spacing inside to the outside we have
Jz/U = 0.02 (red), Jz/U = 0.08 (blue), and Jz/U = 0.101 (green).
Dashed plots are zero at the mean-field quantum phase boundary,
yielding an unphysical behavior at the degeneracy, having increasing
maxima for increasing Jz/U , and for Jz/U = 0.101 and ε/U =
0.442 the lobe is just touching in one point and goes smoothly to
zero. The dotted plots give a physical behavior at the degeneracy, but
always the value �∗� = 0.5 at the degeneracy, which can directly
be seen in (16). For small Jz/U and close to the quantum phase
boundary, the plots coincide.

perturbative order in Ref. [31]. Since two degenerate states
are taken into account, for further references, we name it the
two-states approach, which results in a 2 × 2 matrix:

�(1) =
(

E (0)
n + Jzλ�∗� −λJz�∗√n + 1

−λJz�
√

n + 1 E (0)
n+1 + Jzλ�∗�

)
, (13)

where the matrix entries are calculated up to first order in λ.
Inserting the explicit expressions for E (0)

n and E (0)
n+1 from (11)

the eigenvalues of �(1) read

En± = λJz�∗� + 1
2 [Un2 − 2μ(n + 1)]

± 1
2

√
(μ − Un)2 + 4λ2J2z2�∗�(n + 1). (14)

Now we extremize the energy (14) with respect to the conden-
sate density �∗� by applying ∂En±/(�∂�∗) = 0, yielding

�∗� = (n + 1)

4
− (μ − Un)2

4λ2J2z2(n + 1)
, (15)

which coincides with Ref. [31]. Note that both the cases with
positive and negative sign yield the same condensate density.

At the degeneracy we have J = 0, which would lead to
a quadratic divergent term in (15). But for the degeneracy
E (0)

n = E (0)
n+1 we get μ − Un = 0, which appears as well in

the numerator. Thus we have no divergence problem here. Let
us now introduce the parameter ε according to μ = Un + ε in
order to analyze the nearly degenerate case. If ε = 0, we are
at the degeneracy; for positive and negative small ε, we are
nearly degenerate and can describe the direct vicinity of the

FIG. 3. Quantum phase boundary obtained by Rayleigh-
Schrödinger perturbation theory. The nondegenerate theory [29]
yields the dashed orange plot, while the degenerate theory [31]
reproduces the dotted magenta plot. Inside the lobes we are in the
Mott insulator phase, while outside the lobes we are in the superfluid
phase. The number of particles n increases from left to right by
one per lobe. The three horizontal continuous lines correspond to,
from bottom to top, Jz/U = 0.02 (red), Jz/U = 0.08 (blue), and
Jz/U = 0.101 (green). They all start at the line Jz/U = −μ/U ,
which indicates n = 0, and end at μ/U = 2.15. The inset shows the
part between the first two Mott lobes with increased size, with the
same axis as the big plot.

degeneracy following Ref. [31] according to

�∗� = (n + 1)

4
− ε2

4λ2J2z2(n + 1)
, (16)

which is depicted by the dotted plots of Fig. 2.
By setting �∗� = 0 in (15) we obtain the quantum phase

boundary shown in the dotted (magenta) plot in Fig. 3.
The quantum phase boundary obtained out of the degen-
erate approach is always linear, which is only coinciding
with the nondegenerate case for n = 0. Nevertheless, for
small values of Jz/U , this linearization is a good approxi-
mation (see inset in Fig. 3). The tips of the triangular Mott
lobes (dotted magenta) are at μ/U = 1/3 ≈ 0.333, μ/U =
7/5 = 1.4, μ/U = 17/7 ≈ 2.429, and μ/U = 31/9 ≈ 3.444
for increasing n, which is not the same value as for
the tips of the curved lobes (dashed orange), which are
correspondingly at μ/U = √

2 − 1 ≈ 0.414, μ/U = √
6 −

1 ≈ 1.449, μ/U = 2
√

3 − 1 ≈ 2.464, and μ/U = 2
√

5 −
1 ≈ 3.472. These values coincide more for higher μ/U . The
horizontal lines are from bottom to top at Jz/U = 0.02 (red),
Jz/U = 0.08 (blue), and Jz/U = 5 − 2

√
6 ≈ 0.101 (green),

while the latter one hits the second lobe exactly on its tip.
These lines allow a better comparison between the dashed
orange and the dotted magenta quantum phase boundary.

III. BRILLOUIN-WIGNER PERTURBATIVE APPROACH

By comparing Fig. 3 with Fig. 2, we conclude that the
nondegenerate approach (dashed lines) yields a reasonable
quantum phase boundary, but an inconsistent condensate
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density, while the degenerate approach (dotted lines) yields an
improved result for the order parameter, but a worse quantum
phase boundary. Therefore, in order to handle both adequately,
another approach is necessary. To this end, we stay in a
perturbative picture, which already succeeded in reproducing
the quantum phase boundary, but in order to get the order
parameter as well we will apply the Brillouin-Wigner pertur-
bation theory, which is summarized in Appendix A.

A. One-state approach

At first we tackle our problem within the one-state ap-
proach of the Brillouin-Wigner perturbation theory as spec-
ified in Appendix A 2. To this end we consider a subspace of
the Hilbert space spanned by only one eigenstate |� (0)

n 〉 and
its projector operator

P̂ = ∣∣� (0)
n

〉〈
� (0)

n

∣∣. (17)

The ground-state energy is then identified with En =
〈� (0)

n |Ĥeff |� (0)
n 〉. From (A28) up to third order in λ and

inserting Ĥ (0) and V̂ from (5) and (6) yields

Ẽn = E (0)
n +λJz�∗�+λ2J2z2�∗�

(
n

En − E (0)
n−1

+ n + 1

En−E (0)
n+1

)

+ λ3J3z3(�∗�)2

[
n(

En − E (0)
n−1

)2 + n + 1(
En − E (0)

n+1

)2

]
.

(18)

Note that (18) represents a self-consistency equation for the
energy En = Ẽn(En, �

∗�).

1. Quantum phase boundary

The mean-field quantum phase boundary was already
shown in Fig. 3 (dashed orange line) obtained from the
Rayleigh-Schrödinger perturbation theory. Here we will re-
produce this result within the one-state approach from the
Brillouin-Wigner perturbation theory. In order to get the phase
boundary we evaluate ∂En(�∗�)/(�∂�∗), with En being the
energy formula from the one-state approach up to the third
order in λ according to (18).

We show now in a general way that we can neglect all terms
with λ of order 3 and higher. To this end we must observe the
generic structure of Ẽn(En; �∗�) in (18):

Ẽn(En; �∗�) = α + �∗�β + �∗�γ0

γ1 + �∗�γ2

+
∞∑

m�2

(�∗� )mkm

P(�∗� )
. (19)

The coefficients α, β, γ0, γ1, γ2, and km are independent of
�∗� but dependent on En, while m is a natural number and
P(�∗�) is a polynomial which also depends on En. A com-
mon approach at this point consists in solving Ẽn(En; �∗�) =
En for En, thus finding the function En(�∗�). However, for
our purposes, this is not necessary, since

1

�

∂En

∂�∗ = ∂Ẽn

�∂�∗ + ∂Ẽn

∂En

∂En

�∂�∗ . (20)

Thus, the solution to ∂En/(�∂�∗) = 0 can be found through
∂Ẽn/(�∂�∗) = 0.

Performing the differentiation in (19), we have

1

�

∂Ẽn(En; �∗� )

∂�∗

= β + γ0γ1

(γ1 + �∗�γ2)2 +
∞∑

m�2

(
m(�∗� )m−1kmP(�∗� )

P(�∗� )2

− (�∗� )mkm
1
�

∂
∂�∗ P(�∗� )

P(�∗� )2

)
. (21)

Therefore we obtain for the quantum phase boundary

1

�

∂Ẽn(En; �∗� )

∂�∗

∣∣∣∣
�∗�=0

= β + γ0

γ1
. (22)

Here we see that all corrections to higher order than 2 in λ can
be neglected. Thus, the phase boundary does not change even
if higher orders in λ are taken into account.

Comparing (21) with (18) we identify the relevant coeffi-
cients to be

β = λJz, (23)

γ0 = λ2J2z2
[
(2n + 1)En + (n − 1)E (0)

n−1 − nE (0)
n+1

]
, (24)

γ1 = (
En − E (0)

n+1

)(
En − E (0)

n−1

)
. (25)

Inserting them into (22) we obtain

1

�

∂Ẽn(�∗� )

∂�∗

∣∣∣∣
�∗�=0

= λJz + λ2z2 En − E (0)
n−1 + 2nEn − nE (0)

n+1 + nE (0)
n−1(

En − E (0)
n+1

)(
En − E (0)

n−1

) . (26)

Putting (26) to zero we obtain

Jz

U
= − 1

λU

(
En − E (0)

n+1

)(
En − E (0)

n−1

)
En − E (0)

n−1 + 2nEn − nE (0)
n+1 − nE (0)

n−1

. (27)

2. Self-consistency equations

In order to get the energy and the condensate density within
the one-state approach we make use of ∂Ẽn/(�∂�∗) = 0
from (18) and (18) up to second order in λ, which results in,
respectively,

0 = (
En − E (0)

n−1

)2(
En − E (0)

n+1

)2 + λJz
[
n
(
En − E (0)

n−1

)
× (

En − E (0)
n+1

)2 + (n + 1)
(
En − E (0)

n−1

)2(
En − E (0)

n+1

)]
+ 2λ2J2z2�∗�

[
n
(
En − E (0)

n+1

)2 + (n + 1)
(
En − E (0)

n−1

)2]
(28)

and

0 = (
En − E (0)

n−1

)(
En − E (0)

n+1

)(
E (0)

n − En + λJz�∗�
)

+ λ2J2z2�∗�
[
n
(
En − E (0)

n+1

) + (n + 1)
(
En − E (0)

n−1

)]
.

(29)

Both (28) and (29) are now used to calculate the ground-state
energy En and the condensate density �∗�.
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FIG. 4. Condensate density from one-state approach for n = 1
(negative ε/U , purple squares) and n = 2 (positive ε/U , red circles)
for Jz/U = 0.08.

3. Energy and condensate density

At the degeneracy μ = U , the unperturbed energy is given
by E (0)

n = −U . Therefore, the corrections of the energy in
power series of λ are obtained by subtracting the unperturbed
energy from the perturbed energy. From zeroth to second
order, the corrections amount to +1.08%. From second to
fourth order, the corrections are −0.05%. Furthermore, from
fourth to sixth order, the corrections are of the order −0.18%.
Note that for higher values of Jz/U the convergence turns out
to be slower.

The condensate density �∗� follows also from numeri-
cally solving both (28) and (29) iteratively. The result is plot-
ted in Fig. 4 for μ = Un + ε, λ = 1 and Jz/U = 0.08. We
observe that the order parameter obtained from the Brillouin-
Wigner perturbation theory for the one-state approach accord-

ing to Fig. 4 is better than the one obtained from Rayleigh-
Schrödinger perturbation theory, where the order parameter
vanishes at the degeneracy as seen in Fig. 2. Nevertheless,
the order parameter plotted in Fig. 4 still is discontinuous
at ε/U = 0 and thus does not yet represent a physically
acceptable result.

Note that Appendix C shows that within the mean-field
approximation the superfluid density always coincides with
the condensate density. Thus, we conclude that the approxi-
mations within the mean-field approach are too strong to result
in any difference between the condensate density and the
superfluid density. In order to improve this, one must not apply
the mean-field theory, but use some other method to deal with
the system, like the field-theoretic method, where a Legendre
transform of the grand-canonical free energy [18,24,36] is
used.

B. Two-states approach

Now we consider the subspace of the Hilbert space which
is spanned by |� (0)

n 〉 and |� (0)
n+1〉. This choice is motivated due

to the degeneracy present between two consecutive Mott lobes
in the zero-temperature phase diagram of the Bose-Hubbard
model. Any state vector is projected into that subspace by the
projector

P̂ = ∣∣� (0)
n

〉〈
� (0)

n

∣∣ + ∣∣� (0)
n+1

〉〈
�

(0)
n+1

∣∣, (30)

and we will perform our calculations by evaluating (A30)
from the two-states approach.

1. Quantum phase boundary

The mean-field quantum phase boundary was already
shown in Fig. 3. In order to calculate the mean-field quantum
phase boundary via the two-states approach, we start with the
determinant of the matrix (A31):

Det(�) =
[
λ4 J4z4�∗2�2n(n − 1)(

En − E (0)
n−1 − λJz�∗�

)2(
En − E (0)

n−2 − λJz�∗�
) + E (0)

n + λJz�∗� − En

+ λ2 J2z2�∗�n

En − E (0)
n−1 − λJz�∗�

][
E (0)

n+1 + λJz�∗� − En + λ2 J2z2�∗�(n + 2)

En − E (0)
n+2 − λJz�∗�

+ λ4 J4z4�∗2�2(n + 2)(n + 3)(
En − E (0)

n+2 − λJz�∗�
)2(

En − E (0)
n+3 − λJz�∗�

)
]

− λ2J2z2�∗�(n + 1) + . . . . (31)

To calculate the phase boundary we perform

1

�

∂Det(�)

∂�∗

∣∣∣∣
�∗�=0

= λJz
[(

E (0)
n − En

) + (
E (0)

n+1 − En
) − λJz(n + 1)

]

+ λ2J2z2

[
(n + 2)

(
E (0)

n − En
)

En − E (0)
n+2

+ n
(
E (0)

n+1 − En
)

En − E (0)
n−1

]
= 0, (32)

resulting in

Jz

U
= −(

2En − E (0)
n − E (0)

n+1

)(
En − E (0)

n+2

)(
En − E (0)

n−1

)
λnU

(
En − E (0)

n+1

)(
En − E (0)

n+2

) + λU
[
(n + 1)

(
En − E (0)

n+2

) + (n + 2)
(
En − E (0)

n
)] , (33)
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(a) (b)

FIG. 5. Energies for all superfluid regions of the horizontal continuous lines (with the respective colors) in Fig. 3. Perturbed ground-state
energies En/U up to λ4 between the Mott lobes in the superfluid region for three different hopping values: Jz/U = 0.02 (red circles), Jz/U =
0.08 (blue crosses), and Jz/U = 5 − 2

√
6 ≈ 0.101 (green rings). At Jz/U = 5 − 2

√
6 the second lobe hits exactly its tip. (a) The energy in

the superfluid phase is shown for the first two Mott lobes. The central part is shown in panel (b). For better visualization, the linear equation
0.15 + 1.55μ/U , which scales the outmost points of the green plot to zero, is added to the energy. (b) The energy in between the lobes for
n = 1 and 2, centered around the degeneracy by introducing μ = Un + ε. For better visualization, the linear equation 1.15 + 1.66ε/U , which
scales the outmost points of the green plot to zero, is added to the energy.

which is the mean-field phase boundary. All higher-order
corrections drop out of the formula if we set �∗� = 0. Thus,
the phase boundary does not change even if higher orders in λ

are taken into account. To determine En in (33), we take (31)
and set �∗� = 0, which results effectively in calculating the
matrix up to zeroth order. We set it equal to zero,

Det(�) = (
E (0)

n − En
)(

E (0)
n+1 − En

) = 0, (34)

and get two possibilities: En = E (0)
n or En = E (0)

n+1. Thus, the
mean-field phase boundary (33) with λ = 1 agrees with the
previous result (12). Using the explicit forms of the unper-
turbed energies (11) together with μ = Un + ε for n = 1, we
have

E1 = −
(

1 + ε

U

)
U (35)

and

E2 = −
(

1 + 2
ε

U

)
U . (36)

These two energies are depicted in Fig. 1 and yield the lowest
energies, corresponding to the two Mott lobes. For −1 <

ε/U < 0, E1 is the minimal energy, while for 0 < ε/U < 1
it is E2.

To get the phase boundary, we insert (35) and (36)
into (33). According to Fig. 1, E1 gives rise to the first lobe,
and E2 gives rise to the second. Therefore, we obtain the Mott
lobes in Fig. 3.

2. Energy and particle density

We calculate the expectation value of the perturbed ground-
state energy En similarly to the previous section from the two
conditions

Det(�) = 0, (37a)

1

�

∂

∂�∗ Det(�) = 0, (37b)

where � is given by

� =

⎛
⎜⎝

E (0)
n + λJz�∗� − En + λ2 J2z2�∗�n

En−E (0)
n−1−λJz�∗�

−λJz�∗√n + 1

−λJz�
√

n + 1 E (0)
n+1 + λJz�∗� − En + λ2 J2z2�∗�(n+2)

En−E (0)
n+2−λJz�∗�

⎞
⎟⎠. (38)

The perturbed ground-state energy En is then determined by
solving both (37a) and (37b) iteratively.

The plots in Fig. 5 correspond to λ = 1. The distance
between two points is ε/U = 0.005. The ground-state energy
En is depicted as a function of the chemical potential for the
superfluid regions, i.e., between Mott lobes, which explains
the missing points in some regions in Fig. 5.

In order to get the particle density, shown in Fig. 6, we
have to combine Fig. 3 with Fig. 5(a). We do this exemplarily

for the value of Jz/U = 0.02, which is depicted by the first
line from the bottom (red) in Fig. 3. Starting from the left,
at zero particles n = 0, we can read off that we are in the
superfluid region. We calculate −∂E/∂μ to get the particle
density in the superfluid region, which is plotted in Fig. 6.
In the Mott lobes, the boundaries of which can be read off
from Fig. 3, we have a constant particle number, and thus a
horizontal line, according to the particle number in the lobes in
Fig. 3.
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FIG. 6. Particle density −∂En/∂μ over chemical potential μ/U according to the corresponding horizontal continuous lines in Fig. 3, i.e.,
the red curve (left panel) corresponds to Jz/U = 0.02, while the green curve (right panel) corresponds to Jz/U = 0.101. Horizontal lines are
within the Mott lobes, while curves are in the superfluid. For higher hopping values the curves become rounder.

3. Condensate density

The corresponding results for the condensate density �∗�
are plotted in Figs. 7 and 8, where we have set μ = Un +
ε, λ = 1, and n = 1. The distance between two points is
ε/U = 0.005. The graphs corresponding to the condensate
density have a maximum at ε/U > 0 and they always go
from the phase boundary of the Mott lobe with n = 1 up to
the phase boundary of the Mott lobe with n = 2. Note that
these different values for n are already taken into account by
the structure of the matrix (38), therefore we evaluate the
whole matrix with the numerical value n = 1, but get the
physical result for the right half of the Mott lobe n = 1 and
for the left half of the Mott lobe we have to put n = 2.

Figure 7 shows different plots of the condensate density
�∗� over ε/U , where it is depicted in a graphical way that
the results converge for higher orders in λ. It is also possible
to conclude that the two-states approach converges faster than
the one-state approach. Furthermore, the difference of the
condensate density from the two-states approach in λ4 to
λ6 is about 0.0016%, which justifies the truncation of the
perturbative series already at fourth order in λ.

Figure 8 illustrates the condensate density �∗� over ε/U
for 20 different values of Jz/U . For Jz/U = 0, we get
the black point at �∗� = 0.5. For Jz/U = 0.01 (pink) up
to Jz/U = 0.09 (purple) we get an approximately parabola
shaped graph. For Jz/U = 5 − 2

√
6 ≈ 0.101 (blue), we hit

the second Mott lobe at its tip, and the graph touches the
ε/U axis in just one point for positive ε/U . For Jz/U = 0.11
(pink) up to Jz/U = 0.16, the part of the graph with positive
ε/U has still a minimum, while the negative parts intersect the
ε/U axis. For Jz/U = 3 − 2

√
2 ≈ 0.172 (orange), which is

the tip of the first lobe, the part for negative ε/U touches the
ε/U axis. For Jz/U = 0.18 (red) up to Jz/U = 0.20 (blue),
which is just in the superfluid phase without touching any
phase boundary, the whole graph is monotonically increasing.
Note that this is a representation of the condensate density
�∗� which gives a nonzero continuous result at the degen-
eracy, which was not obtained by the Rayleigh-Schrödinger
perturbation theory (see Fig. 2) [29] or by the Brillouin-
Wigner one-state approach (see Fig. 4) [31]. Therefore, for fu-
ture calculations, the condensate density out of the Brillouin-
Wigner two-states matrix approach should be used.

4. Comparison

By comparing our analytic approach with purely numeric
results, obtained by direct numerical diagonalization, we find
a good convergence for small Jz/U . In Fig. 9, the first curve
from the top (blue) stems from the purely numeric calculation,
while the other curves are from the one-state approach. The
three curves are, starting from the bottom, up to λ2 (green),
λ4 (red), and λ6 (yellow). Thus, for small values of Jz/U ,
the one-state energy is quasiexact. We also observe that

FIG. 7. Condensate density as a function of ε/U = μ/U − n for λ = 1 and n = 1 for Jz/U = 0.02 (left panel) and Jz/U = 0.101 (right
panel). In each plot, the curves from the top to the bottom correspond to corrections up to the order λ (red circles), λ2 (blue squares), λ3 (green
rings), and λ4 (purple triangles). For small values of Jz/U , and thus close to the degeneracy, the third (green rings) and fourth (purple triangles)
points coincide.

063603-8



IMPROVING MEAN-FIELD THEORY FOR BOSONS IN … PHYSICAL REVIEW A 99, 063603 (2019)

FIG. 8. Condensate density �∗� as a function of ε/U = μ/U −
n for λ = 1 and n = 1 up to λ4 between the Mott lobes for differ-
ent values of Jz/U , between Jz/U = 0.01 (innermost points) and
Jz/U = 0.20 (outermost points) with a step size of 0.01 for Jz/U .

the energies from the one-state and the two-states approach
coincide. Therefore, the two-states approach can be consid-
ered as quasiexact at least concerning the ground-state energy.

IV. TRAP

In view of actual experiments, we consider now the impact
of the harmonic confinement upon the equation of state.
Although most traps in experiments have an ellipsoidal shape,
we perform here calculations for the case of a spherical trap.
In order to add a trap to our calculations, we have to perform
the Thomas-Fermi or local-density approximation [5,6]:

μ = μ̃ − 1
2 mω2|�r|2. (39)

Here, m denotes the mass of the particles and ω stands for the
trap frequency. Thus, the chemical potential is now consisting
of a trap term and the original chemical potential μ̃.

This procedure effectively gives rise to the same picture as
in Fig. 6. We identify μ̃max with the center of the trap, while

FIG. 9. Ground-state energy E1 out of one-state approach for
μ = 0.7U . From the top to the bottom the respective curves represent
the exact numerical value (blue) as well as the corrections λ6 (yel-
low), λ4 (red), and λ2 (green). The labeling of the axis is motivated
from (C3).

the border of the trap is identified with the vanishing point of
the condensate density. In between, we have Mott insulating
and superfluid regions, which give, in a three-dimensional
trap, a wedding cake structure with alternating Mott insulating
and superfluid shells.

In order to identify one of the graphs from Fig. 6 with an
actual experimental setting for a trap, we have to determine
μ̃. This is done by integrating over the plots from Fig. 6.
Doing so results in a gauge curve for the equation of state
for the total particle number, which allows one to determine
the corresponding value for μ̃.

At first, we write down the integral and switch from
Cartesian to spherical coordinates and perform the angular
integrations:

Iμi,μo = − 1

a3

∫
V

∂En

∂μ
dV = −4π

a3

∫ Ro

Ri

r2 ∂En

∂μ
dr, (40)

where the radii Ri and Ro are the inner and the outer radius
of the shell we want to compute, respectively. Further calcula-
tions are done for Jz/U = 0.08 and 2 � n � 3 [see Fig. 6(b),
1.69 � μ/U � 2.15], which is just the innermost superfluid
shell. To this end we execute the differentiation:

I1.69,2.15 = − 4π

a3

∫ R3

R2

r2

[
13 − 38

μ

U
+ 37

( μ

U

)2
− 18

( μ

U

)3

+4
( μ

U

)4
− 0.4

( μ

U

)5
]

dr, (41)

with

R3 =
√

2(μ̃ − 2.15U )

mω2
, (42a)

R2 =
√

2(μ̃ − 1.69U )

mω2
. (42b)

The last step is to insert (39) into (41) and perform the
integration. The same procedure has to be repeated for all the
other regions in Fig. 6(b), namely, I1.23,1.69, I0.82,1.23, I0.10,0.82,
and I−0.08,0.10, which represent the other superfluid and Mott
insulating shells, respectively. These equations have to be
added together in order to obtain the total particle number:

N = I−0.08,0.10 + I0.10,0.82 + I0.82,1.23 + I1.23,1.69 + I1.69,2.15.

(43)

The plot of the resulting equation of state N = N (μ̃) is
shown in Fig. 10. For small values of μ̃, the particle number
decreases to zero. From this plot, we conclude that for a given
μ̃ the minimal particle number is not at Jz/U = 0, where
all particles are in the Mott insulator phase, neither is it at
Jz/U > 0.172, where all particles are in the superfluid phase.
Instead, the minimal particle number is achieved for a specific
distribution of Mott insulator and superfluid, represented by a
corresponding value of Jz/U , which can be determined from
the methods introduced here.

V. CONCLUSION

From the discussion in Sec. IV we conclude that the mean-
field approximation yields good results concerning the energy
calculated through the one-state approach in Sec. III A as
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FIG. 10. Equations of state N = N (μ̃), with m = 87u, a =
400 nm, and ω = 48πHz. From left to right: Jz/U = 0.02 (dashed
red line), Jz/U = 0.101 (dotted green line), and Jz/U = 0.08 (con-
tinuous blue line).

well as by the two-states approach in Sec. III B. Thus, the
particle density (see Fig. 6) and the total particle number in
a trap (see Fig. 10) are considered as reliable results. The
only physically convincing condensate density stems from
the two-states approach (see Figs. 7 and 8), whereas the
mean-field phase boundary is obtained by both the one-state as
well as the two-states approach. One way to improve the
phase boundary to experimental precision is not to use the
mean-field approximation, but a field-theoretic method, where
a Legendre transform of the grand-canonical free energy gives
very precise results [18,36]. The same method is supposed to
give satisfying results for the superfluid density, which turns
out to always coincide with the condensate density in the
mean-field picture.
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APPENDIX A: BRILLOUIN-WIGNER
PERTURBATION THEORY

Here we provide a concise summary of the Brillouin-
Wigner perturbation theory [32]. It amounts to deriving an ef-
fective Hamiltonian for an arbitrarily chosen Hilbert subspace,
which is characterized by a projection operator P̂. To this end
we have to eliminate the complementary Hilbert subspace,
which is characterized by the projection operator Q̂.

1. General formalism

Since we have now two projection operators, i.e., P̂ and
Q̂, we need two conditions to define the respective Hilbert
subspaces. So, we start by reformulating the full time-
independent Schrödinger equation

Ĥ |�n〉 = En|�n〉 (A1)

with the help of the projection operators. To this end we insert
the unity operator 1 = P̂ + Q̂ and get

Ĥ P̂|�n〉 + ĤQ̂|�n〉 = EnP̂|�n〉 + EnQ̂|�n〉. (A2)

Multiplying by P̂ the left side of (A2) and considering the
projector operator relations P̂2 = P̂ and P̂Q̂ = 0 results in

P̂Ĥ P̂|�n〉 + P̂ĤQ̂|�n〉 = EnP̂|�n〉. (A3)

Furthermore, multiplying by Q̂ the left side of (A2) and using
correspondingly Q̂2 = Q̂ and Q̂P̂ = 0, we also have

Q̂Ĥ P̂|�n〉 + Q̂ĤQ̂|�n〉 = EnQ̂|�n〉. (A4)

The next step is to try to find a single equation for P̂|�n〉 in
a shape similar to the time-independent Schrödinger equation.
In order to eliminate Q̂|�n〉 from (A3) we use (A4) and take
into account the property Q̂2 = Q̂:

Q̂Ĥ P̂|�n〉 + Q̂ĤQ̂2|�n〉 = EnQ̂|�n〉. (A5)

From rearranging and factoring out follows

Q̂Ĥ P̂|�n〉 = (En − Q̂ĤQ̂)Q̂|�n〉. (A6)

Thus, a formal solution with respect to Q̂|�n〉 yields

Q̂|�n〉 = (En − Q̂ĤQ̂)−1Q̂Ĥ P̂|�n〉. (A7)

A further action of Q̂ results in

Q̂|�n〉 = Q̂(En − Q̂ĤQ̂)−1Q̂Ĥ P̂|�n〉. (A8)

Inserting (A8) in (A3), we get a single equation for P̂|�n〉:
[P̂Ĥ P̂ + P̂ĤQ̂(En − Q̂ĤQ̂)−1Q̂Ĥ P̂]|�n〉 = EnP̂|�n〉. (A9)

Splitting the Hamiltonian regarding the perturbation allows
one to rewrite (A9) according to

P̂Ĥ P̂|�n〉 + P̂(Ĥ (0) + λV̂ )Q̂(En − Q̂ĤQ̂)−1Q̂(Ĥ (0)

+ λV̂ )P̂|�n〉 = EnP̂|�n〉. (A10)

From the fact that Q̂Ĥ (0)P̂ = 0, we finally obtain

P̂[Ĥ + λV̂ Q̂(En − Q̂ĤQ̂)−1Q̂λV̂ ]P̂|�n〉 = EnP̂|�n〉. (A11)

Equation (A11) represents a single equation for P̂|�n〉, which
represents the basis of the Brillouin-Wigner perturbation
theory.

The resulting equation (A11) for P̂|�n〉 is of the form of a
time-independent Schrödinger equation

P̂Ĥeff P̂|�n〉 = EnP̂|�n〉, (A12)

where we have introduced the effective Hamiltonian

Ĥeff = Ĥ + λ2V̂ Q̂(En − Q̂ĤQ̂)−1Q̂V̂ . (A13)

Since Ĥeff is sandwiched by P̂ in (A12), everything that goes
in or out of Ĥeff must involve the Hilbert subspace P̂ projects
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into. However, Ĥeff contains also the projection operator Q̂, so
one has to go beyond the Hilbert subspace P̂ projects into.

Another way to represent Ĥeff in (A13) is

Ĥeff =Ĥ (0) + λV̂ + λ2V̂ Q̂(En − Q̂Ĥ (0)Q̂ − λQ̂V̂ Q̂)−1Q̂V̂ .

(A14)

The resolvent

R̂(En) = [En − Q̂(Ĥ (0) + λV̂ )Q̂]−1 (A15)

can be expanded in series with respect to λ:

R̂(En) =(En − Q̂Ĥ (0)Q̂)−1
∞∑

s=0

[λQ̂V̂ Q̂(En − Q̂Ĥ (0)Q̂)−1]s.

(A16)

Note the crucial property of (A16): instead of the unper-
turbed energy eigenvalue E (0)

n it contains the full energy
eigenvalue En.

Inserting (A15) in (A14) results in

Ĥeff =Ĥ (0) + λV̂ + λ2V̂ Q̂R̂(En)Q̂V̂ . (A17)

As λ approaches zero, this reproduces the unperturbed
Schrödinger equation. The essential property of (A17) is,
however, that En appears nonlinearly in the resolvent R̂(En)
from (A15).

Note that the first perturbative order λV̂ in (A17) is not
contained in the resolvent R̂(En) but directly emanates from
Ĥ . In contrast, all higher orders in (A17) originate from the
resolvent term. In particular, s = 0 gives the second perturba-
tive order, s = 1 goes up to the third perturbative order, and

so on. This fundamental difference of origin of perturbative
orders is already evident in (A2), where the term Ĥ P̂ gives rise
to the zeroth and the first perturbative order, and the term ĤQ̂
gives rise to all higher orders. In other words, the zeroth and
the first perturbative order are within the Hilbert subspace P̂
projects into, while for all higher orders the Hilbert subspace
Q̂ projects into must be taken into account.

Now we calculate all correction terms of the effective
Hamiltonian up to λ4. To do so, we take the sum over s in
the resolvent (A16) up to s = 2 and obtain with (A17)

Ĥeff = Ĥ (0) + λV̂ + λ2V̂ Q̂R̂(0)(En)Q̂V̂

+ λ3V̂ Q̂R̂(0)(En)Q̂V̂ Q̂R̂(0)(En)Q̂V̂

+ λ4V̂ Q̂R̂(0)(En)Q̂V̂ Q̂R̂(0)(En)Q̂V̂ Q̂R̂(0)(En)Q̂V̂ .

(A18)

Here we have introduced the resolvent with the unperturbed
Hamiltonian:

R̂(0)(En) = (En − Q̂Ĥ (0)Q̂)−1. (A19)

Now we specialize to the respective projection operators P̂ =∑
k∈N P̂k and Q̂ = ∑

k∈Ñ P̂k , where P̂k = |E (0)
k 〉〈 E (0)

k | repre-
sents a projector for the unperturbed eigenstate |E (0)

k 〉. Note
that N defines a finite set of quantum numbers, whereas Ñ
represents its complement. With this we show that the matrix
element of the resolvent (A19) yields

1

En − E (0)
l

= 〈
�

(0)
l

∣∣R̂(0)(En)
∣∣� (0)

l

〉
, (A20)

with l ∈ Ñ and n ∈ N . Taking into account (A20) in (A18),
we obtain

Ĥeff = Ĥ (0) + λV̂ + λ2
∑
l∈Ñ

V̂
∣∣� (0)

l

〉〈
�

(0)
l

∣∣V̂
En − E (0)

l

+ λ3
∑

l,l ′∈Ñ

V̂
∣∣� (0)

l

〉〈
�

(0)
l

∣∣V̂ ∣∣� (0)
l ′

〉〈
�

(0)
l ′

∣∣V̂(
En − E (0)

l

)(
En − E (0)

l ′
)

+ λ4
∑

l,l ′,l ′′∈Ñ

V̂
∣∣� (0)

l

〉〈
�

(0)
l

∣∣V̂ ∣∣� (0)
l ′

〉〈
�

(0)
l ′

∣∣V̂ ∣∣� (0)
l ′′

〉〈
�

(0)
l ′′

∣∣V̂(
En − E (0)

l

)(
En − E (0)

l ′
)(

En − E (0)
l ′′

) + . . . . (A21)

This representation of the effective Hamiltonian Ĥeff has
no operators anymore in the denominators, and thus can be
used as a starting point for further calculations.

Now we determine an equation for the perturbed ground-
state energy Em. To this end, we choose n, n′ ∈ N and refor-
mulate (A12) with P̂ = ∑

k∈N P̂k:∑
n,n′∈N

∣∣� (0)
n

〉〈
� (0)

n

∣∣Ĥeff

∣∣� (0)
n′

〉〈
�

(0)
n′

∣∣�m
〉

= Em

∑
n′∈N

∣∣� (0)
n′

〉〈
�

(0)
n′

∣∣�m
〉
. (A22)

Then we multiply the left side by 〈� (0)
n |,∑

n,n′∈N

〈
� (0)

n

∣∣Ĥeff

∣∣� (0)
n′

〉〈
�

(0)
n′

∣∣�m
〉

= Em

∑
n,n′∈N

〈
� (0)

n

∣∣� (0)
n′

〉〈
�

(0)
n′

∣∣�m
〉
, (A23)

yielding

〈
�

(0)
n′

∣∣�m
〉 ∑

n,n′∈N

(〈
� (0)

n

∣∣Ĥeff

∣∣� (0)
n′

〉 − Emδn,n′
) = 0. (A24)

In order to obtain a nontrivial solution 〈�
(0)
n′ |�m〉 �= 0

from (A24), we have to demand

Det
(〈

� (0)
n

∣∣Ĥeff

∣∣� (0)
n′

〉 − Emδn,n′
) = 0, (A25)

where the determinant in (A25) has to be performed with
respect to n, n′ ∈ N . Note that (A25) defines Em as a zero of a
polynomial of finite order.

2. Specific cases

Now we specialize (A25) to the case that the projector P̂
consists of one or two states, respectively.
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FIG. 11. Graphical approach for the matrix elements (A31) of the effective Hamiltonian (A21) for the Bose-Hubbard mean-field
Hamiltonian (4) up to fifth order in the hopping for the two-states approach.

a. One-state approach

Here we consider first the special case that P̂ contains only
one state, namely,

P̂ = P̂n. (A26)

In this case, where n = n′ = m, (A25) simplifies to

En = 〈
� (0)

n

∣∣Ĥeff

∣∣� (0)
n

〉
. (A27)

Inserting (A21) in (A27) we get

En = E (0)
n + λVn,n + λ2

∑
l �=n

Vn,lVl,n

En − E (0)
l

+ λ3
∑

l,l ′ �=n

Vn,lVl,l ′Vl ′,n(
En − E (0)

l

)(
En − E (0)

l ′
)

+ λ4
∑

l,l ′,l ′′ �=n

Vn,lVl,l ′Vl ′,l ′′Vl ′′,n(
En − E (0)

l

)(
En − E (0)

l ′
)(

En − E (0)
l ′′

) + . . . ,

(A28)

where we have taken into account that 〈� (0)
n |Ĥ (0)|� (0)

n 〉 =
E (0)

n and defined the matrix element Vn,m ≡ 〈� (0)
n |V̂ |� (0)

m 〉.
Note that, due to the nonlinear appearance of En, Eq. (A28)

represents a self-consistency equation for the energy eigen-
value En. Furthermore, we observe up to third order that
every order in λ consists of only one single term. Since we
have n �= l, l ′, l ′′, the denominator is never zero and thus no
divergence occurs in this perturbative representation for the
perturbed ground-state energy En.

b. Two-states approach

Now we consider the case that P̂ consists of two states:

P̂ = P̂n + P̂n′ . (A29)

Thus, (A25) reduces to

Det

(
Heff,n,n − Em Heff,n,n′

Heff,n′,n Heff,n′,n′ − Em

)
= 0. (A30)

Note that

� =
(

Heff,n,n Heff,n,n′

Heff,n′,n Heff,n′,n′

)
(A31)

represents a 2 × 2 matrix, since the projection operator P̂
in (A29) consists of two states. A detailed evaluation of (A30)
is worked out in Appendix B in a graphical way.

APPENDIX B: GRAPHICAL APPROACH

In order to evaluate (A30) for higher orders in λ, it is
mandatory to evaluate the matrix elements (A31) from the
effective Hamiltonian (A21) to higher orders in λ. To this end
we work out here an efficient graphical approach.

In particular, we specify Appendix A to the mean-field
Hamiltonian (4) and find for the two-states approach a graph-
ical representation of the matrix elements in Fig. 11. The
numbers in the first row of Fig. 11 represent the orders of λ

for the respective correction terms. In the first column we have
the different states ranging from n − 3 to n + 4. Within the
two-states matrix approach we choose P̂ = P̂n + P̂n+1, once
there is a degeneracy between two consecutive Mott lobes
in the zero-temperature phase diagram of the Bose-Hubbard
model.

In order to obtain all possible graphs in Fig. 11, we have to
take into account the following empirical rules.

(1) According to l ∈ Ñ and thus l �= n in (A28), the state
we start in and the state we end in cannot be reached in
between.

(2) Since V̂ is linear in â and â† in (6), we can only get
from one state to its nearest-neighboring states.

(3) Because the effective Hamiltonian Ĥeff in (A13) con-
tains only the projection operator Q̂, but is sandwiched by the
projection operator P̂ according to (A12), it is only allowed
that the first and the last state are within P̂. This rule actually
only occurs for the terms in the diagonal matrix elements.

We interpret each graph according to the following rules.
(1) For every graph we draw the starting point correspond-

ing to

S(η) = En − E (0)
η , (B1)

with η being the state we start the graph in.
(2) For every line we draw, we get the following terms. For

an ascending line we have

LA(ν) = −λJz�

√
ν + 1

En − E (0)
ν

, (B2)

with ν being the state the line started in. For every descending
line we draw we get

LD(ν) = −λJz�∗
√

ν

En − E (0)
ν

, (B3)

with ν being the state the line started in.
(3) For a horizontal line, we get

LH (ν) = λJz�∗�

En − E (0)
ν

, (B4)
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with ν being the state the line started in.
In the column labeled as 1, which corresponds to the order

λ, we have the off-diagonal matrix elements

S(n + 1)LD(n + 1) = −λJz�∗√n + 1, (B5)

S(n)LA(n) = −λJz�
√

n + 1 (B6)

and the diagonal matrix elements

S(n + 1)LH (n + 1) = λJz�∗�, (B7)

S(n)LH (n) = λJz�∗�. (B8)

For λ2 we have correspondingly

S(n + 1)LA(n + 1)LD(n + 2) = λ2J2z2�∗�
n + 2

En − E (0)
n+2

(B9)

and

S(n)LD(n)LA(n − 1) = λ2J2z2�∗�
n

En − E (0)
n−1

. (B10)

For λ3 one obtains

S(n + 1)LA(n + 1)LH (n + 2)LD(n + 2)

= λ3J3z3�∗2�2 n + 2(
En − E (0)

n+2

)2 (B11)

together with

S(n)LD(n)LH (n − 1)LA(n − 1)

= λ3J3z3�∗2�2 n(
En − E (0)

n−1

)2 . (B12)

For λ4 we find

S(n + 1)LA(n + 1)[LA(n + 2)LD(n + 3) + LH (n + 2)LH (n + 2)]LD(n + 2)

= λ4J4z4�∗2�2 (n + 2)(n + 3)(
En − E (0)

n+2

)2(
En − E (0)

n+3

) + λ4J4z4�∗3�3 n + 2(
En − E (0)

n+2

)3 (B13)

and

S(n)LD(n)[LD(n − 1)LA(n − 2) + LH (n − 1)LH (n − 1)]LA(n − 1)

= λ4J4z4�∗2�2 n(n − 1)(
En − E (0)

n−1

)2(
En − E (0)

n−2

) + λ4J4z4�∗3�3 n(
En − E (0)

n−1

)3 . (B14)

Finally, the fifth column, corresponding to λ5, gives

S(n+ 1)LA(n+ 1)[LA(n+ 2)LH (n+ 3)LD(n + 3)+ LH (n+ 2)LH (n+ 2)LH (n+ 2) + 2LA(n + 2)LD(n + 3)LH (n+ 2)]LD(n + 2)

= λ5J5z5�∗3�3 (n + 2)(n + 3)(
En − E (0)

n+2

)2(
En − E (0)

n+3

)2 + 2λ5J5z5�∗3�3 (n + 2)(n + 3)(
En − E (0)

n+2

)3(
En − E (0)

n+3

) + λ5J5z5�∗4�4 n + 2(
En − E (0)

n+2

)4 ,

(B15)

together with

S(n)LD(n)[LD(n − 1)LH (n − 2)LA(n − 2) + LH (n − 1)LH (n − 1)LH (n − 1) + 2LD(n − 1)LA(n − 2)LH (n − 1)]LA(n − 1)

= λ5J5z5�∗3�3 n(n − 1)(
En − E (0)

n−1

)2(
En − E (0)

n−2

)2 + λ5J5z5�∗3�3 n(n − 1)(
En − E (0)

n−1

)3(
En − E (0)

n−2

) + λ5J5z5�∗4�4 n(
En − E (0)

n−1

)4 .

(B16)

APPENDIX C: SUPERFLUID DENSITY FOR MEAN FIELD

The mean-field Hamiltonian (5)–(7) is local and has the
form

Ĥ = h(n̂) + jâ + j∗â†, (C1)

where h(n̂) stands for the local term Jz�∗� +
Un̂(n̂ − 1)/2 − μn̂, while the currents correspond to
j = −Jz� and j∗ = −Jz�∗. Its ground-state energy is

E0 = E ( j∗ j), (C2)

and the energy will then be

E = Ns[Jz|ψ |2 + E (J2z2|ψ |2)]. (C3)

Considering a Galilei boost z → z − ( a
L

�φ)
2

results in

E [ε( �φ)] = NsJε( �φ)ρc[ε( �φ)] + NsE{[Jε( �φ)]2ρc[ε( �φ)]},
(C4)

with

ε( �φ) = 2
∑

l

cos
( a

L
φl

)
, (C5)

where ρc( �φ) is the φ-dependent condensate density satisfying
the equation

Jε( �φ) + [Jε( �φ)]2E ′{[Jε( �φ)]2ρc( �φ)} = 0. (C6)
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Therefore, the superfluid density is given by [17]

ρSF = lim
�φ→�0

L2{E [ε( �φ)] − E (z)}
Ja2Ns

∑
l φ2

l

, (C7)

resulting in

ρSF = −E ′(z)

JNs
. (C8)

On the other hand, differentiating (C4) yields

E ′(z) = Ns{Jρc(z) + Jzρ ′
c(z) − [2J2zρc(z)

+ J2z2ρ ′
c(z)]E ′[J2z2ρc(z)]}. (C9)

By using (C6) we get

E ′(z) = −NsJρc(z), (C10)

and therefore

ρSF = ρc(z). (C11)

Thus we conclude that superfluid and condensate
density must always be equal for the mean-field
theory.
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[32] I. Hubač and S. Wilson, Brillouin-Wigner Methods for Many-

Body Systems (Springer, Berlin, 2010).
[33] S. Fölling, A. Widera, T. Müller, F. Gerbier, and I. Bloch, Phys.

Rev. Lett. 97, 060403 (2006).
[34] F. Gerbier, Phys. Rev. Lett. 99, 120405 (2007).
[35] L. D. Landau and E. M. Lifschitz, Lehrbuch der Theoretischen

Physik V, Statistische Physik Vol. 1 (Springer-Verlag, Berlin,
1991).

[36] F. E. A. dos Santos, Ph.D. thesis, Freie Universität Berlin, 2011,
http://users.physik.fu-berlin.de/∼pelster/Theses/santos.pdf.

063603-14

https://doi.org/10.1126/science.269.5221.198
https://doi.org/10.1126/science.269.5221.198
https://doi.org/10.1126/science.269.5221.198
https://doi.org/10.1126/science.269.5221.198
https://doi.org/10.1103/PhysRevLett.75.3969
https://doi.org/10.1103/PhysRevLett.75.3969
https://doi.org/10.1103/PhysRevLett.75.3969
https://doi.org/10.1103/PhysRevLett.75.3969
https://doi.org/10.1103/RevModPhys.73.307
https://doi.org/10.1103/RevModPhys.73.307
https://doi.org/10.1103/RevModPhys.73.307
https://doi.org/10.1103/RevModPhys.73.307
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1038/415039a
https://doi.org/10.1103/PhysRev.129.959
https://doi.org/10.1103/PhysRev.129.959
https://doi.org/10.1103/PhysRev.129.959
https://doi.org/10.1103/PhysRev.129.959
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevB.75.134302
https://doi.org/10.1103/PhysRevB.75.134302
https://doi.org/10.1103/PhysRevB.75.134302
https://doi.org/10.1103/PhysRevB.75.134302
https://doi.org/10.1209/0295-5075/26/7/012
https://doi.org/10.1209/0295-5075/26/7/012
https://doi.org/10.1209/0295-5075/26/7/012
https://doi.org/10.1209/0295-5075/26/7/012
https://doi.org/10.1103/PhysRevLett.97.200601
https://doi.org/10.1103/PhysRevLett.97.200601
https://doi.org/10.1103/PhysRevLett.97.200601
https://doi.org/10.1103/PhysRevLett.97.200601
https://doi.org/10.1103/PhysRevA.79.013615
https://doi.org/10.1103/PhysRevA.79.013615
https://doi.org/10.1103/PhysRevA.79.013615
https://doi.org/10.1103/PhysRevA.79.013615
https://doi.org/10.1103/PhysRevA.79.013614
https://doi.org/10.1103/PhysRevA.79.013614
https://doi.org/10.1103/PhysRevA.79.013614
https://doi.org/10.1103/PhysRevA.79.013614
https://doi.org/10.1103/PhysRevA.84.013613
https://doi.org/10.1103/PhysRevA.84.013613
https://doi.org/10.1103/PhysRevA.84.013613
https://doi.org/10.1103/PhysRevA.84.013613
https://doi.org/10.1134/S1054660X11150096
https://doi.org/10.1134/S1054660X11150096
https://doi.org/10.1134/S1054660X11150096
https://doi.org/10.1134/S1054660X11150096
https://doi.org/10.1103/PhysRevB.98.245107
https://doi.org/10.1103/PhysRevB.98.245107
https://doi.org/10.1103/PhysRevB.98.245107
https://doi.org/10.1103/PhysRevB.98.245107
https://doi.org/10.1103/PhysRevB.79.195131
https://doi.org/10.1103/PhysRevB.79.195131
https://doi.org/10.1103/PhysRevB.79.195131
https://doi.org/10.1103/PhysRevB.79.195131
https://doi.org/10.1103/PhysRevB.79.224515
https://doi.org/10.1103/PhysRevB.79.224515
https://doi.org/10.1103/PhysRevB.79.224515
https://doi.org/10.1103/PhysRevB.79.224515
https://doi.org/10.1007/s00340-013-5419-0
https://doi.org/10.1007/s00340-013-5419-0
https://doi.org/10.1007/s00340-013-5419-0
https://doi.org/10.1007/s00340-013-5419-0
https://doi.org/10.1103/PhysRevA.90.013633
https://doi.org/10.1103/PhysRevA.90.013633
https://doi.org/10.1103/PhysRevA.90.013633
https://doi.org/10.1103/PhysRevA.90.013633
https://doi.org/10.1038/nature08244
https://doi.org/10.1038/nature08244
https://doi.org/10.1038/nature08244
https://doi.org/10.1038/nature08244
https://doi.org/10.1103/PhysRevB.94.195119
https://doi.org/10.1103/PhysRevB.94.195119
https://doi.org/10.1103/PhysRevB.94.195119
https://doi.org/10.1103/PhysRevB.94.195119
https://doi.org/10.1103/PhysRevLett.106.095702
https://doi.org/10.1103/PhysRevLett.106.095702
https://doi.org/10.1103/PhysRevLett.106.095702
https://doi.org/10.1103/PhysRevLett.106.095702
http://users.physik.fu-berlin.de/~pelster/Theses/hoffmann.pdf
https://doi.org/10.1103/PhysRevA.77.033607
https://doi.org/10.1103/PhysRevA.77.033607
https://doi.org/10.1103/PhysRevA.77.033607
https://doi.org/10.1103/PhysRevA.77.033607
https://doi.org/10.1103/PhysRevLett.97.060403
https://doi.org/10.1103/PhysRevLett.97.060403
https://doi.org/10.1103/PhysRevLett.97.060403
https://doi.org/10.1103/PhysRevLett.97.060403
https://doi.org/10.1103/PhysRevLett.99.120405
https://doi.org/10.1103/PhysRevLett.99.120405
https://doi.org/10.1103/PhysRevLett.99.120405
https://doi.org/10.1103/PhysRevLett.99.120405
http://users.physik.fu-berlin.de/~pelster/Theses/santos.pdf

